!IDEAL:MODEL_LAYER:INITIALIZATION ! ! This MODULE holds the routines which are used to perform various initializations ! for the individual domains. ! This MODULE CONTAINS the following routines: ! initialize_field_test - 1. Set different fields to different constant ! values. This is only a test. If the correct ! domain is not found (based upon the "id") ! then a fatal error is issued. !----------------------------------------------------------------------- MODULE module_initialize_ideal USE module_domain USE module_io_domain USE module_state_description USE module_model_constants USE module_bc USE module_timing USE module_configure USE module_init_utilities USE module_soil_pre #ifdef DM_PARALLEL USE module_dm #endif CONTAINS !------------------------------------------------------------------- ! this is a wrapper for the solver-specific init_domain routines. ! Also dereferences the grid variables and passes them down as arguments. ! This is crucial, since the lower level routines may do message passing ! and this will get fouled up on machines that insist on passing down ! copies of assumed-shape arrays (by passing down as arguments, the ! data are treated as assumed-size -- ie. f77 -- arrays and the copying ! business is avoided). Fie on the F90 designers. Fie and a pox. ! NOTE: Modified to remove all but arrays of rank 4 or more from the ! argument list. Arrays with rank>3 are still problematic due to the ! above-noted fie- and pox-ities. TBH 20061129. SUBROUTINE init_domain ( grid ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid ! Local data. INTEGER :: idum1, idum2 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) CALL init_domain_rk( grid & ! #include "actual_new_args.inc" ! ) END SUBROUTINE init_domain !------------------------------------------------------------------- SUBROUTINE init_domain_rk ( grid & ! # include "dummy_new_args.inc" ! ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid # include "dummy_new_decl.inc" TYPE (grid_config_rec_type) :: config_flags ! Local data INTEGER :: & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte, & i, j, k INTEGER, PARAMETER :: nl_max = 1000 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in INTEGER :: nl_in INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc, lm REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2 ! REAL, EXTERNAL :: interp_0 REAL :: pi, rnd ! variables/arrays for analytic vortex: integer :: nref,kref,nloop,i1,i2 real :: r0,zdd,dd1,dd2,xref,vr,fcor,qvs,e1,tx,px,qx,ric,rjc,rr,diff,sst real*8 :: rmax,vmax,frac,angle real, dimension(:), allocatable :: rref,zref,th0,qv0,thv0,prs0,pi0,rh0 real, dimension(:,:), allocatable :: vref,piref,pref,thref,thvref,qvref real :: pi_in,dz ! stuff from original initialization that has been dropped from the Registry REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt REAL :: qvf1, qvf2, pd_surf INTEGER :: it real :: thtmp, ptmp, temp(3) LOGICAL :: moisture_init LOGICAL :: stretch_grid, dry_sounding character (len=256) :: mminlu2 #ifdef DM_PARALLEL # include "data_calls.inc" #endif SELECT CASE ( model_data_order ) CASE ( DATA_ORDER_ZXY ) kds = grid%sd31 ; kde = grid%ed31 ; ids = grid%sd32 ; ide = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; kms = grid%sm31 ; kme = grid%em31 ; ims = grid%sm32 ; ime = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XYZ ) ids = grid%sd31 ; ide = grid%ed31 ; jds = grid%sd32 ; jde = grid%ed32 ; kds = grid%sd33 ; kde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; jms = grid%sm32 ; jme = grid%em32 ; kms = grid%sm33 ; kme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XZY ) ids = grid%sd31 ; ide = grid%ed31 ; kds = grid%sd32 ; kde = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; kms = grid%sm32 ; kme = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch END SELECT !