PAGE
1

ECMWF grib_api abridged documentation

For detailed documentation, go to:

 http://www.ecmwf.int/publications/manuals/grib_api/index.html

Installation

The grib_api installation is based on the standard configure utility. It is tested on several platforms and with several compilers

The only required package for a standard installation is jasper which enables the jpeg2000 packing/unpacking algorithm. It is possible to build grib_api without jasper, by using the --disable-jpeg configure option, but to install a fully functional library, its download is recommended.

Standard installation

1. Download grib_api from ECMWF website (The version I downloaded is: grib_api-1.7.0

2. Unpack distribution:

3. > gunzip grib_api-X.X.X.tar.gz

4. > tar xf grib_api-X.X.X.tar

5. Create the directory where to install grib_api say grib_api_dir

6. > mkdir grib_api_dir

7. Run the configure in the grib_api-X.X.X

8. > cd grib_api-X.X.X

9. > ./configure --prefix=grib_api_dir

 configure file that I modified is in:

 /nco/sib/wx12kk/gpfsuser/ecmwf_grib_api/grib_api-1.7.0/configure

10. make, check and install

11. > make

12. ...

13. > make check

14. ...

15. > make install

16. ...

Installed on Dew

$ hostname

d2n7.ncep.noaa.gov

$ pwd

/nco/sib/wx12kk/gpfsuser/ecmwf_grib_api

 bin/ grib_api-1.7.0.tar include/ lib/

grib_api-1.7.0/ grib_api_dir/ jasper-1.900.1/ share/

$ pwd

/nco/sib/wx12kk/gpfsuser/ecmwf_grib_api/grib_api-1.7.0

$ dir

AUTHORS* config/ perl/

COPYING.LESSER config.log samples/

ChangeLog config.status* simple_ieee_test.grib1.txt

INSTALL* configure* src/

LICENSE* configure.ac* statistics.filter

Makefile configure_command statistics.out

Makefile.am data/ tests/

Makefile.in definitions/ tigge/

NEWS examples/ tools/

README* fortran/ version.sh

acinclude.m4 gpl-3.0.txt

aclocal.m4 html/

Boi has installed on Mist:

/nco/pmb/wx11bv/grib-api-1.7.0

GRIB API

The grib_api is the application program interface developed at ECMWF to provide an easy and reliable way for encoding and decoding WMO FM-92 GRIB edition 1 and edition 2 messages.

grib_api library is written entirely in C

Command line tools are provided to give a quick way to manipulate grib data.

Fortran interface 90 is available giving access to the main features of the C library.

The library is designed to access and modify messages in both editions with the same function calls using a set of Grib API keys to access the coded information (examples: get.f90 set.f90, get.c, set.c, grib_get, grib_set).

The keys available for a message are different depending not only on the edition but also and mainly on the type of each message and the information it contains.

A list of all the available keys in a message can be obtained dynamically using the library as shown in keys_iterator.c or using the Grib tools as shown in grib_dump or grib_keys.

To learn how to use the grib_api, the user may work through the Grib API examples.

Compiling and linking on ECMWF platforms

The grib API is installed on all systems at ECMWF with both its components: the library and the tools. The latest version of the library can be installed on any platform and can be linked through the following two environment variables: $GRIB_API_INCLUDE $GRIB_API_LIB.

Here is a short summary on how to compile and link on IBM systems:


>xlc -o foo foo.c $GRIB_API_INCLUDE $GRIB_API_LIB –lm



>xlf90 -o foo foo.f90 $GRIB_API_INCLUDE $GRIB_API_LIB

Grib API keys

With grib_api a key name based access is provided so that all the information contained in the GRIB message is retrieved through alphanumeric names.
All the key names are built from the official WMO documentation on the GRIB edition 1 and 2 coding standard removing the spaces in the key description and capitalizing the initials so that the caption:

identification of originating generating centre

is transformed into the key name

identificationOfOriginatingGeneratingCentre

Some short names (aliases) are also provided, e.g. "centre" is an alias for identificationOfOriginatingGeneratingCentre.

