! sed -e "s/grid%mu/gridmu/g" -e "s/grid%Mu/gridMu/g" module_initialize_hill2d_x.F | cpp -DHYBRID_COORD | sed -e "s/gridmu/grid%mu/g" -e "s/gridMu/grid%Mu/g" >> module_initialize_hill2d_x.next #if ( HYBRID_COORD==1 ) # define gridmu_1(...) (grid%c1h(k)*XXPC1HXX(__VA_ARGS__)) # define XXPC1HXX(...) grid%mu_1(__VA_ARGS__) # define gridMu_1(...) (grid%c1f(k)*XXPC1FXX(__VA_ARGS__)) # define XXPC1FXX(...) grid%Mu_1(__VA_ARGS__) # define gridmub(...) (grid%c1h(k)*XXPCBHXX(__VA_ARGS__)+grid%c2h(k)) # define XXPCBHXX(...) grid%mub(__VA_ARGS__) # define gridMub(...) (grid%c1f(k)*XXPCBFXX(__VA_ARGS__)+grid%c2f(k)) # define XXPCBFXX(...) grid%Mub(__VA_ARGS__) #endif !IDEAL:MODEL_LAYER:INITIALIZATION ! ! This MODULE holds the routines which are used to perform various initializations ! for the individual domains. ! This MODULE CONTAINS the following routines: ! initialize_field_test - 1. Set different fields to different constant ! values. This is only a test. If the correct ! domain is not found (based upon the "id") ! then a fatal error is issued. !----------------------------------------------------------------------- MODULE module_initialize_ideal USE module_domain USE module_io_domain USE module_state_description USE module_model_constants USE module_bc USE module_timing USE module_configure USE module_init_utilities #ifdef DM_PARALLEL USE module_dm #endif CONTAINS !------------------------------------------------------------------- ! this is a wrapper for the solver-specific init_domain routines. ! Also dereferences the grid variables and passes them down as arguments. ! This is crucial, since the lower level routines may do message passing ! and this will get fouled up on machines that insist on passing down ! copies of assumed-shape arrays (by passing down as arguments, the ! data are treated as assumed-size -- ie. f77 -- arrays and the copying ! business is avoided). Fie on the F90 designers. Fie and a pox. ! NOTE: Modified to remove all but arrays of rank 4 or more from the ! argument list. Arrays with rank>3 are still problematic due to the ! above-noted fie- and pox-ities. TBH 20061129. SUBROUTINE init_domain ( grid ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid ! Local data. INTEGER :: idum1, idum2 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) CALL init_domain_rk( grid & ! #include "actual_new_args.inc" ! ) END SUBROUTINE init_domain !------------------------------------------------------------------- SUBROUTINE init_domain_rk ( grid & ! # include "dummy_new_args.inc" ! ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid # include "dummy_new_decl.inc" TYPE (grid_config_rec_type) :: config_flags ! Local data INTEGER :: & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte, & i, j, k, kk ! Local data INTEGER, PARAMETER :: nl_max = 1000 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in INTEGER :: nl_in INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2 ! REAL, EXTERNAL :: interp_0 REAL :: hm, xa REAL :: pi ! stuff from original initialization that has been dropped from the Registry REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt REAL :: qvf1, qvf2, pd_surf INTEGER :: it real :: thtmp, ptmp, temp(3) LOGICAL :: moisture_init LOGICAL :: stretch_grid, dry_sounding REAL :: xa1, xal1,pii,hm1 ! data for intercomparison setup from dale REAL :: B1, B2, B3, B4, B5, sin_arg REAL :: Nsq, z, z1, z2 INTEGER :: iter_loop SELECT CASE ( model_data_order ) CASE ( DATA_ORDER_ZXY ) kds = grid%sd31 ; kde = grid%ed31 ; ids = grid%sd32 ; ide = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; kms = grid%sm31 ; kme = grid%em31 ; ims = grid%sm32 ; ime = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XYZ ) ids = grid%sd31 ; ide = grid%ed31 ; jds = grid%sd32 ; jde = grid%ed32 ; kds = grid%sd33 ; kde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; jms = grid%sm32 ; jme = grid%em32 ; kms = grid%sm33 ; kme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XZY ) ids = grid%sd31 ; ide = grid%ed31 ; kds = grid%sd32 ; kde = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; kms = grid%sm32 ; kme = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch END SELECT hm = 100. xa = 5.0 icm = ide/2 xa1 = 5000./500. xal1 = 4000./500. pii = 2.*asin(1.0) hm1 = 250. ! hm1 = 1000. stretch_grid = .true. ! z_scale = .50 z_scale = .40 pi = 2.*asin(1.0) write(6,*) ' pi is ',pi nxc = (ide-ids)/4 nyc = (jde-jds)/2 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! here we check to see if the boundary conditions are set properly CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) moisture_init = .true. grid%itimestep=0 #ifdef DM_PARALLEL CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) #endif CALL nl_set_mminlu(1,' ') CALL nl_set_iswater(1,0) CALL nl_set_cen_lat(1,40.) CALL nl_set_cen_lon(1,-105.) CALL nl_set_truelat1(1,0.) CALL nl_set_truelat2(1,0.) CALL nl_set_moad_cen_lat (1,0.) CALL nl_set_stand_lon (1,0.) CALL nl_set_pole_lon (1,0.) CALL nl_set_pole_lat (1,90.) CALL nl_set_map_proj(1,0) ! here we initialize data we currently is not initialized ! in the input data DO j = jts, jte DO i = its, ite grid%msftx(i,j) = 1. grid%msfty(i,j) = 1. grid%msfux(i,j) = 1. grid%msfuy(i,j) = 1. grid%msfvx(i,j) = 1. grid%msfvx_inv(i,j)= 1. grid%msfvy(i,j) = 1. grid%sina(i,j) = 0. grid%cosa(i,j) = 1. grid%e(i,j) = 0. grid%f(i,j) = 0. END DO END DO DO j = jts, jte DO k = kts, kte DO i = its, ite grid%ww(i,k,j) = 0. END DO END DO END DO grid%step_number = 0 ! set up the grid IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz) DO k=1, kde grid%znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ & (1.-exp(-1./z_scale)) ENDDO ELSE DO k=1, kde grid%znw(k) = 1. - float(k-1)/float(kde-1) ENDDO ENDIF DO k=1, kde-1 grid%dnw(k) = grid%znw(k+1) - grid%znw(k) grid%rdnw(k) = 1./grid%dnw(k) grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) ENDDO DO k=2, kde-1 grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) grid%rdn(k) = 1./grid%dn(k) grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) ENDDO cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) grid%cf1 = grid%fnp(2) + cof1 grid%cf2 = grid%fnm(2) - cof1 - cof2 grid%cf3 = cof2 grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) grid%rdx = 1./config_flags%dx grid%rdy = 1./config_flags%dy ! get the sounding from the ascii sounding file, first get dry sounding and ! calculate base state write(6,*) ' getting dry sounding