----------------------------------------------------------------------- ! USER SETTINGS ! Parameters for analytic vortex: ! Reference: Rotunno and Emanuel, 1987, JAS, p. 549 r0 = 412500.0 ! outer radius (m) rmax = 82500.0 ! approximate radius of max winds (m) vmax = 15.0 ! approximate value of max wind speed (m/s) zdd = 20000.0 ! depth of vortex (m) ! other settings: fcor = 5.0e-5 ! Coriolis parameter (1/s) sst = 28.0 ! sea-surface temperature (Celsius) !----------------------------------------------------------------------- stretch_grid = .true. delt = 6. ! z_scale = .50 z_scale = .40 pi = 2.*asin(1.0) write(6,*) ' pi is ',pi nxc = (ide-ids)/2 nyc = jde/2 icm = ide/2 ! lm is the half width of the land in terms of grid points lm = 25 write(6,*) 'lm,icm-lm,icm+lm = ', lm,icm-lm,icm+lm CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! here we check to see if the boundary conditions are set properly CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) moisture_init = .true. grid%itimestep=0 #ifdef DM_PARALLEL CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) #endif mminlu2 = ' ' mminlu2(1:4) = 'USGS' CALL nl_set_mminlu(1, mminlu2) ! CALL nl_set_mminlu(1, 'USGS') CALL nl_set_iswater(1,16) CALL nl_set_isice(1,3) CALL nl_set_cen_lat(1,20.) CALL nl_set_cen_lon(1,-105.) CALL nl_set_truelat1(1,0.) CALL nl_set_truelat2(1,0.) CALL nl_set_moad_cen_lat (1,0.) CALL nl_set_stand_lon (1,0.) CALL nl_set_pole_lon (1,0.) CALL nl_set_pole_lat (1,90.) CALL nl_set_map_proj(1,0) ! CALL model_to_grid_config_rec(1,model_config_rec,config_flags) CALL nl_get_iswater(1,grid%iswater) ! here we initialize data that currently is not initialized ! in the input data DO j = jts, jte DO i = its, ite grid%ht(i,j) = 0. grid%msft(i,j) = 1. grid%msfu(i,j) = 1. grid%msfv(i,j) = 1. grid%msftx(i,j) = 1. grid%msfty(i,j) = 1. grid%msfux(i,j) = 1. grid%msfuy(i,j) = 1. grid%msfvx(i,j) = 1. grid%msfvy(i,j) = 1. grid%msfvx_inv(i,j)= 1. grid%sina(i,j) = 0. grid%cosa(i,j) = 1. grid%xlong(i,j) = 0.0 grid%e(i,j) = 0.0 grid%f(i,j) = fcor grid%xlat(i,j) = asin(0.5*fcor/EOMEG)/DEGRAD ! Hard-wire the ocean configuration grid%xland(i,j) = 2. grid%lu_index(i,j) = 16 grid%tsk(i,j) = 273.15 + sst ! I think tmn is not used for ocean points, but set a value anyway: grid%tmn(i,j) = grid%tsk(i,j) - 10.0 END DO END DO print *,' f = ',grid%f(its,jts) print *,' lat = ',grid%xlat(its,jts) ! for Noah LSM, additional variables need to be initialized other_masked_fields : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) CASE (SLABSCHEME) CASE (LSMSCHEME) DO j = jts , MIN(jde-1,jte) DO i = its , MIN(ide-1,ite) IF (grid%xland(i,j) .lt. 1.5) THEN grid%vegfra(i,j) = 0.5 grid%canwat(i,j) = 0. grid%ivgtyp(i,j) = 18 grid%isltyp(i,j) = 8 grid%xice(i,j) = 0. grid%snow(i,j) = 0. ELSE grid%vegfra(i,j) = 0. grid%canwat(i,j) = 0. grid%ivgtyp(i,j) = 16 grid%isltyp(i,j) = 14 grid%xice(i,j) = 0. grid%snow(i,j) = 0. ENDIF END DO END DO CASE (RUCLSMSCHEME) END SELECT other_masked_fields DO j = jts, jte DO k = kts, kte DO i = its, ite grid%ww(i,k,j) = 0. END DO END DO END DO grid%step_number = 0 ! Process the soil; note that there are some things hard-wired into share/module_soil_pre.F CALL process_soil_ideal(grid%xland,grid%xice,grid%vegfra,grid%snow,grid%canwat, & grid%ivgtyp,grid%isltyp,grid%tslb,grid%smois, & grid%tsk,grid%tmn,grid%zs,grid%dzs,model_config_rec%num_soil_layers, & model_config_rec%sf_surface_physics(grid%id), & ids,ide, jds,jde, kds,kde,& ims,ime, jms,jme, kms,kme,& its,ite, jts,jte, kts,kte ) ! set up the grid IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz) DO k=1, kde grid%znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ & (1.