Use the GRIB tools (grib_dump) or the library (keys_iterator.c) to find the keys available in a message.

Coded and Computed keys

There are two different types of keys: coded and computed.

The coded keys are directly linked to octets of the GRIB message and their value is obtained by only decoding the octets. A list of all the coded keys in a message can be obtained using grib_dump without any option (use the -a option to obtain also their aliases).

The computed keys are obtained by combining other keys (coded or computed) and when their value is set all the related keys are set in a cascade process.

These keys provide a synthesis of the information contained in the GRIB message and are a safe way to set complex attributes such as the type of grid or the type of packing. They are also helpful in the interpretation of some octets such as the scanning mode whose bits are related to the way of scanning the grid. In this case the computed keys:

iScansNegatively

jScansPositively

jPointsAreConsecutive

alternativeRowScanning (available only for edition 2)

will provide access to single bits of the scanning mode octect hiding its structure from the user.
The keys can also have some attributes as read only, which means that the key cannot be set (e.g. 7777 at the end of the message), or edition specific that is the attribute of all the keys having different values in the two editions (e.g. longitudeOfFirstGridPoint) or being present in one edition only (e.g. alternativeRowScanning).

Moreover there are some computed keys that cannot be "get" and can be considered as functions acting on the grib in some way. These keys are always characterized by a predicate in their name (e.g. setDecimalPrecision).

The Meteorological Archival and Retrieval System (MARS) is the main repository of meteorological data at ECMWF. It contains terabytes of operational and research data as well as data from special projects.

· MARS keywords.
All MARS keywords are available. Some examples are:

· date

· param

· levtype

· levelist

· step

· stream

· angles in degrees.
All the angle variables are provided in two versions, a native one with the units coded into the GRIB file and an edition independent one in degrees. It is always better to work with the "in degrees" version that is always provided through the key which has the same name of the native version with the suffix InDegrees

· longitudeOfFirstGridPoint -> longitudeOfFirstGridPointInDegrees

· latitudeOfFirstGridPoint -> latitudeOfFirstGridPointInDegrees

· longitudeOfLastGridPoint -> longitudeOfLastGridPointInDegrees

· latitudeOfFirstGridPoint -> latitudeOfLastGridPointInDegrees

· latitudeOfFirstGridPoint -> latitudeOfFirstGridPointInDegrees

· iDirectionIncrement -> iDirectionIncrementInDegrees

· jDirectionIncrement -> jDirectionIncrementInDegrees

· gridType
The type of grid computed from the grid description section.

· For both editions:

· regular_ll

· reduced_ll

· mercator

· lambert

· polar_stereographic

· UTM

· simple_polyconic

· albers

· miller

· rotated_ll

· stretched_ll

· stretched_rotated_ll

· regular_gg

· rotated_gg

· stretched_gg

· stretched_rotated_gg

· reduced_gg

· sh

· rotated_sh

· stretched_sh

· stretched_rotated_sh

· space_view

· For edition 2 only:

· triangular_grid

· equatorial_azimuthal_equidistant

· azimuth_range

· cross_section

· Hovmoller

· time_section

· packingType
The algorithm used to pack data into the GRIB2 message.

· For GRIB edition 2:

· grid_simple

· grid_simple_matrix

· grid_simple_matrix_bitmap

· grid_complex

· grid_complex_spatial_differencing

· grid_jpeg

· grid_png

· grid_ieee

· spectral_simple

· spectral_complex

· grid_simple_log_preprocessing

· setDecimalPrecision
is a function key used to set the decimal precision see the grib_set page for usage.

· getNumberOfValues
The number of values coded into the data section of the GRIB message

Grib tools

Some command line tools for interactive and batch processing of grib data are as follows:

Use of the tools is recommended whenever possible. They provide a ready and tested solution for many situations and their use will avoid the need to write new code and thus speeding up your work.