for base state ' dry_sounding = .true. CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, & nl_max, nl_in, .true.) write(6,*) ' returned from reading sounding, nl_in is ',nl_in ! find ptop for the desired ztop (ztop is input from the namelist), ! and find surface pressure grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in ) ! Fill in the hybrid coordinate coefficients DO k=1, kde IF ( config_flags%hybrid_opt .EQ. 0 ) THEN grid%c3f(k) = grid%znw(k) ELSE IF ( config_flags%hybrid_opt .EQ. 1 ) THEN grid%c3f(k) = grid%znw(k) ELSE IF ( config_flags%hybrid_opt .EQ. 2 ) THEN B1 = 2. * grid%etac**2 * ( 1. - grid%etac ) B2 = -grid%etac * ( 4. - 3. * grid%etac - grid%etac**3 ) B3 = 2. * ( 1. - grid%etac**3 ) B4 = - ( 1. - grid%etac**2 ) B5 = (1.-grid%etac)**4 grid%c3f(k) = ( B1 + B2*grid%znw(k) + B3*grid%znw(k)**2 + B4*grid%znw(k)**3 ) / B5 IF ( grid%znw(k) .LT. grid%etac ) THEN grid%c3f(k) = 0. END IF IF ( k .EQ. kds ) THEN grid%c3f(k) = 1. ELSE IF ( k .EQ. kde ) THEN grid%c3f(k) = 0. END IF ELSE IF ( config_flags%hybrid_opt .EQ. 3 ) THEN IF ( grid%znw(k) .GE. grid%etac ) THEN sin_arg = (1./(1.-grid%etac))*(grid%znw(k)-1.)+1 grid%c3f(k) = (sin(sin_arg*3.14159265358/2.))**2 ELSE grid%c3f(k) = 0. END IF IF ( k .EQ. kds ) THEN grid%c3f(k) = 1. ELSE IF ( k .EQ. kds ) THEN grid%c3f(kde) = 0. END IF ELSE CALL wrf_error_fatal ( 'ERROR: --- hybrid_opt=0 ===> Standard WRF Coordinate; hybrid_opt>=1 ===> Hybrid Vertical Coordinate' ) END IF END DO DO k=1, kde grid%c4f(k) = ( grid%znw(k) - grid%c3f(k) ) * ( p1000mb - grid%p_top ) ENDDO ! Now on half levels, just add up and divide by 2 (for c3h). Use (eta-c3)*(p00-pt) for c4 on half levels. DO k=1, kde-1 grid%c3h(k) = ( grid%c3f(k+1) + grid%c3f(k) ) * 0.5 grid%c4h(k) = ( grid%znu(k) - grid%c3h(k) ) * ( p1000mb - grid%p_top ) ENDDO ! c1 = d(B)/d(eta). We define c1f as c1 on FULL levels. For a vertical difference, ! we need to use B and eta on half levels. The k-loop ends up referring to the ! full levels, neglecting the top and bottom. DO k=kds+1, kde-1 grid%c1f(k) = ( grid%c3h(k) - grid%c3h(k-1) ) / ( grid%znu(k) - grid%znu(k-1) ) ENDDO ! The boundary conditions to get the coefficients: ! 1) At k=kts: define d(B)/d(eta) = 1. This gives us the same value of B and d(B)/d(eta) ! when doing the sigma-only B=eta. ! 2) At k=kte: with the new vertical coordinate, define d(B)/d(eta) = 0. The curve B SMOOTHLY ! goes to zero, and at the very top, B continues to SMOOTHLY go to zero. Note that for ! almost all cases of non B=eta, B is ALREADY=ZERO at the top, so this is a reasonable BC to ! assume. ! 3) At k=kte: when trying to mimic the original vertical coordinate, since B = eta, then ! d(B)/d(eta) = 1. grid%c1f(kds) = 1. IF ( ( config_flags%hybrid_opt .EQ. 0 ) .OR. ( config_flags%hybrid_opt .EQ. 1 ) ) THEN grid%c1f(kde) = 1. ELSE grid%c1f(kde) = 0. END IF ! c2 = ( 1. - c1(k) ) * (p00 - pt). There is no vertical differencing, so we can do the ! full kds to kde looping. DO k=kds, kde grid%c2f(k) = ( 1. - grid%c1f(k) ) * ( p1000mb - grid%p_top ) END DO ! Now on half levels for c1 and c2. The c1h will result from the full level c3 and full ! level eta differences. The c2 value use the half level c1(k). DO k=1, kde-1 