! Program Name: ! Author(s)/Contact(s): ! Abstract: ! History Log: ! ! ! Usage: ! Parameters: ! Input Files: ! ! Output Files: ! ! ! Condition codes: ! ! If appropriate, descriptive troubleshooting instructions or ! likely causes for failures could be mentioned here with the ! appropriate error code ! ! User controllable options: module module_WRF_HYDRO #ifdef MPP_LAND use module_mpp_land, only: global_nx, global_ny, decompose_data_real, & write_io_real, my_id, mpp_land_bcast_real1, IO_id, & mpp_land_bcast_real, mpp_land_bcast_int1 use module_CPL_LAND, only: CPL_LAND_INIT, cpl_outdate #endif use module_HYDRO_drv, only: HYDRO_ini, HYDRO_exe use module_rt_data, only: rt_domain use module_gw_gw2d_data, only: gw2d use module_CPL_LAND, only: CPL_LAND_INIT, cpl_outdate use module_namelist, only: nlst_rt USE module_domain, ONLY : domain, domain_clock_get USE module_configure, ONLY : grid_config_rec_type !yw USE module_configure, only : config_flags USE module_configure, only: model_config_rec implicit none !yw added for check soil moisture and soiltype integer :: checkSOIL_flag #ifndef MPP_LAND character(len=19) :: cpl_outdate #endif ! ! added to consider the adaptive time step from WRF model. real :: dtrt_ter0 , dtrt_ch0 integer :: mm0 CONTAINS !wrf_cpl_HYDRO will not call the off-line lsm !ywGW subroutine wrf_cpl_HYDRO(HYDRO_dt,grid, config_flags, its,ite,jts,jte) subroutine wrf_cpl_HYDRO(HYDRO_dt,grid,its,ite,jts,jte) implicit none TYPE ( domain ), INTENT(INOUT) :: grid !ywGW TYPE ( grid_config_rec_type ), INTENT(IN) :: config_flags integer its, ite, jts, jte, ij real :: HYDRO_dt integer k, ix,jx, mm, nn integer :: did integer ntime integer :: i,j !output flux and state variable did = 1 ix = ite - its + 1 jx = jte - jts + 1 if(HYDRO_dt .le. 0) then write(6,*) "WARNING: HYDRO_dt <= 0 from land input. set it to be 1 seconds." HYDRO_dt = 1 endif ntime = 1 nlst_rt(did)%dt = HYDRO_dt if(.not. RT_DOMAIN(did)%initialized) then !yw nlst_rt(did)%nsoil = config_flags%num_soil_layers !nlst_rt(did)%nsoil = model_config_rec%num_metgrid_soil_levels nlst_rt(did)%nsoil = grid%num_soil_layers #ifdef MPP_LAND call mpp_land_bcast_int1 (nlst_rt(did)%nsoil) #endif allocate(nlst_rt(did)%zsoil8(nlst_rt(did)%nsoil)) if(grid%zs(1) < 0) then nlst_rt(did)%zsoil8(1:nlst_rt(did)%nsoil) = grid%zs(1:nlst_rt(did)%nsoil) else nlst_rt(did)%zsoil8(1:nlst_rt(did)%nsoil) = -1*grid%zs(1:nlst_rt(did)%nsoil) endif CALL domain_clock_get( grid, current_timestr=cpl_outdate) nlst_rt(did)%startdate(1:19) = cpl_outdate(1:19) nlst_rt(did)%olddate(1:19) = cpl_outdate(1:19) #ifdef MPP_LAND call CPL_LAND_INIT(its,ite,jts,jte) #endif #ifdef HYDRO_D write(6,*) "sf_surface_physics is ", grid%sf_surface_physics #endif if(grid%sf_surface_physics .eq. 5) then ! clm4 call HYDRO_ini(ntime,did=did,ix0=1,jx0=1) else call HYDRO_ini(ntime,did,ix0=ix,jx0=jx,vegtyp=grid%IVGTYP(its:ite,jts:jte),soltyp=grid%isltyp(its:ite,jts:jte)) endif if(nlst_rt(did)%sys_cpl .ne. 2) then call hydro_stop("In module_wrf_HYDRO.F wrf_cpl_HYDRO() - "// & "sys_cpl should be 2. Check hydro.namelist file.") endif nlst_rt(did)%startdate(1:19) = cpl_outdate(1:19) nlst_rt(did)%olddate(1:19) = cpl_outdate(1:19) nlst_rt(did)%dt = HYDRO_dt