To make easier their use the tools are provided with a common set of options so that it's quick to apply the same options to different tools.

grib_dump, grib_ls and grib_get are used to inspect the content of some files

To change the content of the grib message

use grib_set, grib_convert and grib_filter
To copy some messages from a file use, grib_copy
Use grib_get_data to get a latitude/longitude/values list of data.

grib_compare compares grib messages focusing on some keys or comparing data with a given precision.

· grib_dump
· grib_ls
· grib_get
· grib_copy
· grib_set
· grib_convert
· grib_filter
· grib_compare
· grib_get_data
· grib_keys

 To dump in a WMO documentation style with hexadecimal octet values (-H)

>grib_dump -H ../data/reduced_gaussian_model_level.grib1

 To obtain all the key names available in a grib file.

> grib_dump -D ../data/regular_latlon_surface.grib1

 To obtain a C code example from a grib file.

>grib_dump -C ../data/regular_latlon_surface.grib1

 Without options a default list of keys is printed.
The default list is different depending on the type of grib message.

> grib_ls ../data/reduced*.grib1 ../data/regular*.grib1 ../data/reduced*.grib2 \n

 To print offset and count number in file use the keys offset and count
Also the total count in a set of files is available as countTotal

> grib_ls -p offset,count,countTotal ../data/reduced*.grib1

 To list only a subset of messages use the -w (where option).
Only the pressure levels are listed with the following line.

> grib_ls -w levType=pl ../tigge_pf_ecmwf.grib2

 All the grib messages not on pressure levels are listed as follows:

> grib_ls -w levType!=pl ../tigge_pf_ecmwf.grib2

1. grib_get fails if a key is not found.

>grib_get -p gribname ../data/tigge_pf_ecmwf.grib2

2. To get the step of the first GRIB message in a file:

>grib_get -w count=1 -p step ../data/tigge_pf_ecmwf.grib2

 To copy only the pressure levels from a file

> grib_copy -w levtype=pl ../data/tigge_pf_ecmwf.grib2 out.grib

 To copy only the fields that are not on pressure levels from a file

> grib_copy -w levtype!=pl ../data/tigge_pf_ecmwf.grib2 out.grib

 A grib_file with multi field messages can be converted in single field messages with a simple grib_copy.

> grib_copy multi.grib simple.grib

 To set productDefinitionTemplateNumber=2 only for the fields with productDefinitionTemplateNumber=11

>grib_set -s productDefinitionTemplateNumber=2 -w productDefinitionTemplateNumber=11 ../data/tigge_pf_ecmwf.grib2 out.grib2

 To set productDefinitionTemplateNumber=2 only for the fields for which productDefinitionTemplateNumber is not equal to 11

>grib_set -s productDefinitionTemplateNumber=2 -w productDefinitionTemplateNumber!=11 tigge_pf_ecmwf.grib2 out.grib2

 When a key is not used all the bits of its value should be set to 1 to indicate that it is missing. Since the length (number of octet) is different from a key to another, the value that we have to code for missing keys is not unique. To give an easy way to set a key to missing a string "missing" or "MISSING" is accepted by grib_set as follows:

>grib_set -s scaleFactorOfFirstFixedSurface=missing,scaledValueOfFirstFixedSurface=MISSING ../data/regular_latlon_surface.grib2 out.grib2

Since some values can not be set to missing you can get an error for those keys.