grid%c1h(k) = ( grid%c3f(k+1) - grid%c3f(k) ) / ( grid%znw(k+1) - grid%znw(k) ) grid%c2h(k) = ( 1. - grid%c1h(k) ) * ( p1000mb - grid%p_top ) END DO #if 0 DO k=1, kde grid%c3f(k) = grid%znw(k) grid%c4f(k) = 0. grid%c3h(k) = grid%znu(k) grid%c4h(k) = 0. grid%c1f(k) = 1. grid%c2f(k) = 0. grid%c1h(k) = 1. grid%c2h(k) = 0. END DO #endif DO j=jts,jte DO i=its,ite ! flat surface !! grid%ht(i,j) = 0. grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2) ! grid%ht(i,j) = hm1*exp(-(( float(i-icm)/xa1)**2)) & ! *( (cos(pii*float(i-icm)/xal1))**2 ) grid%phb(i,1,j) = g*grid%ht(i,j) grid%php(i,1,j) = 0. grid%ph0(i,1,j) = grid%phb(i,1,j) ENDDO ENDDO DO J = jts, jte DO I = its, ite p_surf = interp_0( p_in, zk, grid%phb(i,1,j)/g, nl_in ) grid%MUB(i,j) = p_surf-grid%p_top ! this is dry hydrostatic sounding (base state), so given grid%p (coordinate), ! interp theta (from interp) and compute 1/rho from eqn. of state DO K = 1, kte-1 #if !( HYBRID_COORD==1 ) p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top #elif ( HYBRID_COORD==1 ) p_level = grid%c3h(k)*(p_surf - grid%p_top) + grid%c4h(k) + grid%p_top #endif grid%pb(i,k,j) = p_level grid%t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0 grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm ENDDO ! calc hydrostatic balance (alternatively we could interp the geopotential from the ! sounding, but this assures that the base state is in exact hydrostatic balance with ! respect to the model eqns. DO kk = 2,kte k=kk - 1 grid%phb(i,kk,j) = grid%phb(i,kk-1,j) - grid%dnw(kk-1)*grid%mub(i,j)*grid%alb(i,kk-1,j) ENDDO ENDDO ENDDO write(6,*) ' ptop is ',grid%p_top #if !( HYBRID_COORD==1 ) write(6,*) ' base state grid%mub(1,1), p_surf is ',grid%mub(1,1),grid%mub(1,1)+grid%p_top #elif ( HYBRID_COORD==1 ) write(6,*) ' base state grid%MUB(1,1), p_surf is ',grid%MUB(1,1),grid%c3f(kts)*grid%MUB(1,1)+grid%c4f(kts)+grid%p_top #endif ! calculate full state for each column - this includes moisture. write(6,*) ' getting moist sounding for full state ' dry_sounding = .false. CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, & nl_max, nl_in, .false. ) DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) ! At this point grid%p_top is already set. find the DRY mass in the column ! by interpolating the DRY pressure. pd_surf = interp_0( pd_in, zk, grid%phb(i,1,j)/g, nl_in ) ! compute the perturbation mass and the full mass grid%MU_1(i,j) = pd_surf-grid%p_top - grid%MUB(i,j) grid%MU_2(i,j) = grid%MU_1(i,j) grid%MU0(i,j) = grid%MU_1(i,j) + grid%MUB(i,j) ! given the dry pressure and coordinate system, interp the potential ! temperature and qv do k=1,kde-1 #if !( HYBRID_COORD==1 ) p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top #elif ( HYBRID_COORD==1 ) p_level = grid%c3h(k)*(pd_surf - grid%p_top) + grid%c4h(k) + grid%p_top #endif moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) grid%t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 grid%t_2(i,k,j) = grid%t_1(i,k,j) enddo ! integrate the hydrostatic equation (from the RHS of the bigstep ! vertical momentum equation) down from the top to get grid%p. ! first from the top of the model to the top pressure kk = kte-1 ! top level k=kk+1 qvf1 = 