!WRF:MODEL_MP:PHYSICS ! !-- Updates based on NAM changes in 2011: ! ! (a) Expanded rain lookup tables from 0.45 mm to 1 mm mean diameter. ! (b) Allow cloud ice to fall (fall speeds based on 50 micron mean diameters). ! (c) Cloud water autoconversion to rain follows Liu et al. (JAS, 2006) ! (d) Fix to MY_GROWTH by multiplying estimates by 1.e-3 ! (e) Added integer function GET_INDEXR ! (f) Added warning messages when unusual conditions occur, screened for ! 5 different types of problems, such as (1) condensate in the ! stratosphere, (2) temperature = NaN, (3) water supersaturation at ! <180K, (4) too many iterations (>10) in the condensation function, ! and (5) too many iterations (>10) in the deposition function. ! !-- Updates based on jan19 2014 changes in the NMMB: ! ! (1) Ice nucleation: Fletcher (1962) replaces Meyers et al. (1992) ! (2) Cloud ice is a simple function of the number concentration from (1), and it ! is no longer a fractional function of the large ice. Thus, the FLARGE & ! FSMALL parameters are no longer used. ! (3) T_ICE_init=-12 deg C provides a slight delay in the initial onset of ice. ! (4) NLImax is a function of rime factor (RF) and temperature. ! a) For RF>10, NLImax=1.e3. Mean ice diameters can exceed the 1 mm maximum ! size in the tables so that NLICE=NLImax=1.e3. ! b) Otherwise, NLImax is 10 L-1 at 0C and increases with colder temperatures ! to 20 L-1 at <=-40C. Also, NLICE can be >NLImax at the maximum ice ! diameter of 1 mm. ! (5) Can turn off ice processes by setting T_ICE & T_ICE_init to be < -100 deg C ! (6) Modified the homogeneous freezing of cloud water when TNLImax. ! (10) Ice deposition does not change the rime factor (RF) when RF>=10 & T>T_ICE. ! (11) Limit GAMMAS to <=1.5 (air resistance impact on ice fall speeds) ! (12) NSImax is maximum # conc of ice crystals. At cold temperature NSImax is ! calculated based on assuming 10% of total ice content is due to cloud ice. ! MODULE module_mp_fer_hires !----------------------------------------------------------------------- !-- The following changes were made on 24 July 2006. ! (1) All known version 2.1 dependencies were removed from the ! operational WRF NMM model code (search for "!HWRF") ! (2) Incorporated code changes from the GFDL model (search for "!GFDL") !----------------------------------------------------------------------- ! REAL,PRIVATE,SAVE :: ABFR, CBFR, CIACW, CIACR, C_N0r0, & & ARAUT, BRAUT, CN0r0, CN0r_DMRmin, CN0r_DMRmax, CRACW, ESW0, & & RFmax, RQR_DRmin, RQR_DRmax, RR_DRmin, RR_DR1, RR_DR2, & & RR_DR3, RR_DR4, RR_DR5, RR_DRmax, BETA6, PI_E ! INTEGER, PRIVATE,PARAMETER :: MY_T1=1, MY_T2=35 REAL,PRIVATE,DIMENSION(MY_T1:MY_T2),SAVE :: MY_GROWTH ! REAL, PRIVATE,PARAMETER :: DMImin=.05e-3, DMImax=1.e-3, & & DelDMI=1.e-6,XMImin=1.e6*DMImin,XMIexp=.0536 INTEGER, PUBLIC,PARAMETER :: XMImax=1.e6*DMImax, & & MDImin=XMImin, MDImax=XMImax REAL, PRIVATE,DIMENSION(MDImin:MDImax) :: & & ACCRI,VSNOWI,VENTI1,VENTI2 REAL, PUBLIC,DIMENSION(MDImin:MDImax) :: SDENS !-- For RRTM ! REAL, PRIVATE,PARAMETER :: DMRmin=.05e-3, DMRmax=1.0e-3, & & DelDMR=1.e-6, XMRmin=1.e6*DMRmin, XMRmax=1.e6*DMRmax INTEGER, PUBLIC,PARAMETER :: MDRmin=XMRmin, MDRmax=XMRmax ! REAL, PRIVATE,DIMENSION(MDRmin:MDRmax):: & & ACCRR,MASSR,RRATE,VRAIN,VENTR1,VENTR2 ! INTEGER, PRIVATE,PARAMETER :: Nrime=40 REAL, DIMENSION(2:9,0:Nrime),PRIVATE,SAVE :: VEL_RF ! INTEGER,PARAMETER :: NX=7501 REAL, PARAMETER :: XMIN=180.0,XMAX=330.0 REAL, DIMENSION(NX),PRIVATE,SAVE :: TBPVS,TBPVS0 REAL, PRIVATE,SAVE :: C1XPVS0,C2XPVS0,C1XPVS,C2XPVS ! REAL, PRIVATE,PARAMETER :: & !--- Physical constants follow: & CP=1004.6, EPSQ=1.E-12, GRAV=9.806, RHOL=1000., RD=287.04 & & ,RV=461.5, T0C=273.15, XLS=2.834E6 & !--- Derived physical constants follow: & ,EPS=RD/RV, EPS1=RV/RD-1., EPSQ1=1.001*EPSQ & & ,RCP=1./CP, RCPRV=RCP/RV, RGRAV=1./GRAV, RRHOL=1./RHOL & & ,XLS1=XLS*RCP, XLS2=XLS*XLS*RCPRV, XLS3=XLS*XLS/RV & !--- Constants specific to the parameterization follow: !--- CLIMIT/CLIMIT1 are lower limits for treating accumulated precipitation & ,CLIMIT=10.*EPSQ, CLIMIT1=-CLIMIT & & ,C1=1./3. & & ,DMR1=.1E-3, DMR2=.2E-3, DMR3=.32E-3, DMR4=0.45E-3 & & ,DMR5=0.67E-3 & & ,XMR1=1.e6*DMR1, XMR2=1.e6*DMR2, XMR3=1.e6*DMR3 & & ,XMR4=1.e6*DMR4, XMR5=1.e6*DMR5 INTEGER, PARAMETER :: MDR1=XMR1, MDR2=XMR2, MDR3=XMR3, MDR4=XMR4 & & , MDR5=XMR5 !-- Debug 20120111 LOGICAL, SAVE :: WARN1=.TRUE.,WARN2=.TRUE.,WARN3=.TRUE.,WARN5=.TRUE. REAL, SAVE :: Pwarn=75.E2, QTwarn=1.E-3 INTEGER, PARAMETER :: MAX_ITERATIONS=10 ! ! ====================================================================== !--- Important tunable parameters that are exported to other modules !GFDL * RHgrd - generic reference to the threshold relative humidity for !GFDL the onset of condensation !GFDL (new) * RHgrd_in - "RHgrd" for the inner domain !GFDL (new) * RHgrd_out - "RHgrd" for the outer domain !HWRF 6/11/2010 mod - use lower RHgrd_out for p < 850 hPa ! * T_ICE - temperature (C) threshold at which all remaining liquid water ! is glaciated to ice ! * T_ICE_init - maximum temperature (C) at which ice nucleation occurs ! !