 To set scaleFactorOfSecondFixedSurface to missing only for the fields for which scaleFactorOfSecondFixedSurface is not missing:

>grib_set -s scaleFactorOfSecondFixedSurface=missing -w scaleFactorOfSecondFixedSurface!=missing tigge_pf_ecmwf.grib2 out.grib2

 It's possible to produce a grib edition 2 file from a grib edition 1 just changing the edition number with grib_set. At this stage of development all the geography parameters, level and time information is correctly translated, for the product definition extra set calls must be done. To do this properly grib_convert is suggested.

grib_set -s editionNumber=2 ../data/reduced_gaussian_pressure_level.grib1

 With grib edition 2 is possible to compress data using the jpeg algorithm. To change packing algorithm from grid_simple (simple packing) to grid_jpeg (jpeg2000 packing):

>grib_set -s packingType=grid_jpeg ../data/regular_gaussian_model_level.grib2 out.grib2

 It's possible to ask grib_api to calculate the number of bits per value needed to pack a given field with a fixed number of decimal digits of precision. For example if we want to pack a temperature expressed in Kelvin with 1 digits of precision after the decimal point we can set changeDecimalPrecision=1

>grib_set -s changeDecimalPrecision=1 ../data/regular_latlon_surface.grib2 ../data/out.grib2

rm -f ../data/out.grib2 | true

./grib_set -s changeDecimalPrecision=1 ../data/regular_latlon_surface.grib2 ../data/out.grib2 **

The following grib_convert rules convert all the grib messages contained in the input files in grib edition 2 and if a 2 metre temperature is found also the keys contained in the culy bracket are changed.

editionNumber = 2;

if(indicatorOfParameter == 11 && indicatorOfTypeOfLevel == 105)

{

 productDefinitionTemplateNumber = 1;

 typeOfFirstFixedSurface = 103;

 scaleFactorOfFirstFixedSurface = 0;

 scaledValueOfFirstFixedSurface = 2;

}

**

 The rules accepted by grib_filter are different from the grib_convert rules due to the kind of work grib_filter it is supposed to do.
The main difference between grib_filter and grib_convert is that the convert is a 1 field in input 1 field in output tool, while the filter is a 1 field in input as many field you need in output. At this aim the filter syntax allows a write in the form: write "filename". So that it is possible repeating as many write you need or using a parametrised write to send the output to many files.
The grib_filter processes sequentially all the grib messages contained in the input file and it applies the rules to each one.
Since the filename used in the write statement can contain some key values, taken from the grib processed when applying the "write rule", several files are produced in output containing fields with the same value of the keys used in the file name.
Indeed if we write a rules_file containing the only statement:

write "../data/split/[centre]_[date]_[dataType]_[levelType].grib[editionNumber]";

Applying this rules_file to the ../data/tigge_pf_ecmwf.grib2 grib file we obtain several files in the ../data/split directory containting fields splitted according their keys values

>grib_filter rules_file ../data/tigge_pf_ecmwf.grib2

>ls ../data/split

ecmf_20060619_pf_sfc.grib2

ecmf_20060630_pf_sfc.grib2

ecmf_20070122_pf_pl.grib2

ecmf_20070122_pf_pt.grib2

ecmf_20070122_pf_pv.grib2

ecmf_20070122_pf_sfc.grib2

 The key values in the file name can also be obtained in a different format by indicating explicitly the type required after a colon.

· :l for long

· :d for double

· :s for string

The following statement works in a slightly different way from the previous example, including in the output file name the long values for centre and dataType.

write "../data/split/[centre:l]_[date]_[dataType:l]_[levelType].grib[editionNumber]";

Running the same command again we obtain a different list of files.

>grib_filter rules_file ../data/tigge_pf_ecmwf.grib2

>ls ../data/split

98_20060619_4_sfc.grib2

98_20060630_4_sfc.grib2

98_20070122_4_pl.grib2

98_20070122_4_pt.grib2

98_20070122_4_pv.grib2

98_20070122_4_sfc.grib2

 Other statements are allowed in the grib_filter syntax:

· if (condition) { statement;}
The condition can be made using ==,!= and joining single block conditions with || and &&
The statement can be any valid statement also another nested condition

· set keyname = keyvalue;

· print "string to print also with key values like in the file name"

· transient keyname1 = keyname2;

· comments beginning with #

A complex example of grib_filter rules is the following to change temperature in a grib edition 1 file.