-exp(-1./z_scale)) ENDDO ELSE DO k=1, kde grid%znw(k) = 1. - float(k-1)/float(kde-1) ENDDO ENDIF DO k=1, kde-1 grid%dnw(k) = grid%znw(k+1) - grid%znw(k) grid%rdnw(k) = 1./grid%dnw(k) grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) ENDDO IF ( config_flags%hybrid_opt .NE. 0 ) THEN call wrf_error_fatal ( '--- ERROR: Hybrid Vertical Coordinate option not supported with this idealized case' ) END IF grid%hybrid_opt = 0 DO k=1, kde grid%c3f(k) = grid%znw(k) grid%c4f(k) = 0. grid%c3h(k) = grid%znu(k) grid%c4h(k) = 0. grid%c1f(k) = 1. grid%c2f(k) = 0. grid%c1h(k) = 1. grid%c2h(k) = 0. ENDDO DO k=2, kde-1 grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) grid%rdn(k) = 1./grid%dn(k) grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) ENDDO cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) grid%cf1 = grid%fnp(2) + cof1 grid%cf2 = grid%fnm(2) - cof1 - cof2 grid%cf3 = cof2 grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) grid%rdx = 1./config_flags%dx grid%rdy = 1./config_flags%dy ! get the sounding from the ascii sounding file, first get dry sounding and ! calculate base state write(6,*) ' getting dry sounding for base state ' dry_sounding = .true. CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) write(6,*) ' returned from reading sounding, nl_in is ',nl_in ! find ptop for the desired ztop (ztop is input from the namelist), ! and find surface pressure grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in ) DO j=jts,jte DO i=its,ite ! flat surface grid%phb(i,1,j) = 0. grid%php(i,1,j) = 0. grid%ph0(i,1,j) = 0. grid%ht(i,j) = 0. ENDDO ENDDO DO J = jts, jte DO I = its, ite p_surf = interp_0( p_in, zk, grid%phb(i,1,j)/g, nl_in ) grid%mub(i,j) = p_surf-grid%p_top ! this is dry hydrostatic sounding (base state), so given grid%p (coordinate), ! interp theta (from interp) and compute 1/rho from eqn. of state DO K = 1, kte-1 p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top grid%pb(i,k,j) = p_level grid%t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0 grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm ENDDO ! calc hydrostatic balance (alternatively we could interp the geopotential from the ! sounding, but this assures that the base state is in exact hydrostatic balance with ! respect to the model eqns. DO k = 2,kte grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) ENDDO ENDDO ENDDO write(6,*) ' ptop is ',grid%p_top write(6,*) ' base state grid%mub(1,1), p_surf is ',grid%mub(1,1),grid%mub(1,1)+grid%p_top ! calculate full state for each column - this includes moisture. write(6,*) ' getting moist sounding for full state ' dry_sounding = .false. CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) ! At this point grid%p_top is already set. find the DRY mass in the column ! by interpolating the DRY pressure. pd_surf = interp_0( pd_in, zk, grid%phb(i,1,j)/g, nl_in ) ! compute the perturbation mass and the full mass grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j) grid%mu_2(i,j) = grid%mu_1(i,j) grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j) ! given the dry pressure and coordinate system, interp the potential ! temperature and qv do k=1,kde-1 p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) grid%t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 grid%t_2(i,k,j) = grid%t_1(i,k,j) enddo ! integrate the hydrostatic equation (from the RHS of the bigstep ! vertical momentum equation) down from the top to get