if(nlst_rt(did)%dtrt_ter .ge. HYDRO_dt) then nlst_rt(did)%dtrt_ter = HYDRO_dt mm0 = 1 else mm = HYDRO_dt/nlst_rt(did)%dtrt_ter if(mm*nlst_rt(did)%dtrt_ter.lt. HYDRO_dt) nlst_rt(did)%dtrt_ter = HYDRO_dt/mm mm0 = mm endif dtrt_ter0 = nlst_rt(did)%dtrt_ter if(nlst_rt(did)%dtrt_ch .ge. HYDRO_dt) then nlst_rt(did)%dtrt_ch = HYDRO_dt mm0 = 1 else mm = HYDRO_dt/nlst_rt(did)%dtrt_ch if(mm*nlst_rt(did)%dtrt_ch.lt. HYDRO_dt) nlst_rt(did)%dtrt_ch = HYDRO_dt/mm mm0 = mm endif dtrt_ch0 = nlst_rt(did)%dtrt_ch endif if((mm0*nlst_rt(did)%dtrt_ter) .ne. HYDRO_dt) then ! WRF model time step changed. if(dtrt_ter0 .ge. HYDRO_dt) then nlst_rt(did)%dtrt_ter = HYDRO_dt mm0 = 1 else mm = HYDRO_dt/dtrt_ter0 if(mm*dtrt_ter0 .lt. HYDRO_dt) nlst_rt(did)%dtrt_ter = HYDRO_dt/mm mm0 = mm endif endif if((mm0*nlst_rt(did)%dtrt_ch) .ne. HYDRO_dt) then ! WRF model time step changed. if(dtrt_ch0 .ge. HYDRO_dt) then nlst_rt(did)%dtrt_ch = HYDRO_dt mm0 = 1 else mm = HYDRO_dt/dtrt_ch0 if(mm*dtrt_ch0 .lt. HYDRO_dt) nlst_rt(did)%dtrt_ch = HYDRO_dt/mm mm0 = mm endif endif #ifdef HYDRO_D write(6,*) "mm, nlst_rt(did)%dt = ",mm, nlst_rt(did)%dt #endif if(nlst_rt(did)%rtFlag .eq. 0) return nn = nlst_rt(did)%nsoil ! get the data from WRF if((.not. RT_DOMAIN(did)%initialized) .and. (nlst_rt(did)%rst_typ .eq. 1) ) then #ifdef HYDRO_D write(6,*) "restart initial data from offline file" #endif else do k = 1, nlst_rt(did)%nsoil RT_DOMAIN(did)%STC(:,:,k) = grid%TSLB(its:ite,k,jts:jte) RT_DOMAIN(did)%smc(:,:,k) = grid%smois(its:ite,k,jts:jte) RT_DOMAIN(did)%sh2ox(:,:,k) = grid%sh2o(its:ite,k,jts:jte) end do rt_domain(did)%infxsrt = grid%infxsrt(its:ite,jts:jte) rt_domain(did)%soldrain = grid%soldrain(its:ite,jts:jte) endif call HYDRO_exe(did) ! add for update the WRF state variable. do k = 1, nlst_rt(did)%nsoil ! grid%TSLB(its:ite,k,jts:jte) = RT_DOMAIN(did)%STC(:,:,k) grid%smois(its:ite,k,jts:jte) = RT_DOMAIN(did)%smc(:,:,k) grid%sh2o(its:ite,k,jts:jte) = RT_DOMAIN(did)%sh2ox(:,:,k) end do ! update WRF variable after running routing model. grid%sfcheadrt(its:ite,jts:jte) = rt_domain(did)%sfcheadrt ! provide groundwater soil flux to WRF for fully coupled simulations (FERSCH 09/2014) if(nlst_rt(did)%GWBASESWCRT .eq. 3 ) then !Wei Yu: comment the following two lines. Not ready for WRF3.7 release !yw grid%qsgw(its:ite,jts:jte) = gw2d(did)%qsgw !yw config_flags%gwsoilcpl = nlst_rt(did)%gwsoilcpl end if !yw not sure for the following ! grid%xice(its:ite,jts:jte) = rt_domain(did)%sice RT_DOMAIN(did)%initialized = .true. end subroutine wrf_cpl_HYDRO !program drive rtland ! This subroutine will be used if the 4-layer Noah lsm is not used. subroutine wrf2lsm (z1,v1,kk1,z,vout,ix,jx,kk,vegtyp) ! input: z1,v1,kk1,z,ix,jx,kk ! output: vout ! interpolate based on soil layer: z1 and z ! z : soil layer of output variable. ! z1: array of soil layers of input variable. implicit none integer:: i,j,k integer:: kk1, ix,jx,kk, vegtyp(ix,jx) real :: z1(kk1), z(kk), v1(ix,kk1,jx),vout(ix,jx,kk) do j = 1, jx do i = 1, ix do k = 1, kk call interpLayer(Z1,v1(i,1:kk1,j),kk1,Z(k),vout(i,j,k)) end do end do end do end subroutine wrf2lsm ! This subroutine will be used if the 4-layer Noah lsm is not used. subroutine lsm2wrf (z1,v1,kk1,z,vout,ix,jx,kk,vegtyp) ! input: z1,v1,kk1,z,ix,jx,kk ! output: vout ! interpolate based on soil layer: z1 and z ! z : soil layer of output variable. ! z1: array of soil layers of input variable. implicit none integer:: i,j,k integer:: kk1, ix,jx,kk, vegtyp(ix,jx) real :: z1(kk1), z(kk), v1(ix,jx,kk1),vout(ix,kk,jx) do j = 1, jx do i = 1, ix do k = 1, kk call interpLayer(Z1,v1(i,j,1:kk1),kk1,Z(k),vout(i,k,j)) end do end do end do end subroutine lsm2wrf subroutine interpLayer(inZ,inV,inK,outZ,outV) implicit none integer:: k, k1, k2 integer :: inK real:: inV(inK),inZ(inK) real:: outV, outZ, w1, w2 if(outZ .le. inZ(1)) then w1 = (inZ(2)-outZ)/(inZ(2)-inZ(1)) w2 = (inZ(1)-outZ)/(inZ(2)-inZ(1)) outV = inV(1)*w1-inV(2)*w2 return elseif(outZ .ge. inZ(inK)) then w1 = (outZ-inZ(inK-1))/(inZ(inK)-inZ(inK-1)) w2 = (outZ-inZ(inK)) /(inZ(inK)-inZ(inK-1)) outV = inV(inK)*w1 -inV(inK-1)* w2 return else do k = 2, inK if((inZ(k) .ge. outZ).and.(inZ(k-1) .le. outZ) ) then k1 = k-1 k2 = k w1 = (outZ-inZ(k1))/(inZ(k2)-inZ(k1)) w2 = (inZ(k2)-outZ)/(inZ(k2)-inZ(k1)) outV = inV(k2)*w1 + inV(k1)*w2 return end if end do endif end subroutine interpLayer subroutine lsm_wrf_input(did,vegtyp,soltyp,ix,jx) implicit none integer did, leng parameter(leng=100) integer :: i,j, nn, ix,jx integer, dimension(ix,jx) :: soltyp, vegtyp real, dimension(leng) :: xdum1, MAXSMC,refsmc,wltsmc where(soltyp == 14) VEGTYP = 16 where(VEGTYP == 16 ) soltyp = 14 RT_DOMAIN(did)%VEGTYP = vegtyp ! input OV_ROUGH from OVROUGH.TBL #ifdef MPP_LAND if(my_id .eq. IO_id) then #endif #ifndef NCEP_WCOSS open(71,file="HYDRO.TBL", form="formatted") !read OV_ROUGH first read(71,*) nn read(71,*) do i = 1, nn read(71,*) RT_DOMAIN(did)%OV_ROUGH(i) end do !read parameter for LKSAT read(71,*) nn read(71,*) do i = 1, nn read(71,*) xdum1(i), MAXSMC(i),refsmc(i),wltsmc(i) end do close(71) #else open(13, form="formatted") !read OV_ROUGH first read(13,*) nn read(13,*) do i = 1, nn read(13,*) RT_DOMAIN(did)%OV_ROUGH(i) end do !read parameter for LKSAT read(13,*) nn read(13,*) do i = 1, nn read(13,*) xdum1(i), MAXSMC(i),refsmc(i),wltsmc(i) end do close(13) #endif #ifdef MPP_LAND endif call mpp_land_bcast_real(leng,RT_DOMAIN(did)%OV_ROUGH) call mpp_land_bcast_real(leng,xdum1) call mpp_land_bcast_real(leng,MAXSMC) call mpp_land_bcast_real(leng,refsmc) call mpp_land_bcast_real(leng,wltsmc) #endif rt_domain(did)%lksat = 0.0 do j = 1, RT_DOMAIN(did)%jx do i = 1, RT_DOMAIN(did)%ix rt_domain(did)%lksat(i,j) = xdum1(soltyp(i,j) ) * 1000.0 IF(rt_domain(did)%VEGTYP(i,j) == 1 ) THEN ! urban rt_domain(did)%SMCMAX1(i,j) = 0.45 rt_domain(did)%SMCREF1(i,j) = 0.42 rt_domain(did)%SMCWLT1(i,j) = 0.40 else rt_domain(did)%SMCMAX1(i,j) = MAXSMC(soltyp(I,J)) rt_domain(did)%SMCREF1(i,j) = refsmc(soltyp(I,J)) rt_domain(did)%SMCWLT1(i,j) = wltsmc(soltyp(I,J)) ENDIF end do end do end subroutine lsm_wrf_input subroutine checkSoil(did) implicit none integer :: did where(rt_domain(did)%smc(:,:,1) <=0) RT_DOMAIN(did)%VEGTYP = 16 where(rt_domain(did)%sh2ox(:,:,1) <=0) RT_DOMAIN(did)%VEGTYP = 16 where(rt_domain(did)%smc(:,:,1) >=100) RT_DOMAIN(did)%VEGTYP = 16 where(rt_domain(did)%sh2ox(:,:,1) >=100) RT_DOMAIN(did)%VEGTYP = 16 end subroutine checkSoil end module module_wrf_HYDRO