Temperature

if (level == 850 && indicatorOfParameter == 11) {

 print "found indicatorOfParameter=[indicatorOfParameter] level=[level] date=[date]";

 transient oldtype = type ;

 set identificationOfOriginatingGeneratingSubCentre=98;

 set gribTablesVersionNo = 128;

 set indicatorOfParameter = 130;

 set localDefinitionNumber=1;

 set marsClass="od";

 set marsStream="kwbc";

 # Negatively/Positively Perturbed Forecast

 if (oldtype == 2 || oldtype == 3) {

 set marsType="pf";

 set experimentVersionNumber="4001";

 }

 # Control Forecast

 if (oldtype == 1) {

 set marsType="cf";

 set experimentVersionNumber="0001";

 }

 set numberOfForecastsInEnsemble=11;

 write;

 print "indicatorOfParameter=[indicatorOfParameter] level=[level] date=[date]";

 print;

}

**

1. If we want to know exactly which keys are different in two grib messages a bit by bit comparison does not help us. Moreover if we know that two grib messages are different by only a few keys and we want to be sure that only those keys are different a smart compare tool is needed.
The grib_compare is made to deal with both cases.
To see how grib_compare works we first set the short_name=2d (2 metre dew point temperature) in the file ../data/regular_latlon_surface.grib1

2. >grib_set -s short_name=2d ../data/regular_latlon_surface.grib1 ../data/2d.grib1

Then we can compare the two fields with grib_compare.

>grib_compare ../data/regular_latlon_surface.grib1 ../data/2d.grib1

[indicatorOfParameter] long values are different: [167] and [168]

[paramId] long values are different: [167] and [168]

[shortName] string values are different: [2t] and [2d]

-- previous error in count=1 shortName=2d stepRange=0 levelType=sfc level=0 --

In the output we see that not only is the short_name is changed from 2t to 2d, but also indicatorOfParameter and paramId are changed. This is because all the keys related to the short name are changed simultaneously. The exit code for the previous command is 1 as the comparison failed.
If we already know that the keys shortName, indicatorOfParameter, paramId are different in the two grib messages, we can check that those are the only different keys grouping them in a blacklist with the -b option.

>grib_compare -b shortName,indicatorOfParameter,paramId ../data/regular_latlon_surface.grib1 ../data/2d.grib1

In this case the exit code is 0 because the comparison is considered successful according to the blacklist provided.

3. grib_compare can also compare data values between two grib messages. In this case a precision can be provided through the -e option otherwise a the packingError is used. To show how data values are compared we can first repack a field with a different precision to see what grib_compare is giving in output to highlight this difference.
For example if we want to pack a temperature expressed in Kelvin with 1 digit of precision after the decimal point we can set changeDecimalPrecision=1

4. >grib_set -s changeDecimalPrecision=1 ../data/reduced_latlon_surface.grib1 ../data/precision_1.grib

Now we can compare the two fields using grib_compare :

>grib_compare ../data/reduced_latlon_surface.grib1 precision_1.grib1

[decimalScaleFactor] long values are different: [2] and [1]

[bitsPerValue] long values are different: [11] and [7]

WARNING: packingError are different : [0.005] [0.05]

[dataLength] long values are different: [36894] and [23478]

-- previous error in count=1 shortName=swh stepRange=0 levelType=sfc level=0 --

In this case decimalScaleFactor, bitsPerValue and packingError are different, but the values are assumed to be the same because they are considered different only if the absolute value of their difference is greater than the packing value

1. To get a latitude, longitude, value list, skipping the missing values(=9999)

2. >grib_get_data ../data/reduced_gaussian_model_level.grib2

3. If you want to define your missing value=1111 and to print the string missing in place of it

4. >grib_get_data -m 1111:missing ../data/reduced_gaussian_model_level.grib2

5. If you want to print the value of other keys with the data value list

6. >grib_get_data -p centre,level,step ../data/reduced_gaussian_model_level.grib2