grid%p. ! first from the top of the model to the top pressure k = kte-1 ! top level qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 ! grid%p(i,k,j) = - 0.5*grid%mu_1(i,j)/grid%rdnw(k) grid%p(i,k,j) = - 0.5*(grid%mu_1(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) ! down the column do k=kte-2,1,-1 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_1(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) enddo ! this is the hydrostatic equation used in the model after the ! small timesteps. In the model, grid%al (inverse density) ! is computed from the geopotential. grid%ph_1(i,1,j) = 0. DO k = 2,kte grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (grid%dnw(k-1))*( & (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & grid%mu_1(i,j)*grid%alb(i,k-1,j) ) grid%ph_2(i,k,j) = grid%ph_1(i,k,j) grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) ENDDO if((i==2) .and. (j==2)) then write(6,*) ' grid%ph_1 calc ',grid%ph_1(2,1,2),grid%ph_1(2,2,2),& grid%mu_1(2,2)+grid%mub(2,2),grid%mu_1(2,2), & grid%alb(2,1,2),grid%al(1,2,1),grid%rdnw(1) endif ENDDO ENDDO !----------------------------------------------------------------------- ! Analytic vortex. ! Reference: Rotunno and Emanuel, 1987, JAS, p. 549 dd2 = 2.0 * rmax / ( r0 + rmax ) nref = 1 + int( float(ide-ids+1)/2.0 ) kref = kte-1 print *,' ids,ide,kds,kds = ',ids,ide,kds,kde print *,' its,ite,kts,kts = ',its,ite,kts,kte print *,' nref,fcor = ',nref,fcor print *,' r0,rmax,vmax,zdd = ',r0,rmax,vmax,zdd allocate( rref(nref) ) allocate( zref(0:kref+1) ) allocate( th0(0:kref+1) ) allocate( qv0(0:kref+1) ) allocate( thv0(0:kref+1) ) allocate( prs0(0:kref+1) ) allocate( pi0(0:kref+1) ) allocate( rh0(0:kref+1) ) allocate( vref(nref,0:kref+1)) allocate( piref(nref,0:kref+1)) allocate( pref(nref,0:kref+1)) allocate( thref(nref,0:kref+1)) allocate(thvref(nref,0:kref+1)) allocate( qvref(nref,0:kref+1)) ! get base state: print *,' zref,th0,qv0,thv0:' do k=1,kref th0(k) = t0+grid%t_1(1,k,1) qv0(k) = moist(1,k,1,P_QV) thv0(k) = th0(k)*(1.0+(r_v/r_d)*qv0(k))/(1.0+qv0(k)) zref(k) = 0.5*(grid%phb(1,k,1)+grid%phb(1,k+1,1)+grid%ph_1(1,k,1)+grid%ph_1(1,k+1,1))/g print *,k,zref(k),th0(k),qv0(k),thv0(k) enddo print *,' prs0,pi0,rh0:' do k=1,kref prs0(k) = grid%p(1,k,1)+grid%pb(1,k,1) pi0(k) = (prs0(k)/p0)**(r_d/cp) E1=1000.0*SVP1*EXP(SVP2*(th0(k)*pi0(k)-SVPT0)/(th0(k)*pi0(k)-SVP3)) qvs = EP_2*E1/(prs0(k)-E1) rh0(k) = qv0(k)/qvs print *,k,prs0(k),pi0(k),rh0(k) enddo zref(0) = -zref(1) zref(kref+1) = zref(kref)+(zref(kref)-zref(kref-1)) rref=0.0 vref=0.0 piref=0.0 pref=0.0 thref=0.0 thvref=0.0 qvref=0.0 do i=1,nref rref(i) = config_flags%dx*(float(i-1)+0.5) enddo print *,' zref,dz:' do k=0,kref+1 if( k.ge.2 .and. k.le.kref )then print *,k,zref(k),zref(k)-zref(k-1) else print *,k,zref(k) endif enddo print *,' vref:' do k=1,kref do i=1,nref if(rref(i).lt.r0)then dd1 = 2.0 * rmax / ( rref(i) + rmax ) vr = sqrt( vmax**2 * (rref(i)/rmax)**2 & * ( dd1 ** 3 - dd2 ** 3 ) + 0.25*fcor*fcor*rref(i)*rref(i) ) & - 0.5 * fcor * rref(i) else vr = 0.0 endif if(zref(k).lt.zdd)then vref(i,k) = vr * (zdd-zref(k))/(zdd-0.0) else vref(i,k) = 0.0 endif if(k.eq.1) print *,i,rref(i),vref(i,k) enddo enddo print *,' Iterate:' DO nloop=1,20 ! get qv and thv from rh and th: do k=1,kref do i=1,nref tx = (pi0(k)+piref(i,k))*(th0(k)+thref(i,k)) px = p0*((pi0(k)+piref(i,k))**(cp/r_d)) E1 = 1000.0*SVP1*EXP(SVP2*(tx-SVPT0)/(tx-SVP3)) qvs = EP_2*E1/(px-E1) qvref(i,k) = rh0(k)*qvs thvref(i,k)=(th0(k)+thref(i,k))*(1.0+(r_v/r_d)*qvref(i,k)) & /(1.0+qvref(i,k)) enddo enddo ! get nondimensional pressure perturbation (piref): do k=1,kref piref(nref,k)=0.0 do i=nref,2,-1 