-- To turn off ice processes, set T_ICE & T_ICE_init to <= -100. (i.e., -100 C) ! ! * NLImax - maximum number concentrations (m**-3) of large ice (snow/graupel/sleet) ! * NLImin - minimum number concentrations (m**-3) of large ice (snow/graupel/sleet) ! * NSImax - maximum number concentrations (m**-3) of small ice crystals ! * N0r0 - assumed intercept (m**-4) of rain drops if drop diameters are between 0.2 and 0.45 mm ! * N0rmin - minimum intercept (m**-4) for rain drops ! * NCW - number concentrations of cloud droplets (m**-3) ! * PRINT_diag - for extended model diagnostics (code currently commented out) ! ====================================================================== REAL, PUBLIC,PARAMETER :: & ! & RHgrd=1. & & RHgrd_in=1. & !GFDL & ,RHgrd_out=0.975 & !GFDL & ,P_RHgrd_out=850.E2 & !HWRF 6/11/2010 & ,T_ICE=-40. & & ,T_ICEK=T0C+T_ICE & & ,T_ICE_init=-12. & & ,NSI_max=250.E3 & & ,NLImin=1.E3 & & ,N0r0=8.E6 & & ,N0rmin=1.E4 & !!2-09-2012 & ,NCW=60.E6 & !GFDL !! based on Aligo's email,NCW is changed to 250E6 & ,NCW=250.E6 !GFDL !HWRF & ,NCW=100.E6 & LOGICAL, PARAMETER :: PRINT_diag=.FALSE. !GFDL !--- Other public variables passed to other routines: REAL, PUBLIC,DIMENSION(MDImin:MDImax) :: MASSI ! ! CONTAINS !----------------------------------------------------------------------- !----------------------------------------------------------------------- SUBROUTINE FER_HIRES (itimestep,DT,DX,DY,GID,RAINNC,RAINNCV, & !GID & dz8w,rho_phy,p_phy,pi_phy,th_phy,qv,qt, & !gopal's doing & LOWLYR,SR, & & F_ICE_PHY,F_RAIN_PHY,F_RIMEF_PHY, & & QC,QR,QI, & & ids,ide, jds,jde, kds,kde, & & ims,ime, jms,jme, kms,kme, & & its,ite, jts,jte, kts,kte ) !HWRF SUBROUTINE ETAMP_NEW (itimestep,DT,DX,DY, & !HWRF & dz8w,rho_phy,p_phy,pi_phy,th_phy,qv,qc, & !HWRF & LOWLYR,SR, & !HWRF & F_ICE_PHY,F_RAIN_PHY,F_RIMEF_PHY, & !HWRF & mp_restart_state,tbpvs_state,tbpvs0_state, & !HWRF & RAINNC,RAINNCV, & !HWRF & ids,ide, jds,jde, kds,kde, & !HWRF & ims,ime, jms,jme, kms,kme, & !HWRF & its,ite, jts,jte, kts,kte ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- INTEGER, PARAMETER :: ITLO=-60, ITHI=40 INTEGER,INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE & & ,IMS,IME,JMS,JME,KMS,KME & & ,ITS,ITE,JTS,JTE,KTS,KTE & & ,ITIMESTEP,GID ! GID gopal's doing REAL, INTENT(IN) :: DT,DX,DY REAL, INTENT(IN), DIMENSION(ims:ime, kms:kme, jms:jme):: & & dz8w,p_phy,pi_phy,rho_phy REAL, INTENT(INOUT), DIMENSION(ims:ime, kms:kme, jms:jme):: & & th_phy,qv,qt,qc,qr,qi REAL, INTENT(INOUT), DIMENSION(ims:ime, kms:kme, jms:jme ) :: & & F_ICE_PHY,F_RAIN_PHY,F_RIMEF_PHY REAL, INTENT(INOUT), DIMENSION(ims:ime,jms:jme) :: & & RAINNC,RAINNCV REAL, INTENT(OUT), DIMENSION(ims:ime,jms:jme):: SR ! !HWRF REAL,DIMENSION(*),INTENT(INOUT) :: MP_RESTART_STATE ! !HWRF REAL,DIMENSION(nx),INTENT(INOUT) :: TBPVS_STATE,TBPVS0_STATE ! INTEGER, DIMENSION( ims:ime, jms:jme ),INTENT(INOUT) :: LOWLYR !----------------------------------------------------------------------- ! LOCAL VARS !----------------------------------------------------------------------- ! NSTATS,QMAX,QTOT are diagnostic vars INTEGER,DIMENSION(ITLO:ITHI,4) :: NSTATS REAL, DIMENSION(ITLO:ITHI,5) :: QMAX REAL, DIMENSION(ITLO:ITHI,22):: QTOT ! SOME VARS WILL BE USED FOR DATA ASSIMILATION (DON'T NEED THEM NOW). ! THEY ARE TREATED AS LOCAL VARS, BUT WILL BECOME STATE VARS IN THE ! FUTURE. SO, WE DECLARED THEM AS MEMORY SIZES FOR THE FUTURE USE ! TLATGS_PHY,TRAIN_PHY,APREC,PREC,ACPREC,SR are not directly related ! the microphysics scheme. Instead, they will be used by Eta precip ! assimilation. REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) :: & & TLATGS_PHY,TRAIN_PHY REAL, DIMENSION(ims:ime,jms:jme):: APREC,PREC,ACPREC REAL, DIMENSION(its:ite, kts:kte, jts:jte):: t_phy INTEGER :: I,J,K,KFLIP REAL :: WC ! !----------------------------------------------------------------------- !********************************************************************** !----------------------------------------------------------------------- ! !HWRF MY_GROWTH(MY_T1:MY_T2)=MP_RESTART_STATE(MY_T1:MY_T2) !HWRF! !HWRF C1XPVS0=MP_RESTART_STATE(MY_T2+1) !HWRF C2XPVS0=MP_RESTART_STATE(MY_T2+2) !HWRF C1XPVS =MP_RESTART_STATE(MY_T2+3) !HWRF C2XPVS =MP_RESTART_STATE(MY_T2+4) !HWRF CIACW =MP_RESTART_STATE(MY_T2+5) !HWRF CIACR =MP_RESTART_STATE(MY_T2+6) !HWRF CRACW =MP_RESTART_STATE(MY_T2+7) !HWRF CRAUT =MP_RESTART_STATE(MY_T2+8) !HWRF! !HWRF TBPVS(1:NX) =TBPVS_STATE(1:NX) !HWRF TBPVS0(1:NX)=TBPVS0_STATE(1:NX) ! !---------- !2015-03-30, recalculate some constants which may depend on phy time step CALL MY_GROWTH_RATES (DT) !--- CIACW is used in calculating riming rates ! The assumed effective collection efficiency of cloud water rimed onto ! ice is =0.5 below: ! CIACW=DT*0.25*PI_E*0.5*(1.E5)**C1 ! !--- CIACR is used in calculating freezing of rain colliding with large ice ! The assumed collection efficiency is 1.0 ! CIACR=PI_E*DT ! !--- CRACW is used in calculating collection of cloud water by rain (an ! assumed collection efficiency of 1.0) ! CRACW=DT*0.25*PI_E*1.0 ! !-- See comments in subroutine etanewhr_init starting with variable RDIS= ! BRAUT=DT*1.1E10*BETA6/NCW ! write(*,*)'dt=',dt ! write(*,*)'pi_e=',pi_e ! write(*,*)'ciacw=',ciacw ! write(*,*)'ciacr=',ciacr ! write(*,*)'cracw=',cracw ! write(*,*)'araut=',araut ! write(*,*)'braut=',braut !! END OF adding, 2015-03-30 !----------- DO j = jts,jte DO k = kts,kte DO i = its,ite t_phy(i,k,j) = th_phy(i,k,j)*pi_phy(i,k,j) qv(i,k,j)=qv(i,k,j)/(1.+qv(i,k,j)) !Convert to specific humidity ENDDO ENDDO ENDDO ! initial diagnostic variables and data assimilation vars ! (will need to delete this part in the future) DO k = 1,4 DO i = ITLO,ITHI NSTATS(i,k)=0. ENDDO ENDDO DO k = 1,5 DO i = ITLO,ITHI QMAX(i,k)=0. ENDDO ENDDO DO k = 1,22 DO i = ITLO,ITHI QTOT(i,k)=0. ENDDO ENDDO ! initial data assimilation vars (will need to delete this part in the future) DO j = jts,jte DO k = kts,kte DO i = its,ite TLATGS_PHY (i,k,j)=0. TRAIN_PHY (i,k,j)=0. ENDDO ENDDO ENDDO DO j = jts,jte DO i = its,ite ACPREC(i,j)=0. APREC (i,j)=0. PREC (i,j)=0. SR (i,j)=0. ENDDO ENDDO !