0.5*(moist(i,kk,j,P_QV)+moist(i,kk,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%p(i,kk,j) = - 0.5*(grid%Mu_1(i,j)+qvf1*grid%Mub(i,j))/grid%rdnw(kk)/qvf2 qvf = 1. + rvovrd*moist(i,kk,j,P_QV) grid%alt(i,kk,j) = (r_d/p1000mb)*(grid%t_1(i,kk,j)+t0)*qvf* & (((grid%p(i,kk,j)+grid%pb(i,kk,j))/p1000mb)**cvpm) grid%al(i,kk,j) = grid%alt(i,kk,j) - grid%alb(i,kk,j) ! down the column do kk=kte-2,1,-1 k = kk + 1 qvf1 = 0.5*(moist(i,kk,j,P_QV)+moist(i,kk+1,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%p(i,kk,j) = grid%p(i,kk+1,j) - (grid%Mu_1(i,j) + qvf1*grid%Mub(i,j))/qvf2/grid%rdn(kk+1) qvf = 1. + rvovrd*moist(i,kk,j,P_QV) grid%alt(i,kk,j) = (r_d/p1000mb)*(grid%t_1(i,kk,j)+t0)*qvf* & (((grid%p(i,kk,j)+grid%pb(i,kk,j))/p1000mb)**cvpm) grid%al(i,kk,j) = grid%alt(i,kk,j) - grid%alb(i,kk,j) enddo ! this is the hydrostatic equation used in the model after the ! small timesteps. In the model, grid%al (inverse density) ! is computed from the geopotential. grid%ph_1(i,1,j) = 0. DO kk = 2,kte k = kk-1 grid%ph_1(i,kk,j) = grid%ph_1(i,kk-1,j) - (grid%dnw(kk-1))*( & (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,kk-1,j)+ & grid%mu_1(i,j)*grid%alb(i,kk-1,j) ) grid%ph_2(i,kk,j) = grid%ph_1(i,kk,j) grid%ph0(i,kk,j) = grid%ph_1(i,kk,j) + grid%phb(i,kk,j) ENDDO if((i==2) .and. (j==2)) then k=1 write(6,*) ' grid%ph_1 k=1 calc ',grid%ph_1(2,k,2),& grid%mu_1(2,2)+grid%mub(2,2),grid%mu_1(2,2), & grid%alb(2,k,2),grid%rdnw(k) k=2 write(6,*) ' grid%ph_1 k=2 calc ',grid%ph_1(2,k,2),& grid%mu_1(2,2)+grid%mub(2,2),grid%mu_1(2,2), & grid%alb(2,k,2) endif ENDDO ENDDO #if 0 !=============== ! Test for resting atmosphere DO iter_loop = 1, 100 DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) DO K = 2, kte-1 z1 = (grid%phb(i,k+1,j)+grid%ph_1(i,k+1,j))/g z2 = (grid%phb(i,k ,j)+grid%ph_1(i,k ,j))/g z=(z1+z2)/2. IF ( z .LT. 10000 ) THEN Nsq = 1.E-4 ELSE Nsq = 4.E-4 END IF grid%t_1(i,k,j)=(grid%t_1(i,k-1,j)+t0) * EXP(Nsq / g * (z1-z2)) - t0 grid%t_2(i,k,j)=grid%t_1(i,k,j) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) ENDDO DO kk = 2,kte k = kk - 1 grid%ph_1(i,kk,j) = grid%ph_1(i,kk-1,j) - (grid%dnw(kk-1))*( & (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,kk-1,j)+ & grid%mu_1(i,j)*grid%alb(i,kk-1,j) ) grid%ph_2(i,kk,j) = grid%ph_1(i,kk,j) grid%ph0(i,kk,j) = grid%ph_1(i,kk,j) + grid%phb(i,kk,j) ENDDO ENDDO ENDDO END DO !=============== #endif k=1 write(6,*) ' grid%mu_1 from comp ', grid%mu_1(1,1) write(6,*) ' full state sounding from comp, ph, grid%p, grid%al, grid%t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1)+grid%phb(1,k,1), & grid%p(1,k,1)+grid%pb(1,k,1), grid%alt(1,k,1), & grid%t_1(1,k,1)+t0, moist(1,k,1,P_QV) enddo write(6,*) ' pert state sounding from comp, grid%ph_1, pp, alp, grid%t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1), & grid%p(1,k,1), grid%al(1,k,1), & grid%t_1(1,k,1), moist(1,k,1,P_QV) enddo ! interp v DO J = jts, jte DO I = its, min(ide-1,ite) IF (j == jds) THEN z_at_v = grid%phb(i,1,j)/g ELSE IF (j == jde) THEN z_at_v = grid%phb(i,1,j-1)/g ELSE z_at_v = 0.5*(grid%phb(i,1,j)+grid%phb(i,1,j-1))/g END IF p_surf = interp_0( p_in, zk, z_at_v, nl_in ) DO K = 1, kte p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top grid%v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in ) grid%v_2(i,k,j) = grid%v_1(i,k,j) ENDDO ENDDO ENDDO ! interp u DO J = jts, min(jde-1,jte) DO I = its, ite IF (i == ids) THEN z_at_u = grid%phb(i,1,j)/g ELSE IF (i == ide) THEN z_at_u = grid%phb(i-1,1,j)/g ELSE z_at_u = 0.5*(grid%phb(i,1,j)+grid%phb(i-1,1,j))/g END IF p_surf = interp_0( p_in, zk, z_at_u, nl_in ) DO K = 1, kte #if !