subroutine da_llxy_lc(lat, lon, proj, x, y) !----------------------------------------------------------------------- ! Purpose: compute the geographical latitude and longitude values ! to the cartesian x/y on a Lambert Conformal projection. !----------------------------------------------------------------------- implicit none real, intent(in) :: lat ! Latitude (-90->90 deg N) real, intent(in) :: lon ! Longitude (-180->180 E) type(proj_info),intent(in) :: proj ! Projection info structure real, intent(out) :: x ! Cartesian X coordinate real, intent(out) :: y ! Cartesian Y coordinate real :: arg real :: deltalon real :: tl1r real :: rm real :: ctl1r if (trace_use_dull) call da_trace_entry("da_llxy_lc") ! Compute deltalon between known longitude and standard lon and ensure ! it is not in the cut zone deltalon = lon - proj%stdlon if (deltalon > +180.0) deltalon = deltalon - 360.0 if (deltalon < -180.0) deltalon = deltalon + 360.0 ! Convert truelat1 to radian and compute COS for later use tl1r = proj%truelat1 * rad_per_deg ctl1r = COS(tl1r) ! Radius to desired point rm = proj%rebydx * ctl1r/proj%cone * & (TAN((90.0*proj%hemi-lat)*rad_per_deg/2.0) / & TAN((90.0*proj%hemi-proj%truelat1)*rad_per_deg/2.0))**proj%cone arg = proj%cone*(deltalon*rad_per_deg) x = proj%polei + proj%hemi * rm * Sin(arg) y = proj%polej - rm * COS(arg) ! Finally, if we are in the southern hemisphere, flip the i/j ! values to a coordinate system where (1,1) is the SW corner ! (what we assume) which is different than the original NCEP ! algorithms which used the NE corner as the origin in the ! southern hemisphere (left-hand vs. right-hand coordinate?) if (proj%hemi == -1.0) then x = 2.0 - x y = 2.0 - y end if if (trace_use_dull) call da_trace_exit("da_llxy_lc") end subroutine da_llxy_lc