-- 6/11/2010: Update QT, F_ice, F_rain arrays DO j = jts,jte DO k = kts,kte DO i = its,ite QT(I,K,J)=QC(I,K,J)+QR(I,K,J)+QI(I,K,J) IF (QI(I,K,J) <= EPSQ) THEN F_ICE_PHY(I,K,J)=0. IF (T_PHY(I,K,J) < T_ICEK) F_ICE_PHY(I,K,J)=1. ELSE F_ICE_PHY(I,K,J)=MAX( 0., MIN(1., QI(I,K,J)/QT(I,K,J) ) ) ENDIF IF (QR(I,K,J) <= EPSQ) THEN F_RAIN_PHY(I,K,J)=0. ELSE F_RAIN_PHY(I,K,J)=QR(I,K,J)/(QR(I,K,J)+QC(I,K,J)) ENDIF ENDDO ENDDO ENDDO !----------------------------------------------------------------------- CALL EGCP01DRV(GID,DT,LOWLYR, & & APREC,PREC,ACPREC,SR,NSTATS,QMAX,QTOT, & & dz8w,rho_phy,qt,t_phy,qv,F_ICE_PHY,P_PHY, & & F_RAIN_PHY,F_RIMEF_PHY,TLATGS_PHY,TRAIN_PHY, & & ids,ide, jds,jde, kds,kde, & & ims,ime, jms,jme, kms,kme, & & its,ite, jts,jte, kts,kte ) !----------------------------------------------------------------------- DO j = jts,jte DO k = kts,kte DO i = its,ite th_phy(i,k,j) = t_phy(i,k,j)/pi_phy(i,k,j) qv(i,k,j)=qv(i,k,j)/(1.-qv(i,k,j)) !Convert to mixing ratio WC=qt(I,K,J) QI(I,K,J)=0. QR(I,K,J)=0. QC(I,K,J)=0. IF(F_ICE_PHY(I,K,J)>=1.)THEN QI(I,K,J)=WC ELSEIF(F_ICE_PHY(I,K,J)<=0.)THEN QC(I,K,J)=WC ELSE QI(I,K,J)=F_ICE_PHY(I,K,J)*WC QC(I,K,J)=WC-QI(I,K,J) ENDIF ! IF(QC(I,K,J)>0..AND.F_RAIN_PHY(I,K,J)>0.)THEN IF(F_RAIN_PHY(I,K,J).GE.1.)THEN QR(I,K,J)=QC(I,K,J) QC(I,K,J)=0. ELSE QR(I,K,J)=F_RAIN_PHY(I,K,J)*QC(I,K,J) QC(I,K,J)=QC(I,K,J)-QR(I,K,J) ENDIF endif ENDDO ENDDO ENDDO ! ! update rain (from m to mm) DO j=jts,jte DO i=its,ite RAINNC(i,j)=APREC(i,j)*1000.+RAINNC(i,j) RAINNCV(i,j)=APREC(i,j)*1000. ENDDO ENDDO ! !HWRF MP_RESTART_STATE(MY_T1:MY_T2)=MY_GROWTH(MY_T1:MY_T2) !HWRF MP_RESTART_STATE(MY_T2+1)=C1XPVS0 !HWRF MP_RESTART_STATE(MY_T2+2)=C2XPVS0 !HWRF MP_RESTART_STATE(MY_T2+3)=C1XPVS !HWRF MP_RESTART_STATE(MY_T2+4)=C2XPVS !HWRF MP_RESTART_STATE(MY_T2+5)=CIACW !HWRF MP_RESTART_STATE(MY_T2+6)=CIACR !HWRF MP_RESTART_STATE(MY_T2+7)=CRACW !HWRF MP_RESTART_STATE(MY_T2+8)=CRAUT !HWRF! !HWRF TBPVS_STATE(1:NX) =TBPVS(1:NX) !HWRF TBPVS0_STATE(1:NX)=TBPVS0(1:NX) !----------------------------------------------------------------------- END SUBROUTINE FER_HIRES !----------------------------------------------------------------------- !----------------------------------------------------------------------- ! NOTE: The only differences between FER_HIRES and FER_HIRES_ADVECT ! is that the QT, and F_* are all local variables in the advected ! version, and QRIMEF is only in the advected version. The innards ! are all the same. SUBROUTINE FER_HIRES_ADVECT (itimestep,DT,DX,DY,GID,RAINNC,RAINNCV, & !GID & dz8w,rho_phy,p_phy,pi_phy,th_phy,qv, & !gopal's doing & LOWLYR,SR, & & QC,QR,QI,QRIMEF, & & ids,ide, jds,jde, kds,kde, & & ims,ime, jms,jme, kms,kme, & & its,ite, jts,jte, kts,kte ) !HWRF SUBROUTINE ETAMP_NEW (itimestep,DT,DX,DY, & !HWRF & dz8w,rho_phy,p_phy,pi_phy,th_phy,qv,qc, & !HWRF & LOWLYR,SR, & !HWRF & F_ICE_PHY,F_RAIN_PHY,F_RIMEF_PHY, & !HWRF & mp_restart_state,tbpvs_state,tbpvs0_state, & !HWRF & RAINNC,RAINNCV, & !HWRF & ids,ide, jds,jde, kds,kde, & !HWRF & ims,ime, jms,jme, kms,kme, & !HWRF & its,ite, jts,jte, kts,kte ) !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- INTEGER, PARAMETER :: ITLO=-60, ITHI=40 INTEGER,INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE & & ,IMS,IME,JMS,JME,KMS,KME & & ,ITS,ITE,JTS,JTE,KTS,KTE & & ,ITIMESTEP,GID ! GID gopal's doing REAL, INTENT(IN) :: DT,DX,DY REAL, INTENT(IN), DIMENSION(ims:ime, kms:kme, jms:jme):: & & dz8w,p_phy,pi_phy,rho_phy REAL, INTENT(INOUT), DIMENSION(ims:ime, kms:kme, jms:jme):: & & th_phy,qv,qc,qr,qi,qrimef REAL, INTENT(INOUT), DIMENSION(ims:ime,jms:jme) :: & & RAINNC,RAINNCV REAL, INTENT(OUT), DIMENSION(ims:ime,jms:jme):: SR ! !HWRF REAL,DIMENSION(*),INTENT(INOUT) :: MP_RESTART_STATE ! !HWRF REAL,DIMENSION(nx),INTENT(INOUT) :: TBPVS_STATE,TBPVS0_STATE ! INTEGER, DIMENSION( ims:ime, jms:jme ),INTENT(INOUT) :: LOWLYR !----------------------------------------------------------------------- ! LOCAL VARS !----------------------------------------------------------------------- REAL, DIMENSION(ims:ime, kms:kme, jms:jme ) :: & & F_ICE_PHY,F_RAIN_PHY,F_RIMEF_PHY, QT ! NSTATS,QMAX,QTOT are diagnostic vars INTEGER,DIMENSION(ITLO:ITHI,4) :: NSTATS REAL, DIMENSION(ITLO:ITHI,5) :: QMAX REAL, DIMENSION(ITLO:ITHI,22):: QTOT ! SOME VARS WILL BE USED FOR DATA ASSIMILATION (DON'T NEED THEM NOW). ! THEY ARE TREATED AS LOCAL VARS, BUT WILL BECOME STATE VARS IN THE ! FUTURE. SO, WE DECLARED THEM AS MEMORY SIZES FOR THE FUTURE USE ! TLATGS_PHY,TRAIN_PHY,APREC,PREC,ACPREC,SR are not directly related ! the microphysics scheme. Instead, they will be used by Eta precip ! assimilation. REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) :: & & TLATGS_PHY,TRAIN_PHY REAL, DIMENSION(ims:ime,jms:jme):: APREC,PREC,ACPREC REAL, DIMENSION(its:ite, kts:kte, jts:jte):: t_phy INTEGER :: I,J,K,KFLIP REAL :: WC ! !----------------------------------------------------------------------- !********************************************************************** !----------------------------------------------------------------------- ! !HWRF MY_GROWTH(MY_T1:MY_T2)=MP_RESTART_STATE(MY_T1:MY_T2) !HWRF! !HWRF C1XPVS0=MP_RESTART_STATE(MY_T2+1) !HWRF C2XPVS0=MP_RESTART_STATE(MY_T2+2) !HWRF C1XPVS =MP_RESTART_STATE(MY_T2+3) !HWRF C2XPVS =MP_RESTART_STATE(MY_T2+4) !HWRF CIACW =MP_RESTART_STATE(MY_T2+5) !HWRF CIACR =MP_RESTART_STATE(MY_T2+6) !HWRF CRACW =MP_RESTART_STATE(MY_T2+7) !HWRF CRAUT =MP_RESTART_STATE(MY_T2+8) !HWRF! !HWRF TBPVS(1:NX) =TBPVS_STATE(1:NX) !HWRF TBPVS0(1:NX)=TBPVS0_STATE(1:NX) ! !