Notes:
(1) Bin-Model or delta function with N concentration cl(r) in class (or mode) l.
Concentration-density function:
ƒ(r;d) = ∑l=1N cl(r) δ (d-Dl)
Where:
N - number of modes in the distribution
δ - delta-Function
d - diameter
Dl - diameter of mode l(p1)i
(2) Bin-Model or delta function with N concentration cl(r) in class (or mode) l.
Concentration-density function:
ƒ(r;m) = ∑l=1N cl(r) δ (m-Ml)
Where:
N - number of modes in the distribution
δ - delta-Function
m - mass
Ml - mass of mode (p1)
(3) N-Modal concentration-density function consisting of Gaussian-functions:
ƒ(r;d) = ∑l=1N cl(r) 1/
√ 2πδl
* e-((d-Dl)/δl)2
Where:
N - number of modes in the distribution
d - diameter
Dl - mean diameter of mode l(p1)
δl - Variance of Mode l ((p2)
with N fields of concentration cl(r)
(4) N-Modal concentration-density function consisting of Gaussian-functions:
ƒ(r;d) = ∑l=1Ncl(r)1/
√ 2πδl(r)
* e-((d-Dl)(r)/δl(r))2
with 3N fields of concentration cl(r), variance δl(r), and mean diameter Dl(r)
(5) N-modal log-normal-distribution for the number density:
ƒ(r;d) = ∑l=1Nnl(r)/
√ 2πlogδl(r) * e(log2d/Dl(r))/2log2δl(r)
Where:
d - diameter
with 3N fields of number density nl(r), variance δl(r), and mean diameter Dl(r)
(6) N-modal log-normal-distribution for the number density:
ƒ(r;d) = ∑l=1Nnl(r)/
√ 2πlogδl * e(log2d/Dl(r))/2log2δl
Where:
δl - variance of mode l (p1)
with 2N fields of number density nl(r) and mean diameter Dl(r)
(7) N-modal log-normal-distribution for the number density as in Note 6, but with a prescribed mass density ml(r), from which the diameter Dl(r) is calculated by:
Dl = ( ml(r) / nl(r) π⁄6 ρp,l e9⁄2log2δl )⅓
Where:
δl - variance of mode l (p1)
ρp,l - particle density (p2)
with 2N fields of number density nl(r) and mass density ml(r)
|