function xercon ( inc, jump, n, lot )

!*****************************************************************************80
!
!! XERCON checks INC, JUMP, N and LOT for consistency.
!
!  Discussion:
!
!    Positive integers INC, JUMP, N and LOT are "consistent" if,
!    for any values I1 and I2 < N, and J1 and J2 < LOT,
!
!      I1 * INC + J1 * JUMP = I2 * INC + J2 * JUMP
!
!    can only occur if I1 = I2 and J1 = J2.
!
!    For multiple FFT's to execute correctly, INC, JUMP, N and LOT must
!    be consistent, or else at least one array element will be
!    transformed more than once.
!
!  License:
!
!    Licensed under the GNU General Public License (GPL).
!    Copyright (C) 1995-2004, Scientific Computing Division,
!    University Corporation for Atmospheric Research
!
!  Modified:
!
!    25 March 2005
!
!  Author:
!
!    Paul Swarztrauber
!    Richard Valent
!
!  Reference:
!
!    Paul Swarztrauber,
!    Vectorizing the Fast Fourier Transforms,
!    in Parallel Computations,
!    edited by G. Rodrigue,
!    Academic Press, 1982.
!
!    Paul Swarztrauber,
!    Fast Fourier Transform Algorithms for Vector Computers,
!    Parallel Computing, pages 45-63, 1984.
!
!  Parameters:
!
!    Input, integer ( kind = 4 ) INC, JUMP, N, LOT, the parameters to check.
!
!    Output, logical XERCON, is TRUE if the parameters are consistent.
!
  implicit none

  integer ( kind = 4 ) i
  integer ( kind = 4 ) inc
  integer ( kind = 4 ) j
  integer ( kind = 4 ) jnew
  integer ( kind = 4 ) jump
  integer ( kind = 4 ) lcm
  integer ( kind = 4 ) lot
  integer ( kind = 4 ) n
  logical              xercon

  i = inc
  j = jump

  do while ( j /= 0 )
    jnew = mod ( i, j )
    i = j
    j = jnew
  end do
!
!  LCM = least common multiple of INC and JUMP.
!
  lcm = ( inc * jump ) / i

  if ( lcm <= ( n - 1 ) * inc .and. lcm <= ( lot - 1 ) * jump ) then
    xercon = .false.
  else
    xercon = .true.
  end if

  return
end