---------- !2015-03-30, recalculate some constants which may depend on phy time step CALL MY_GROWTH_RATES (DT) !--- CIACW is used in calculating riming rates ! The assumed effective collection efficiency of cloud water rimed onto ! ice is =0.5 below: ! CIACW=DT*0.25*PI_E*0.5*(1.E5)**C1 ! !--- CIACR is used in calculating freezing of rain colliding with large ice ! The assumed collection efficiency is 1.0 ! CIACR=PI_E*DT ! !--- CRACW is used in calculating collection of cloud water by rain (an ! assumed collection efficiency of 1.0) ! CRACW=DT*0.25*PI_E*1.0 ! !-- See comments in subroutine etanewhr_init starting with variable RDIS= ! BRAUT=DT*1.1E10*BETA6/NCW ! write(*,*)'dt=',dt ! write(*,*)'pi_e=',pi_e ! write(*,*)'ciacw=',ciacw ! write(*,*)'ciacr=',ciacr ! write(*,*)'cracw=',cracw ! write(*,*)'araut=',araut ! write(*,*)'braut=',braut !! END OF adding, 2015-03-30 !----------- DO j = jts,jte DO k = kts,kte DO i = its,ite t_phy(i,k,j) = th_phy(i,k,j)*pi_phy(i,k,j) qv(i,k,j)=qv(i,k,j)/(1.+qv(i,k,j)) !Convert to specific humidity ENDDO ENDDO ENDDO ! initial diagnostic variables and data assimilation vars ! (will need to delete this part in the future) DO k = 1,4 DO i = ITLO,ITHI NSTATS(i,k)=0. ENDDO ENDDO DO k = 1,5 DO i = ITLO,ITHI QMAX(i,k)=0. ENDDO ENDDO DO k = 1,22 DO i = ITLO,ITHI QTOT(i,k)=0. ENDDO ENDDO ! initial data assimilation vars (will need to delete this part in the future) DO j = jts,jte DO k = kts,kte DO i = its,ite TLATGS_PHY (i,k,j)=0. TRAIN_PHY (i,k,j)=0. ENDDO ENDDO ENDDO DO j = jts,jte DO i = its,ite ACPREC(i,j)=0. APREC (i,j)=0. PREC (i,j)=0. SR (i,j)=0. ENDDO ENDDO !-- 6/11/2010: Update QT, F_ice, F_rain arrays DO j = jts,jte DO k = kts,kte DO i = its,ite QT(I,K,J)=QC(I,K,J)+QR(I,K,J)+QI(I,K,J) IF (QI(I,K,J) <= EPSQ) THEN F_ICE_PHY(I,K,J)=0. F_RIMEF_PHY(I,K,J)=1. IF (T_PHY(I,K,J) < T_ICEK) F_ICE_PHY(I,K,J)=1. ELSE F_ICE_PHY(I,K,J)=MAX( 0., MIN(1., QI(I,K,J)/QT(I,K,J) ) ) F_RIMEF_PHY(I,K,J)=QRIMEF(I,K,J)/QI(I,K,J) ENDIF IF (QR(I,K,J) <= EPSQ) THEN F_RAIN_PHY(I,K,J)=0. ELSE F_RAIN_PHY(I,K,J)=QR(I,K,J)/(QR(I,K,J)+QC(I,K,J)) ENDIF ENDDO ENDDO ENDDO !----------------------------------------------------------------------- CALL EGCP01DRV(GID,DT,LOWLYR, & & APREC,PREC,ACPREC,SR,NSTATS,QMAX,QTOT, & & dz8w,rho_phy,qt,t_phy,qv,F_ICE_PHY,P_PHY, & & F_RAIN_PHY,F_RIMEF_PHY,TLATGS_PHY,TRAIN_PHY, & & ids,ide, jds,jde, kds,kde, & & ims,ime, jms,jme, kms,kme, & & its,ite, jts,jte, kts,kte ) !----------------------------------------------------------------------- DO j = jts,jte DO k = kts,kte DO i = its,ite th_phy(i,k,j) = t_phy(i,k,j)/pi_phy(i,k,j) qv(i,k,j)=qv(i,k,j)/(1.-qv(i,k,j)) !Convert to mixing ratio WC=qt(I,K,J) QI(I,K,J)=0. QR(I,K,J)=0. QC(I,K,J)=0. IF(F_ICE_PHY(I,K,J)>=1.)THEN QI(I,K,J)=WC ELSEIF(F_ICE_PHY(I,K,J)<=0.)THEN QC(I,K,J)=WC ELSE QI(I,K,J)=F_ICE_PHY(I,K,J)*WC QC(I,K,J)=WC-QI(I,K,J) ENDIF ! IF(QC(I,K,J)>0..AND.F_RAIN_PHY(I,K,J)>0.)THEN IF(F_RAIN_PHY(I,K,J).GE.1.)THEN QR(I,K,J)=QC(I,K,J) QC(I,K,J)=0. ELSE QR(I,K,J)=F_RAIN_PHY(I,K,J)*QC(I,K,J) QC(I,K,J)=QC(I,K,J)-QR(I,K,J) ENDIF endif QRIMEF(I,K,J)=QI(I,K,J)*F_RIMEF_PHY(I,K,J) ENDDO ENDDO ENDDO ! ! update rain (from m to mm) DO j=jts,jte DO i=its,ite RAINNC(i,j)=APREC(i,j)*1000.+RAINNC(i,j) RAINNCV(i,j)=APREC(i,j)*1000. ENDDO ENDDO ! !HWRF MP_RESTART_STATE(MY_T1:MY_T2)=MY_GROWTH(MY_T1:MY_T2) !HWRF MP_RESTART_STATE(MY_T2+1)=C1XPVS0 !HWRF MP_RESTART_STATE(MY_T2+2)=C2XPVS0 !HWRF MP_RESTART_STATE(MY_T2+3)=C1XPVS !HWRF MP_RESTART_STATE(MY_T2+4)=C2XPVS !HWRF MP_RESTART_STATE(MY_T2+5)=CIACW !HWRF MP_RESTART_STATE(MY_T2+6)=CIACR !HWRF MP_RESTART_STATE(MY_T2+7)=CRACW !HWRF MP_RESTART_STATE(MY_T2+8)=CRAUT !HWRF! !HWRF TBPVS_STATE(1:NX) =TBPVS(1:NX) !HWRF TBPVS0_STATE(1:NX)=TBPVS0(1:NX) !----------------------------------------------------------------------- END SUBROUTINE FER_HIRES_ADVECT !----------------------------------------------------------------------- !----------------------------------------------------------------------- SUBROUTINE EGCP01DRV(GID, & !GID gopal's doing & DTPH,LOWLYR,APREC,PREC,ACPREC,SR, & & NSTATS,QMAX,QTOT, & & dz8w,RHO_PHY,CWM_PHY,T_PHY,Q_PHY,F_ICE_PHY,P_PHY, & & F_RAIN_PHY,F_RIMEF_PHY,TLATGS_PHY,TRAIN_PHY, & & ids,ide, jds,jde, kds,kde, & & ims,ime, jms,jme, kms,kme, & & its,ite, jts,jte, kts,kte) !----------------------------------------------------------------------- ! DTPH Physics time step (s) ! CWM_PHY (qt) Mixing ratio of the total condensate. kg/kg ! Q_PHY Mixing ratio of water vapor. kg/kg ! F_RAIN_PHY Fraction of rain. ! F_ICE_PHY Fraction of ice. ! F_RIMEF_PHY Mass ratio of rimed ice (rime factor). ! !TLATGS_PHY,TRAIN_PHY,APREC,PREC,ACPREC,SR are not directly related the !micrphysics sechme. Instead, they will be used by Eta precip assimilation. ! !NSTATS,QMAX,QTOT are used for diagnosis purposes. ! !----------------------------------------------------------------------- !--- Variables APREC,PREC,ACPREC,SR are calculated for precip assimilation ! and/or ZHAO's scheme in Eta and are not required by this microphysics ! scheme itself. !--- NSTATS,QMAX,QTOT are used for diagnosis purposes only. They will be ! printed out when PRINT_diag is true. ! !----------------------------------------------------------------------- IMPLICIT NONE !