piref(i-1,k) = piref(i,k) & + (rref(i-1)-rref(i))/(cp*0.5*(thvref(i-1,k)+thvref(i,k))) * 0.5 * & ( vref(i ,k)*vref(i ,k)/rref(i) & +vref(i-1,k)*vref(i-1,k)/rref(i-1) & + fcor * ( vref(i,k) + vref(i-1,k) ) ) enddo enddo do i=1,nref piref(i, 0) = piref(i, 1) piref(i,kref+1) = piref(i,kref) enddo ! get potential temperature perturbation (thref): do k=2,kref do i=1,nref thref(i,k) = 0.5*( cp*0.5*(thvref(i,k)+thvref(i,k+1))*(piref(i,k+1)-piref(i,k))/(zref(k+1)-zref(k)) & +cp*0.5*(thvref(i,k)+thvref(i,k-1))*(piref(i,k)-piref(i,k-1))/(zref(k)-zref(k-1)) ) & *thv0(k)/g thref(i,k)=(thv0(k)+thref(i,k))*(1.0+qvref(i,k))/(1.0+(r_v/r_d)*qvref(i,k))-th0(k) enddo enddo k=1 do i=1,nref thref(i,k) = ( cp*0.5*(thvref(i,k)+thvref(i,k+1))*(piref(i,k+1)-piref(i,k))/(zref(k+1)-zref(k)) ) & *thv0(k)/g thref(i,k)=(thv0(k)+thref(i,k))*(1.0+qvref(i,k))/(1.0+(r_v/r_d)*qvref(i,k))-th0(k) enddo print *,' th,qv,pi = ',nloop,thref(1,1),qvref(1,1),piref(1,1) ENDDO ! enddo for iteration ! reference (total) pressure: do k=1,kref do i=1,nref pref(i,k) = p0*( ( pi0(k)+piref(i,k) )**(cp/r_d) ) enddo enddo ! analytic axisymmetric vortex is ready ... now interpolate to 3D grid: ! (note: vortex is placed in center of domain) ric = float(ide-ids+1)/2.0 rjc = float(jde-jds+1)/2.0 print *,' ids,ide,jds,jde = ',ids,ide,jds,jde print *,' ric,rjc = ',ric,rjc print *,' zk:' do k=1,kte zk(k) = zref(k) print *,k,zk(k) enddo nl_in = kte-1 print *,' nl_in = ',nl_in DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) rr = sqrt( ( (float(i)-ric)*config_flags%dx )**2 + ( (float(j)-rjc)*config_flags%dy )**2 ) rr = min( rr , rref(nref) ) diff = -1.0e20 ii = 0 do while( diff.lt.0.0 ) ii = ii + 1 diff = rref(ii)-rr enddo i2 = max( ii , 2 ) i1 = i2-1 frac = ( rr-rref(i1)) & /(rref(i2)-rref(i1)) do k=1,nl_in pi_in = pi0(k)+piref(i1,k)+(piref(i2,k)-piref(i1,k))*frac qv(k) = qvref(i1,k)+(qvref(i2,k)-qvref(i1,k))*frac theta(k) = th0(k)+thref(i1,k)+(thref(i2,k)-thref(i1,k))*frac p_in(k) = p1000mb*(pi_in**(cp/r_d)) qvf = 1. + rvovrd*qv(k) rho(k) = 1./((r_d/p1000mb)*theta(k)*qvf*((p_in(k)/p1000mb)**cvpm)) enddo pd_in(nl_in) = p_in(nl_in) do k=nl_in-1,1,-1 dz = zk(k+1)-zk(k) pd_in(k) = pd_in(k+1) + 0.5*dz*(rho(k)+rho(k+1))*g enddo ! At this point grid%p_top is already set. find the DRY mass in the column ! by interpolating the DRY pressure. pd_surf = interp_0( pd_in, zk, grid%phb(i,1,j)/g, nl_in ) ! compute the perturbation mass and the full mass grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j) grid%mu_2(i,j) = grid%mu_1(i,j) grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j) ! given the dry pressure and coordinate system, interp the potential ! temperature and qv do k=1,kde-1 p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) grid%t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 grid%t_2(i,k,j) = grid%t_1(i,k,j) enddo ! integrate the hydrostatic equation (from the RHS of the bigstep ! vertical momentum equation) down from the top to get grid%p. ! first from the top of the model to the top pressure k = kte-1 ! top level qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 ! grid%p(i,k,j) = - 0.5*grid%mu_1(i,j)/grid%rdnw(k) grid%p(i,k,j) = - 0.5*(grid%mu_1(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) ! down the column do k=kte-2,1,-1 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_1(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) enddo ! this is the hydrostatic equation used in the model after the ! small timesteps. In the model, grid%al (inverse density) ! is computed from the geopotential. grid%ph_1(i,1,j) = 0. DO k = 2,kte grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (grid%dnw(k-1))*( & (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & grid%mu_1(i,j)*grid%alb(i,k-1,j) ) grid%ph_2(i,k,j) = grid%ph_1(i,k,j) grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) ENDDO ENDDO ! do loop for i ENDDO ! do loop for j !