( HYBRID_COORD==1 ) p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top #elif ( HYBRID_COORD==1 ) p_level = grid%c3h(k)*(p_surf - grid%p_top) + grid%c4h(k) + grid%p_top #endif grid%u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) grid%u_2(i,k,j) = grid%u_1(i,k,j) ENDDO ENDDO ENDDO ! set w DO J = jts, min(jde-1,jte) DO K = kts, kte DO I = its, min(ide-1,ite) grid%w_1(i,k,j) = 0. grid%w_2(i,k,j) = 0. ENDDO ENDDO ENDDO ! set a few more things DO J = jts, min(jde-1,jte) DO K = kts, kte-1 DO I = its, min(ide-1,ite) grid%h_diabatic(i,k,j) = 0. ENDDO ENDDO ENDDO DO k=1,kte-1 grid%t_base(k) = grid%t_1(1,k,1) grid%qv_base(k) = moist(1,k,1,P_QV) grid%u_base(k) = grid%u_1(1,k,1) grid%v_base(k) = grid%v_1(1,k,1) grid%z_base(k) = 0.5*(grid%phb(1,k,1)+grid%phb(1,k+1,1)+grid%ph_1(1,k,1)+grid%ph_1(1,k+1,1))/g ENDDO DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) thtmp = grid%t_2(i,1,j)+t0 ptmp = grid%p(i,1,j)+grid%pb(i,1,j) temp(1) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,2,j)+t0 ptmp = grid%p(i,2,j)+grid%pb(i,2,j) temp(2) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,3,j)+t0 ptmp = grid%p(i,3,j)+grid%pb(i,3,j) temp(3) = thtmp * (ptmp/p1000mb)**rcp grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3) grid%tmn(I,J)=grid%tsk(I,J)-0.5 ENDDO ENDDO RETURN END SUBROUTINE init_domain_rk SUBROUTINE init_module_initialize END SUBROUTINE init_module_initialize !--------------------------------------------------------------------- ! test driver for get_sounding ! ! implicit none ! integer n ! parameter(n = 1000) ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n) ! logical dry ! integer nl,k ! ! dry = .false. ! dry = .true. ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl ) ! write(6,*) ' input levels ',nl ! write(6,*) ' sounding ' ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' ! do k=1,nl ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k) ! enddo ! end ! !--------------------------------------------------------------------------- subroutine get_sounding( zk, p, p_dry, theta, rho, & u, v, qv, dry, nl_max, nl_in, base_state ) implicit none integer nl_max, nl_in real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), & u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max) logical dry logical base_state integer n, iz parameter(n=1000) logical debug parameter( debug = .false.) ! input sounding data real p_surf, th_surf, qv_surf real pi_surf, pi(n) real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n) ! diagnostics real rho_surf, p_input(n), rho_input(n) real pm_input(n) ! this are for full moist sounding ! local data real r parameter (r = r_d) integer k, it, nl real qvf, qvf1, dz ! first, read the sounding call read_sounding( p_surf, th_surf, qv_surf, & h_input, th_input, qv_input, u_input, v_input,n, nl, debug ) ! iz = 1 ! do k=2,nl ! if(h_input(k) .lt. 12000.) iz = k ! enddo ! write(6,*) " tropopause ",iz,h_input(iz) ! if(dry) then ! write(6,*) ' nl is ',nl ! do k=1,nl ! th_input(k) = th_input(k)+10.