----------------------------------------------------------------------- ! INTEGER, PARAMETER :: ITLO=-60, ITHI=40 ! VARIABLES PASSED IN/OUT INTEGER,INTENT(IN ) :: ids,ide, jds,jde, kds,kde & & ,ims,ime, jms,jme, kms,kme & & ,its,ite, jts,jte, kts,kte INTEGER,INTENT(IN ) :: GID ! grid%id gopal's doing REAL,INTENT(IN) :: DTPH INTEGER, DIMENSION( ims:ime, jms:jme ),INTENT(INOUT) :: LOWLYR INTEGER,DIMENSION(ITLO:ITHI,4),INTENT(INOUT) :: NSTATS REAL,DIMENSION(ITLO:ITHI,5),INTENT(INOUT) :: QMAX REAL,DIMENSION(ITLO:ITHI,22),INTENT(INOUT) :: QTOT REAL,DIMENSION(ims:ime,jms:jme),INTENT(INOUT) :: & & APREC,PREC,ACPREC,SR REAL,DIMENSION( its:ite, kts:kte, jts:jte ),INTENT(INOUT) :: t_phy REAL,DIMENSION( ims:ime, kms:kme, jms:jme ),INTENT(IN) :: & & dz8w,P_PHY,RHO_PHY REAL,DIMENSION( ims:ime, kms:kme, jms:jme ),INTENT(INOUT) :: & & CWM_PHY, F_ICE_PHY,F_RAIN_PHY,F_RIMEF_PHY,TLATGS_PHY & & ,Q_PHY,TRAIN_PHY ! !----------------------------------------------------------------------- !LOCAL VARIABLES !----------------------------------------------------------------------- ! !HWRF - Below are directives in the operational code that have been removed, ! where "TEMP_DEX" has been replaced with "I,J,L" and "TEMP_DIMS" has ! been replaced with "its:ite,jts:jte,kts:kte" !HWRF#define CACHE_FRIENDLY_MP_ETANEW !HWRF#ifdef CACHE_FRIENDLY_MP_ETANEW !HWRF# define TEMP_DIMS kts:kte,its:ite,jts:jte !HWRF# define TEMP_DEX L,I,J !HWRF#else !HWRF# define TEMP_DIMS its:ite,jts:jte,kts:kte !HWRF# define TEMP_DEX I,J,L !HWRF#endif !HWRF! INTEGER :: LSFC,I,J,I_index,J_index,L,K,KFLIP !HWRF REAL,DIMENSION(TEMP_DIMS) :: CWM,T,Q,TRAIN,TLATGS,P REAL,DIMENSION(its:ite,jts:jte,kts:kte) :: & & CWM,T,Q,TRAIN,TLATGS,P REAL,DIMENSION(kts:kte,its:ite,jts:jte) :: F_ice,F_rain,F_RimeF INTEGER,DIMENSION(its:ite,jts:jte) :: LMH REAL :: TC,WC,QI,QR,QW,Fice,Frain,DUM,ASNOW,ARAIN REAL,DIMENSION(kts:kte) :: P_col,Q_col,T_col,QV_col,WC_col, & RimeF_col,QI_col,QR_col,QW_col, THICK_col, RHC_col, DPCOL !GFDL REAL,DIMENSION(2) :: PRECtot,PRECmax !----------------------------------------------------------------------- ! DO J=JTS,JTE DO I=ITS,ITE LMH(I,J) = KTE-LOWLYR(I,J)+1 ENDDO ENDDO DO 98 J=JTS,JTE DO 98 I=ITS,ITE DO L=KTS,KTE KFLIP=KTE+1-L CWM(I,J,L)=CWM_PHY(I,KFLIP,J) T(I,J,L)=T_PHY(I,KFLIP,J) Q(I,J,L)=Q_PHY(I,KFLIP,J) P(I,J,L)=P_PHY(I,KFLIP,J) TLATGS(I,J,L)=TLATGS_PHY(I,KFLIP,J) TRAIN(I,J,L)=TRAIN_PHY(I,KFLIP,J) F_ice(L,I,J)=F_ice_PHY(I,KFLIP,J) F_rain(L,I,J)=F_rain_PHY(I,KFLIP,J) F_RimeF(L,I,J)=F_RimeF_PHY(I,KFLIP,J) ENDDO 98 CONTINUE DO 100 J=JTS,JTE DO 100 I=ITS,ITE LSFC=LMH(I,J) ! "L" of surface ! DO K=KTS,KTE KFLIP=KTE+1-K DPCOL(K)=RHO_PHY(I,KFLIP,J)*GRAV*dz8w(I,KFLIP,J) ENDDO ! ! !--- Initialize column data (1D arrays) ! IF (CWM(I,J,1) .LE. EPSQ) CWM(I,J,1)=EPSQ F_ice(1,I,J)=1. F_rain(1,I,J)=0. F_RimeF(1,I,J)=1. DO L=1,LSFC ! !--- Pressure (Pa) = (Psfc-Ptop)*(ETA/ETA_sfc)+Ptop ! P_col(L)=P(I,J,L) ! !--- Layer thickness = RHO*DZ = -DP/G = (Psfc-Ptop)*D_ETA/(G*ETA_sfc) ! THICK_col(L)=DPCOL(L)*RGRAV T_col(L)=T(I,J,L) TC=T_col(L)-T0C QV_col(L)=max(EPSQ, Q(I,J,L)) IF (CWM(I,J,L) .LE. EPSQ1) THEN WC_col(L)=0. IF (TC .LT. T_ICE) THEN F_ice(L,I,J)=1. ELSE F_ice(L,I,J)=0. ENDIF F_rain(L,I,J)=0. F_RimeF(L,I,J)=1. ELSE WC_col(L)=CWM(I,J,L) !-- Debug 20120111: TC==TC will fail if NaN IF (WC_col(L)>QTwarn .AND. P_col(L)1 g/kg condensate in stratosphere; I,J,L,TC,P,QT=', & I,J,L,TC,.01*P_col(L),1000.*WC_col(L) QTwarn=MAX(WC_col(L),10.*QTwarn) Pwarn=MIN(P_col(L),0.5*Pwarn) ENDIF !-- TC/=TC will pass if TC is NaN IF (WARN5 .AND. TC/=TC) THEN WRITE(0,*) 'WARN5: NaN temperature; I,J,L,P=',I,J,L,.01*P_col(L) WARN5=.FALSE. ENDIF ENDIF ! !--- Determine composition of condensate in terms of ! cloud water, ice, & rain ! WC=WC_col(L) QI=0. QR=0. QW=0. Fice=F_ice(L,I,J) Frain=F_rain(L,I,J) IF (Fice .GE. 1.) THEN QI=WC ELSE IF (Fice .LE. 0.) THEN QW=WC ELSE QI=Fice*WC QW=WC-QI ENDIF IF (QW.GT.0. .AND. Frain.GT.0.) THEN IF (Frain .GE. 1.) THEN QR=QW QW=0. ELSE QR=Frain*QW QW=QW-QR ENDIF ENDIF IF (QI .LE. 0.) F_RimeF(L,I,J)=1. RimeF_col(L)=F_RimeF(L,I,J) QI_col(L)=QI QR_col(L)=QR QW_col(L)=QW !GFDL => New. Added RHC_col to allow for height- and grid-dependent values for !GFDL the relative humidity threshold for condensation ("RHgrd") !6/11/2010 mod - Use lower RHgrd_out threshold for < 850 hPa !------------------------------------------------------------ IF(GID .EQ. 1 .AND. P_col(L)0) associated with snow ! APREC(I,J)=(ARAIN+ASNOW)*RRHOL ! Accumulated surface precip (depth in m) !<--- Ying PREC(I,J)=PREC(I,J)+APREC(I,J) ACPREC(I,J)=ACPREC(I,J)+APREC(I,J) IF(APREC(I,J) .LT. 1.E-8) THEN SR(I,J)=0. ELSE SR(I,J)=RRHOL*ASNOW/APREC(I,J) ENDIF ! ! ! !--- Debug statistics ! ! ! IF (PRINT_diag) THEN ! PRECtot(1)=PRECtot(1)+ARAIN ! PRECtot(2)=PRECtot(2)+ASNOW ! PRECmax(1)=MAX(PRECmax(1), ARAIN) ! PRECmax(2)=MAX(PRECmax(2), ASNOW) ! ENDIF !####################################################################### !####################################################################### ! 100 CONTINUE ! End "I" & "J" loops DO 101 J=JTS,JTE DO 101 I=ITS,ITE DO L=KTS,KTE KFLIP=KTE+1-L CWM_PHY(I,KFLIP,J)=CWM(I,J,L) T_PHY(I,KFLIP,J)=T(I,J,L) Q_PHY(I,KFLIP,J)=Q(I,J,L) TLATGS_PHY(I,KFLIP,J)=TLATGS(I,J,L) TRAIN_PHY(I,KFLIP,J)=TRAIN(I,J,L) F_ice_PHY(I,KFLIP,J)=F_ice(L,I,J) F_rain_PHY(I,KFLIP,J)=F_rain(L,I,J) F_RimeF_PHY(I,KFLIP,J)=F_RimeF(L,I,J) ENDDO 101 CONTINUE ! END SUBROUTINE EGCP01DRV ! ! !