------------------------------------------- ! Done with mass fields, now get winds: ! interp v DO J = jts, jte DO I = its, min(ide-1,ite) rr = sqrt( ( (float(i)-ric)*config_flags%dx )**2 + ( (float(j)-0.5-rjc)*config_flags%dy )**2 ) rr = min( rr , rref(nref) ) diff = -1.0e20 ii = 0 do while( diff.lt.0.0 ) ii = ii + 1 diff = rref(ii)-rr enddo i2 = max( ii , 2 ) i1 = i2-1 frac = ( rr-rref(i1)) & /(rref(i2)-rref(i1)) angle = datan2(dble( (float(j)-0.5-rjc)*config_flags%dy ), & dble( (float(i)-ric)*config_flags%dx ) ) do k=1,kte v(k) = (vref(i1,k)+( vref(i2,k)- vref(i1,k))*frac )*cos(angle) p_in(k) = pref(i1,k)+(pref(i2,k)-pref(i1,k))*frac enddo IF (j == jds) THEN z_at_v = grid%phb(i,1,j)/g ELSE IF (j == jde) THEN z_at_v = grid%phb(i,1,j-1)/g ELSE z_at_v = 0.5*(grid%phb(i,1,j)+grid%phb(i,1,j-1))/g END IF p_surf = interp_0( p_in, zk, z_at_v, nl_in ) DO K = 1, kte p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top grid%v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in ) grid%v_2(i,k,j) = grid%v_1(i,k,j) ENDDO ENDDO ENDDO ! interp u DO J = jts, min(jde-1,jte) DO I = its, ite rr = sqrt( ( (float(i)-ric-0.5)*config_flags%dx )**2 + ( (float(j)-rjc)*config_flags%dy )**2 ) rr = min( rr , rref(nref) ) diff = -1.0e20 ii = 0 do while( diff.lt.0.0 ) ii = ii + 1 diff = rref(ii)-rr enddo i2 = max( ii , 2 ) i1 = i2-1 frac = ( rr-rref(i1)) & /(rref(i2)-rref(i1)) angle = datan2(dble( (float(j)-rjc)*config_flags%dy ), & dble( (float(i)-0.5-ric)*config_flags%dx ) ) do k=1,kte u(k) = -(vref(i1,k)+( vref(i2,k)- vref(i1,k))*frac )*sin(angle) p_in(k) = pref(i1,k)+(pref(i2,k)-pref(i1,k))*frac enddo IF (i == ids) THEN z_at_u = grid%phb(i,1,j)/g ELSE IF (i == ide) THEN z_at_u = grid%phb(i-1,1,j)/g ELSE z_at_u = 0.5*(grid%phb(i,1,j)+grid%phb(i-1,1,j))/g END IF p_surf = interp_0( p_in, zk, z_at_u, nl_in ) DO K = 1, kte p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top grid%u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) grid%u_2(i,k,j) = grid%u_1(i,k,j) ENDDO ENDDO ENDDO ! All done ... deallocate arrays: deallocate( rref ) deallocate( zref ) deallocate( th0 ) deallocate( qv0 ) deallocate( thv0 ) deallocate( prs0 ) deallocate( pi0 ) deallocate( rh0 ) deallocate( vref ) deallocate( piref ) deallocate( pref ) deallocate( thref ) deallocate(thvref ) deallocate( qvref ) print *,' completed vortex init successfully ' !----------------------------------------------------------------------- if (0.gt.1) then !#if 0 ! The tropical_cyclone case is adapted from the squall line case ! so we just turn off the thermal perturbation ! thermal perturbation to kick off convection call random_seed write(6,*) ' nxc, nyc for perturbation ',nxc,nyc write(6,*) ' delt for perturbation ',delt DO J = jts, min(jde-1,jte) ! yrad = config_flags%dy*float(j-nyc)/4000. yrad = 0. DO I = its, min(ide-1,ite) xrad = config_flags%dx*float(i-nxc)/10000. ! xrad = 0. DO K = 1, 35 ! put in preturbation theta (bubble) and recalc density. note, ! the mass in the column is not changing, so when theta changes, ! we recompute density and geopotential zrad = 0.5*(grid%ph_1(i,k,j)+grid%ph_1(i,k+1,j) & +grid%phb(i,k,j)+grid%phb(i,k+1,j))/g zrad = (zrad-1500.)