**

 With the -L option a list of the available templates is printed

> grib_keys -L \n

GRIB1

GRIB2

reduced_gg_ml_grib2

reduced_gg_pl_grib1

reduced_gg_sfc_grib1

reduced_gg_ml_grib1

reduced_gg_pl_grib2

reduced_gg_sfc_grib2

reduced_gg_sfc_jpeg_grib2

reduced_ll_sfc_grib1

reduced_ll_sfc_grib2

regular_gg_ml_grib1

regular_gg_ml_grib2

regular_gg_pl_grib1

regular_gg_pl_grib2

regular_ll_sfc_grib1

regular_ll_sfc_grib2

regular_ll_pl_grib1

regular_ll_pl_grib2

sh_ml_grib1

sh_ml_grib2

sh_pl_grib1

sh_pl_grib2

 To print the standard set of key available for a given type

> grib_keys -T regular_ll_sfc_grib1

Tests with the Grib Tools

$ pwd

/nco/sib/wx12kk/gpfsuser/ecmwf_grib_api/grib_api-1.7.0/tools

grib_copy -w levtype=pl ../data/tigge_pf_ecmwf.grib2 out.grib2

wgrib2 -V out.grib2

grib_copy -w levtype!=pl ../data/tigge_pf_ecmwf.grib2 out.grib

wgrib2 -V out.grib

grib_get_data -F "%.4f" gfs.grbf00.10m.uv.grib2

grib_set -s editionNumber=2 gdas1.t00z.snogrb gdas1.t00z.snogrb2

grib_compare gdas1.t00z.snogrb.April5 gdas1.t00z.snogrb

grib_set -s packingType=grid_simple gfs.grbf00.10m.uv.grib2 gfs.grbf00.10m.uv.grib2.simple

grib_ls gfs.grbf00.10m.uv.grib2.simple

grib_set -s editionNumber=1 gfs.grbf00.10m.uv.grib2 gfs.grbf00.10m.uv.grib1.from.grib_set

wgrib gfs.grbf00.10m.uv.grib1.from.grib_set

more rules_file

write "/nco/sib/wx12kk/gpfsuser/ecmwf_grib_api/grib_api-1.7.0/tools/split/[centre]_[date]_[dataType]

_[levelType].grib[editionNumber]";

grib_filter rules_file gdas1.t00z.pgrbf03.grib2

cd split

$ ls

grib_get_data -p centre,level,step -R 10m.ext.out gfs.t00z.master.grbf06.10m.uv.grib2

Grib API examples

The main features of the grib_api are explained here through some simple examples that can be taken as a starting point to write more complex programs.

Fortran 90

· index.f90 how to access a grib file through an index.

· get.f90 how to get values through the key names.

· count_messages.f90 count the messages in a file and loop through them.

· get_pl.f90 how to get the list of number of points for each parallel in reduced grids.

· get_pv.f90 how to get the list of levels.

· get_data.f90 how to get latitude/longitude/values.

· set.f90 how to set values through the key names.

· set_bitmap.f90 how to set and use a bitmap.

· set_missing.f90 how to set a missing value in the header.

· set_pv.f90 how to set the list of levels.

· samples.f90 how to create a new message from a template.

· clone.f90 how to clone a message.

· copy_message.f90 how to copy a message in memory and create a new message.

· keys_iterator.f90 how to get the names of all the keys defined in a message and how to iterate through them.

· precision.f90 how to control precision when coding a grib field.

· multi_write.f90 how to encode a grib message containing many fields.

· multi.f90 how to decode a grib message containing many fields.

· print_data.f90 how to print all the data contained in a grib file.

· nearest.f90 how to find the nearest grid points.

samples.f90

How to create a new message from a samples.