############################################################################### ! ***** VERSION OF MICROPHYSICS DESIGNED FOR HIGHER RESOLUTION MESO ETA MODEL ! (1) Represents sedimentation by preserving a portion of the precipitation ! through top-down integration from cloud-top. Modified procedure to ! Zhao and Carr (1997). ! (2) Microphysical equations are modified to be less sensitive to time ! steps by use of Clausius-Clapeyron equation to account for changes in ! saturation mixing ratios in response to latent heating/cooling. ! (3) Prevent spurious temperature oscillations across 0C due to ! microphysics. ! (4) Uses lookup tables for: calculating two different ventilation ! coefficients in condensation and deposition processes; accretion of ! cloud water by precipitation; precipitation mass; precipitation rate ! (and mass-weighted precipitation fall speeds). ! (5) Assumes temperature-dependent variation in mean diameter of large ice ! (Houze et al., 1979; Ryan et al., 1996). ! -> 8/22/01: This relationship has been extended to colder temperatures ! to parameterize smaller large-ice particles down to mean sizes of MDImin, ! which is 50 microns reached at -55.9C. ! (6) Attempts to differentiate growth of large and small ice, mainly for ! improved transition from thin cirrus to thick, precipitating ice ! anvils. ! (7) Top-down integration also attempts to treat mixed-phase processes, ! allowing a mixture of ice and water. Based on numerous observational ! studies, ice growth is based on nucleation at cloud top & ! subsequent growth by vapor deposition and riming as the ice particles ! fall through the cloud. Nucleation rates are a function of temperature. ! (8) Depositional growth of newly nucleated ice is calculated for large time ! steps using Fig. 8 of Miller and Young (JAS, 1979), at 1 deg intervals ! using their ice crystal masses calculated after 600 s of growth in water ! saturated conditions. The growth rates are normalized by time step ! assuming 3D growth with time**1.5 following eq. (6.3) in Young (1993). ! (9) Ice precipitation rates can increase due to increase in response to ! cloud water riming due to (a) increased density & mass of the rimed ! ice, and (b) increased fall speeds of rimed ice. !############################################################################### !############################################################################### ! SUBROUTINE EGCP01COLUMN ( ARAIN, ASNOW, DTPH, I_index, J_index, & & LSFC, P_col, QI_col, QR_col, QV_col, QW_col, RimeF_col, T_col, & & THICK_col, WC_col, RHC_col, KTS,KTE,NSTATS,QMAX,QTOT) !GFDL ! !############################################################################### !############################################################################### ! !------------------------------------------------------------------------------- !----- NOTE: Code is currently set up w/o threading! !------------------------------------------------------------------------------- !$$$ SUBPROGRAM DOCUMENTATION BLOCK ! . . . ! SUBPROGRAM: Grid-scale microphysical processes - condensation & precipitation ! PRGRMMR: Ferrier ORG: W/NP22 DATE: 08-2001 ! PRGRMMR: Jin (Modification for WRF structure) !------------------------------------------------------------------------------- ! ABSTRACT: ! * Merges original GSCOND & PRECPD subroutines. ! * Code has been substantially streamlined and restructured. ! * Exchange between water vapor & small cloud condensate is calculated using ! the original Asai (1965, J. Japan) algorithm. See also references to ! Yau and Austin (1979, JAS), Rutledge and Hobbs (1983, JAS), and Tao et al. ! (1989, MWR). This algorithm replaces the Sundqvist et al. (1989, MWR) ! parameterization. !------------------------------------------------------------------------------- ! ! USAGE: ! * CALL EGCP01COLUMN FROM SUBROUTINE EGCP01DRV ! ! INPUT ARGUMENT LIST: ! DTPH - physics time step (s) ! I_index - I index ! J_index - J index ! LSFC - Eta level of level above surface, ground ! P_col - vertical column of model pressure (Pa) ! QI_col - vertical column of model ice mixing ratio (kg/kg) ! QR_col - vertical column of model rain ratio (kg/kg) ! QV_col - vertical column of model water vapor specific humidity (kg/kg) ! QW_col - vertical column of model cloud water mixing ratio (kg/kg) ! RimeF_col - vertical column of rime factor for ice in model (ratio, defined below) ! T_col - vertical column of model temperature (deg K) ! THICK_col - vertical column of model mass thickness (density*height increment) ! WC_col - vertical column of model mixing ratio of total condensate (kg/kg) ! RHC_col - vertical column of threshold relative humidity for onset of condensation (ratio) !GFDL ! ! ! OUTPUT ARGUMENT LIST: ! ARAIN - accumulated rainfall at the surface (kg) ! ASNOW - accumulated snowfall at the surface (kg) ! QV_col - vertical column of model water vapor specific humidity (kg/kg) ! WC_col - vertical column of model mixing ratio of total condensate (kg/kg) ! QW_col - vertical column of model cloud water mixing ratio (kg/kg) ! QI_col - vertical column of model ice mixing ratio (kg/kg) ! QR_col - vertical column of model rain ratio (kg/kg) ! RimeF_col - vertical column of rime factor for ice in model (ratio, defined below) ! T_col - vertical column of model temperature (deg K) ! ! OUTPUT FILES: ! NONE ! ! Subprograms & Functions called: ! * Real Function CONDENSE - cloud water condensation ! * Real Function DEPOSIT - ice deposition (not sublimation) ! ! UNIQUE: NONE ! ! LIBRARY: NONE ! ! COMMON BLOCKS: ! CMICRO_CONS - key constants initialized in GSMCONST ! CMICRO_STATS - accumulated and maximum statistics ! CMY_GROWTH - lookup table for growth of ice crystals in ! water saturated conditions (Miller & Young, 1979) ! IVENT_TABLES - lookup tables for ventilation effects of ice ! IACCR_TABLES - lookup tables for accretion rates of ice ! IMASS_TABLES - lookup tables for mass content of ice ! IRATE_TABLES - lookup tables for precipitation rates of ice ! IRIME_TABLES - lookup tables for increase in fall speed of rimed ice ! RVENT_TABLES - lookup tables for ventilation effects of rain ! RACCR_TABLES - lookup tables for accretion rates of rain ! RMASS_TABLES - lookup tables for mass content of rain ! RVELR_TABLES - lookup tables for fall speeds of rain ! RRATE_TABLES - lookup tables for precipitation rates of rain ! ! ATTRIBUTES: ! LANGUAGE: FORTRAN 90 ! MACHINE : IBM SP ! ! !