/1500. RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad) ! IF(RAD <= 1.) THEN call RANDOM_NUMBER(rnd) grid%t_1(i,k,j)=grid%t_1(i,k,j)+delt*(rnd-0.5) ! grid%t_1(i,k,j)=grid%t_1(i,k,j)+delt*COS(.5*PI*RAD)**2 grid%t_2(i,k,j)=grid%t_1(i,k,j) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) ! ENDIF ENDDO ! rebalance hydrostatically DO k = 2,kte grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (grid%dnw(k-1))*( & (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & grid%mu_1(i,j)*grid%alb(i,k-1,j) ) grid%ph_2(i,k,j) = grid%ph_1(i,k,j) grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) ENDDO ENDDO ENDDO endif !#endif write(6,*) ' grid%mu_1 from comp ', grid%mu_1(1,1) write(6,*) ' full state sounding from comp, ph, grid%p, grid%al, grid%t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1)+grid%phb(1,k,1), & grid%p(1,k,1)+grid%pb(1,k,1), grid%alt(1,k,1), & grid%t_1(1,k,1)+t0, moist(1,k,1,P_QV) enddo write(6,*) ' pert state sounding from comp, grid%ph_1, pp, alp, grid%t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1), & grid%p(1,k,1), grid%al(1,k,1), & grid%t_1(1,k,1), moist(1,k,1,P_QV) enddo !! interp v ! ! DO J = jts, jte ! DO I = its, min(ide-1,ite) ! ! IF (j == jds) THEN ! z_at_v = grid%phb(i,1,j)/g ! ELSE IF (j == jde) THEN ! z_at_v = grid%phb(i,1,j-1)/g ! ELSE ! z_at_v = 0.5*(grid%phb(i,1,j)+grid%phb(i,1,j-1))/g ! END IF ! ! p_surf = interp_0( p_in, zk, z_at_v, nl_in ) ! ! DO K = 1, kte ! p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top ! grid%v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in ) ! grid%v_2(i,k,j) = grid%v_1(i,k,j) ! ENDDO ! ! ENDDO ! ENDDO ! !! interp u ! ! DO J = jts, min(jde-1,jte) ! DO I = its, ite ! ! IF (i == ids) THEN ! z_at_u = grid%phb(i,1,j)/g ! ELSE IF (i == ide) THEN ! z_at_u = grid%phb(i-1,1,j)/g ! ELSE ! z_at_u = 0.5*(grid%phb(i,1,j)+grid%phb(i-1,1,j))/g ! END IF ! ! p_surf = interp_0( p_in, zk, z_at_u, nl_in ) ! ! DO K = 1, kte ! p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top ! grid%u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) ! grid%u_2(i,k,j) = grid%u_1(i,k,j) ! ENDDO ! ! ENDDO ! ENDDO ! set w DO J = jts, min(jde-1,jte) DO K = kts, kte DO I = its, min(ide-1,ite) grid%w_1(i,k,j) = 0. grid%w_2(i,k,j) = 0. ENDDO ENDDO ENDDO ! set a few more things DO J = jts, min(jde-1,jte) DO K = kts, kte-1 DO I = its, min(ide-1,ite) grid%h_diabatic(i,k,j) = 0. ENDDO ENDDO ENDDO DO k=1,kte-1 grid%t_base(k) = grid%t_1(1,k,1) grid%qv_base(k) = moist(1,k,1,P_QV) grid%u_base(k) = grid%u_1(1,k,1) grid%v_base(k) = grid%v_1(1,k,1) grid%z_base(k) = 0.5*(grid%phb(1,k,1)+grid%phb(1,k+1,1)+grid%ph_1(1,k,1)+grid%ph_1(1,k+1,1))/g ENDDO DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) thtmp = grid%t_2(i,1,j)+t0 ptmp = grid%p(i,1,j)+grid%pb(i,1,j) temp(1) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,2,j)+t0 ptmp = grid%p(i,2,j)+grid%pb(i,2,j) temp(2) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,3,j)+t0 ptmp = grid%p(i,3,j)+grid%pb(i,3,j) temp(3) = thtmp * (ptmp/p1000mb)**rcp ! grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3) ! I don't know why this is here, so I have commented it out: !!! grid%tmn(I,J)=grid%tsk(I,J)-0.5 ENDDO ENDDO RETURN END SUBROUTINE init_domain_rk SUBROUTINE init_module_initialize END SUBROUTINE init_module_initialize !--------------------------------------------------------------------- ! test driver for get_sounding ! ! implicit none ! integer n ! parameter(n = 1000) ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n) ! logical dry ! integer nl,k ! ! dry = .false. ! dry = .true. ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl ) ! write(6,*) ' input levels ',nl ! write(6,*) ' sounding ' ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' ! do k=1,nl ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k) ! enddo ! end ! !