 ! Copyright 2005-2007 ECMWF
 !
 ! Licensed under the GNU Lesser General Public License which
 ! incorporates the terms and conditions of version 3 of the GNU
 ! General Public License.
 ! See LICENSE and gpl-3.0.txt for details.
 !
 !
 ! Description: how to create a new GRIB message from a sample.
 !
 !
 program sample

 use grib_api
 implicit none

 integer :: err

 integer :: outfile, infile, datafile

 integer :: igribsample,igribclone,igribdata, size

 integer :: date, startStep, endStep, table2Version, indicatorOfParameter

 integer :: decimalPrecision

 real :: missingValue

 character(len=10) stepType

 double precision, dimension(:), allocatable :: v1,v2,v

 date = 20080104

 startStep = 0

 endStep = 12

 stepType = 'accum'
 table2Version = 2

 indicatorOfParameter = 61

 decimalPrecision = 2

 ! a new grib message is loaded from an existing sample
 ! samples are searched in a default sample path (use grib_info
 ! to see where it is. The default sample path can be changed by
 ! setting the environment variable GRIB_SAMPLES_PATH
 call grib_new_from_samples(igribsample, "regular_latlon_surface.grib1")

 call grib_open_file(outfile, 'out.grib1','w')

 call grib_open_file(datafile,'../../data/tp_ecmwf.grib','r')

 call grib_new_from_file(datafile,igribdata,err)

 call grib_get_size(igribdata,'values',size)

 allocate(v(size))

 allocate(v1(size))

 allocate(v2(size))

 call grib_get(igribdata,'values',v)

 v=v*1000.0 ! different units for the output grib
 v1=v

 do while (err/=GRIB_END_OF_FILE)

 call grib_clone(igribsample,igribclone) ! clone sample before modifying it
 call grib_set(igribclone,'date',date)

 call grib_set(igribclone,'table2Version',table2Version)

 call grib_set(igribclone,'indicatorOfParameter',indicatorOfParameter)

 call grib_set(igribclone,'stepType',stepType)

 call grib_set(igribclone,'startStep',startStep)

 call grib_set(igribclone,'endStep',endStep)

 call grib_set(igribclone,'decimalPrecision',decimalPrecision)

 call grib_set(igribclone,'values',v)

 call grib_write(igribclone,outfile)

 call grib_new_from_file(datafile,igribdata,err)

 if (err==0) then
 call grib_get(igribdata,'values',v2)

 v2=v2*1000.0 ! different units for the output grib
 v=v2-v1 ! accumulation from startStep to endStep
 v1=v2 ! save previous step field
 startStep=startStep+12

 endStep=endStep+12

 endif
 enddo
 deallocate(v)

 deallocate(v1)

 deallocate(v2)

 call grib_close_file(outfile)

 end program sample

multi_write.f90

How to encode a grib message containing many fields.

! Copyright 2005-2007 ECMWF

!

! Licensed under the GNU Lesser General Public License which

! incorporates the terms and conditions of version 3 of the GNU

! General Public License.
! See LICENSE and gpl-3.0.txt for details.
!
!
! Description: how to create a multi field message in memory and write
! it in a file. The multi field messages can be created
! only in grib edition 2.
!
!
!
program multi_write

use grib_api
implicit none

integer :: infile,outfile

integer :: in_gribid,iret

integer :: multi_gribid

integer :: step,startsection

! multi field messages can be created only in edition 2
 call grib_open_file(infile,'../../data/sample.grib2','r')

 call grib_open_file(outfile,'multi_created.grib2','w')

! a grib message is loaded from file
! in_gribid is the grib id to be used in subsequent calls
 call grib_new_from_file(infile,in_gribid)

 startsection=4

 do step=0,240,12

 call grib_set(in_gribid,"step",step)

 call grib_multi_append(in_gribid,startsection,multi_gribid)

 enddo
! write messages to a file
 call grib_multi_write(multi_gribid,outfile)

 call grib_close_file(infile)

 call grib_close_file(outfile)

 end program multi_write