------------------------------------------------------------------------- !--------------- Arrays & constants in argument list --------------------- !------------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER,INTENT(IN) :: KTS,KTE,I_index, J_index, LSFC REAL,INTENT(INOUT) :: ARAIN, ASNOW REAL,DIMENSION(KTS:KTE),INTENT(INOUT) :: P_col, QI_col,QR_col & & ,QV_col ,QW_col, RimeF_col, T_col, THICK_col, WC_col, RHC_col !GFDL ! !------------------------------------------------------------------------- !-------------- Common blocks for microphysical statistics --------------- !------------------------------------------------------------------------- ! !------------------------------------------------------------------------- !--------- Common blocks for constants initialized in GSMCONST ---------- ! INTEGER, PARAMETER :: ITLO=-60, ITHI=40 INTEGER,INTENT(INOUT) :: NSTATS(ITLO:ITHI,4) REAL,INTENT(INOUT) :: QMAX(ITLO:ITHI,5),QTOT(ITLO:ITHI,22) ! !------------------------------------------------------------------------- !--------------- Common blocks for various lookup tables ----------------- ! !--- Discretized growth rates of small ice crystals after their nucleation ! at 1 C intervals from -1 C to -35 C, based on calculations by Miller ! and Young (1979, JAS) after 600 s of growth. Resultant growth rates ! are multiplied by physics time step in GSMCONST. ! !------------------------------------------------------------------------- ! !--- Mean ice-particle diameters varying from 50 microns to 1000 microns ! (1 mm), assuming an exponential size distribution. ! !---- Meaning of the following arrays: ! - mdiam - mean diameter (m) ! - VENTI1 - integrated quantity associated w/ ventilation effects ! (capacitance only) for calculating vapor deposition onto ice ! - VENTI2 - integrated quantity associated w/ ventilation effects ! (with fall speed) for calculating vapor deposition onto ice ! - ACCRI - integrated quantity associated w/ cloud water collection by ice ! - MASSI - integrated quantity associated w/ ice mass ! - VSNOWI - mass-weighted fall speed of snow (large ice), used to calculate ! precipitation rates ! ! !------------------------------------------------------------------------- ! !--- VEL_RF - velocity increase of rimed particles as functions of crude ! particle size categories (at 0.1 mm intervals of mean ice particle ! sizes) and rime factor (different values of Rime Factor of 1.1**N, ! where N=0 to Nrime). ! !------------------------------------------------------------------------- ! !--- Mean rain drop diameters varying from 50 microns (0.05 mm) to 1000 microns ! (1.0 mm) assuming an exponential size distribution. ! !------------------------------------------------------------------------- !------- Key parameters, local variables, & important comments --------- !----------------------------------------------------------------------- ! !--- TOLER => Tolerance or precision for accumulated precipitation ! REAL, PARAMETER :: TOLER=5.E-7, C2=1./6., RHO0=1.194, Xratio=.025 ! !--- If BLEND=1: ! precipitation (large) ice amounts are estimated at each level as a ! blend of ice falling from the grid point above and the precip ice ! present at the start of the time step (see TOT_ICE below). !--- If BLEND=0: ! precipitation (large) ice amounts are estimated to be the precip ! ice present at the start of the time step. ! !--- Extended to include sedimentation of rain on 2/5/01 ! REAL, PARAMETER :: BLEND=1. ! !----------------------------------------------------------------------- !--- Local variables !----------------------------------------------------------------------- ! REAL EMAIRI, N0r, NLICE, NSmICE, NInuclei, RHgrd LOGICAL :: CLEAR, ICE_logical, DBG_logical, RAIN_logical, & & LARGE_RF, HAIL INTEGER :: IDR,INDEX_MY,INDEXR,INDEXR1,INDEXS,IPASS,ITDX,IXRF, & & IXS,LBEF,L ! REAL :: ABI,ABW,AIEVP,ARAINnew,ASNOWnew,BLDTRH,BUDGET, & & CREVP,DELI,DELR,DELT,DELV,DELW,DENOMF, & & DENOMI,DENOMW,DENOMWI,DIDEP, & & DIEVP,DIFFUS,DLI,DTPH,DTRHO,DUM,DUM1,DUM2,DUM3, & & DWV0,DWVI,DWVR,DYNVIS,ESI,ESW,FIR,FLARGE,FLIMASS, & & FSMALL,FWR,FWS,GAMMAR,GAMMAS, & & PCOND,PIACR,PIACW,PIACWI,PIACWR,PICND,PIDEP,PIDEP_max, & & PIEVP,PILOSS,PIMLT,PINT,PP,PRACW,PRAUT,PREVP,PRLOSS, & & QI,QInew,QLICE,QR,QRnew,QSI,QSIgrd,QSInew,QSW,QSW0, & & QSWgrd,QSWnew,QT,QTICE,QTnew,QTRAIN,QV,QW,QWnew, & & RFACTOR,RHO,RIMEF,RIMEF1,RQR,RR,RRHO,SFACTOR, & & TC,TCC,TFACTOR,THERM_COND,THICK,TK,TK2,TNEW, & & TOT_ICE,TOT_ICEnew,TOT_RAIN,TOT_RAINnew, & & VEL_INC,VENTR,VENTIL,VENTIS,VRAIN1,VRAIN2,VRIMEF,VSNOW, & & WC,WCnew,WSgrd,WS,WSnew,WV,WVnew, & & XLF,XLF1,XLI,XLV,XLV1,XLV2,XLIMASS,XRF, & & NLImax,NSImax,QRdum,QSmICE,QLgIce,RQLICE,VCI,VRabove !-- new variables REAL, SAVE :: Revised_LICE=1.e-3 !-- kg/m**3 ! !####################################################################### !########################## Begin Execution ############################ !