+10*float(k)/nl ! enddo ! write(6,*) ' finished adjusting theta ' ! endif ! do k=1,nl ! u_input(k) = 2*u_input(k) ! enddo ! ! end if if(dry) then do k=1,nl qv_input(k) = 0. enddo endif if(debug) write(6,*) ' number of input levels = ',nl nl_in = nl if(nl_in .gt. nl_max ) then write(6,*) ' too many levels for input arrays ',nl_in,nl_max call wrf_error_fatal ( ' too many levels for input arrays ' ) end if ! compute diagnostics, ! first, convert qv(g/kg) to qv(g/g) do k=1,nl qv_input(k) = 0.001*qv_input(k) enddo p_surf = 100.*p_surf ! convert to pascals qvf = 1. + rvovrd*qv_input(1) rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm)) pi_surf = (p_surf/p1000mb)**(r/cp) if(debug) then write(6,*) ' surface density is ',rho_surf write(6,*) ' surface pi is ',pi_surf end if ! integrate moist sounding hydrostatically, starting from the ! specified surface pressure ! -> first, integrate from surface to lowest level qvf = 1. + rvovrd*qv_input(1) qvf1 = 1. + qv_input(1) rho_input(1) = rho_surf dz = h_input(1) do it=1,10 pm_input(1) = p_surf & - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm)) enddo ! integrate up the column do k=2,nl rho_input(k) = rho_input(k-1) dz = h_input(k)-h_input(k-1) qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k))) qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here do it=1,20 pm_input(k) = pm_input(k-1) & - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm)) enddo enddo ! we have the moist sounding ! next, compute the dry sounding using p at the highest level from the ! moist sounding and integrating down. p_input(nl) = pm_input(nl) do k=nl-1,1,-1 dz = h_input(k+1)-h_input(k) p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g enddo ! write(6,*) ' zeroing u input ' do k=1,nl zk(k) = h_input(k) p(k) = pm_input(k) p_dry(k) = p_input(k) theta(k) = th_input(k) rho(k) = rho_input(k) u(k) = u_input(k) ! u(k) = 0. v(k) = v_input(k) qv(k) = qv_input(k) enddo if(debug) then write(6,*) ' sounding ' write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' do k=1,nl write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k) enddo end if end subroutine get_sounding !------------------------------------------------------- subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug ) implicit none integer n,nl real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n) logical end_of_file logical debug integer k open(unit=10,file='input_sounding',form='formatted',status='old') rewind(10) read(10,*) ps, ts, qvs if(debug) then write(6,*) ' input sounding surface parameters ' write(6,*) ' surface pressure (mb) ',ps write(6,*) ' surface pot. temp (K) ',ts write(6,*) ' surface mixing ratio (g/kg) ',qvs end if end_of_file = .false. k = 0 do while (.not. end_of_file) read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1) k = k+1 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k) go to 110 100 end_of_file = .true. 110 continue enddo nl = k close(unit=10,status = 'keep') end subroutine read_sounding END MODULE module_initialize_ideal