--------------------------------------------------------------------------- subroutine get_sounding( zk, p, p_dry, theta, rho, & u, v, qv, dry, nl_max, nl_in ) implicit none integer nl_max, nl_in real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), & u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max) logical dry integer n parameter(n=3000) logical debug parameter( debug = .true.) ! input sounding data real p_surf, th_surf, qv_surf real pi_surf, pi(n) real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n) ! diagnostics real rho_surf, p_input(n), rho_input(n) real pm_input(n) ! this are for full moist sounding ! local data real r parameter (r = r_d) integer k, it, nl real qvf, qvf1, dz ! first, read the sounding call read_sounding( p_surf, th_surf, qv_surf, & h_input, th_input, qv_input, u_input, v_input,n, nl, debug ) if(dry) then do k=1,nl qv_input(k) = 0. enddo endif if(debug) write(6,*) ' number of input levels = ',nl nl_in = nl if(nl_in .gt. nl_max ) then write(6,*) ' too many levels for input arrays ',nl_in,nl_max call wrf_error_fatal ( ' too many levels for input arrays ' ) end if ! compute diagnostics, ! first, convert qv(g/kg) to qv(g/g) do k=1,nl qv_input(k) = 0.001*qv_input(k) enddo p_surf = 100.*p_surf ! convert to pascals qvf = 1. + rvovrd*qv_input(1) rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm)) pi_surf = (p_surf/p1000mb)**(r/cp) if(debug) then write(6,*) ' surface density is ',rho_surf write(6,*) ' surface pi is ',pi_surf end if ! integrate moist sounding hydrostatically, starting from the ! specified surface pressure ! -> first, integrate from surface to lowest level qvf = 1. + rvovrd*qv_input(1) qvf1 = 1. + qv_input(1) rho_input(1) = rho_surf dz = h_input(1) do it=1,10 pm_input(1) = p_surf & - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm)) enddo ! integrate up the column do k=2,nl rho_input(k) = rho_input(k-1) dz = h_input(k)-h_input(k-1) qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k))) qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here do it=1,10 pm_input(k) = pm_input(k-1) & - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm)) enddo enddo ! we have the moist sounding ! next, compute the dry sounding using p at the highest level from the ! moist sounding and integrating down. p_input(nl) = pm_input(nl) do k=nl-1,1,-1 dz = h_input(k+1)-h_input(k) p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g enddo do k=1,nl zk(k) = h_input(k) p(k) = pm_input(k) p_dry(k) = p_input(k) theta(k) = th_input(k) rho(k) = rho_input(k) u(k) = u_input(k) v(k) = v_input(k) qv(k) = qv_input(k) enddo if(debug) then write(6,*) ' sounding ' write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' do k=1,nl write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k) enddo end if end subroutine get_sounding !------------------------------------------------------- subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug ) implicit none integer n,nl real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n) logical end_of_file logical debug integer k open(unit=10,file='input_sounding',form='formatted',status='old') rewind(10) read(10,*) ps, ts, qvs if(debug) then write(6,*) ' input sounding surface parameters ' write(6,*) ' surface pressure (mb) ',ps write(6,*) ' surface pot. temp (K) ',ts write(6,*) ' surface mixing ratio (g/kg) ',qvs end if end_of_file = .false. k = 0 do while (.not. end_of_file) read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1) k = k+1 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k) go to 110 100 end_of_file = .true. 110 continue enddo nl = k close(unit=10,status = 'keep') end subroutine read_sounding END MODULE module_initialize_ideal