####################################################################### ! ! ARAIN=0. ! Accumulated rainfall into grid box from above (kg/m**2) ASNOW=0. ! Accumulated snowfall into grid box from above (kg/m**2) VRabove=0. ! Fall speed of rain into grid box from above (m/s) ! !----------------------------------------------------------------------- !------------ Loop from top (L=1) to surface (L=LSFC) ------------------ !----------------------------------------------------------------------- ! DO 10 L=1,LSFC !--- Skip this level and go to the next lower level if no condensate ! and very low specific humidities ! IF (QV_col(L).LE.EPSQ .AND. WC_col(L).LE.EPSQ) GO TO 10 ! !----------------------------------------------------------------------- !------------ Proceed with cloud microphysics calculations ------------- !----------------------------------------------------------------------- ! TK=T_col(L) ! Temperature (deg K) TC=TK-T0C ! Temperature (deg C) PP=P_col(L) ! Pressure (Pa) QV=QV_col(L) ! Specific humidity of water vapor (kg/kg) WV=QV/(1.-QV) ! Water vapor mixing ratio (kg/kg) WC=WC_col(L) ! Grid-scale mixing ratio of total condensate (water or ice; kg/kg) RHgrd=RHC_col(L) ! Threshold relative humidity for the onset of condensation ! !----------------------------------------------------------------------- !--- Moisture variables below are mixing ratios & not specifc humidities !----------------------------------------------------------------------- ! CLEAR=.TRUE. ! !--- This check is to determine grid-scale saturation when no condensate is present ! ESW=MIN(1000.*FPVS0(TK),0.99*PP) ! Saturation vapor pressure w/r/t water QSW=EPS*ESW/(PP-ESW) ! Saturation mixing ratio w/r/t water WS=QSW ! General saturation mixing ratio (water/ice) QSI=QSW ! Saturation mixing ratio w/r/t ice IF (TC .LT. 0.) THEN ESI=MIN(1000.*FPVS(TK),0.99*PP) ! Saturation vapor pressure w/r/t ice QSI=EPS*ESI/(PP-ESI) ! Saturation mixing ratio w/r/t water WS=QSI ! General saturation mixing ratio (water/ice) ENDIF ! !--- Effective grid-scale Saturation mixing ratios ! QSWgrd=RHgrd*QSW QSIgrd=RHgrd*QSI WSgrd=RHgrd*WS ! !--- Check if air is subsaturated and w/o condensate ! IF (WV.GT.WSgrd .OR. WC.GT.EPSQ) CLEAR=.FALSE. ! !--- Check if any rain is falling into layer from above ! IF (ARAIN .GT. CLIMIT) THEN CLEAR=.FALSE. ELSE ARAIN=0. VRabove=0. ENDIF ! !--- Check if any ice is falling into layer from above ! !--- NOTE that "SNOW" in variable names is synonomous with ! large, precipitation ice particles ! IF (ASNOW .GT. CLIMIT) THEN CLEAR=.FALSE. ELSE ASNOW=0. ENDIF ! !----------------------------------------------------------------------- !-- Loop to the end if in clear, subsaturated air free of condensate --- !----------------------------------------------------------------------- ! IF (CLEAR) GO TO 10 ! !----------------------------------------------------------------------- !--------- Initialize RHO, THICK & microphysical processes ------------- !----------------------------------------------------------------------- ! ! !--- Virtual temperature, TV=T*(1./EPS-1)*Q, Q is specific humidity; ! (see pp. 63-65 in Fleagle & Businger, 1963) ! RHO=PP/(RD*TK*(1.+EPS1*QV)) ! Air density (kg/m**3) RRHO=1./RHO ! Reciprocal of air density DTRHO=DTPH*RHO ! Time step * air density BLDTRH=BLEND*DTRHO ! Blend parameter * time step * air density THICK=THICK_col(L) ! Layer thickness = RHO*DZ = -DP/G = (Psfc-Ptop)*D_ETA/(G*ETA_sfc) ! ARAINnew=0. ! Updated accumulated rainfall ASNOWnew=0. ! Updated accumulated snowfall QI=QI_col(L) ! Ice mixing ratio QInew=0. ! Updated ice mixing ratio QR=QR_col(L) ! Rain mixing ratio QRnew=0. ! Updated rain ratio QW=QW_col(L) ! Cloud water mixing ratio QWnew=0. ! Updated cloud water ratio ! PCOND=0. ! Condensation (>0) or evaporation (<0) of cloud water (kg/kg) PIDEP=0. ! Deposition (>0) or sublimation (<0) of ice crystals (kg/kg) PIACW=0. ! Cloud water collection (riming) by precipitation ice (kg/kg; >0) PIACWI=0. ! Growth of precip ice by riming (kg/kg; >0) PIACWR=0. ! Shedding of accreted cloud water to form rain (kg/kg; >0) PIACR=0. ! Freezing of rain onto large ice at supercooled temps (kg/kg; >0) PICND=0. ! Condensation (>0) onto wet, melting ice (kg/kg) PIEVP=0. ! Evaporation (<0) from wet, melting ice (kg/kg) PIMLT=0. ! Melting ice (kg/kg; >0) PRAUT=0. ! Cloud water autoconversion to rain (kg/kg; >0) PRACW=0. ! Cloud water collection (accretion) by rain (kg/kg; >0) PREVP=0. ! Rain evaporation (kg/kg; <0) ! !--- Double check input hydrometeor mixing ratios ! ! DUM=WC-(QI+QW+QR) ! DUM1=ABS(DUM) ! DUM2=TOLER*MIN(WC, QI+QW+QR) ! IF (DUM1 .GT. DUM2) THEN ! WRITE(6,"(/2(a,i4),a,i2)") '{@ i=',I_index,' j=',J_index, ! & ' L=',L ! WRITE(6,"(4(a12,g11.4,1x))") ! & '{@ TCold=',TC,'P=',.01*PP,'DIFF=',DUM,'WCold=',WC, ! & '{@ QIold=',QI,'QWold=',QW,'QRold=',QR ! ENDIF ! !*********************************************************************** !*********** MAIN MICROPHYSICS CALCULATIONS NOW FOLLOW! **************** !*********************************************************************** ! !--- Calculate a few variables, which are used more than once below ! !--- Latent heat of vaporization as a function of temperature from ! Bolton (1980, JAS) ! XLV=3.148E6-2370*TK ! Latent heat of vaporization (Lv) XLF=XLS-XLV ! Latent heat of fusion (Lf) XLV1=XLV*RCP ! Lv/Cp XLF1=XLF*RCP ! Lf/Cp TK2=1./(TK*TK) ! 1./TK**2 XLV2=XLV*XLV*QSW*TK2/RV ! Lv**2*Qsw/(Rv*TK**2) DENOMW=1.+XLV2*RCP ! Denominator term, Clausius-Clapeyron correction ! !--- Basic thermodynamic quantities ! * DYNVIS - dynamic viscosity [ kg/(m*s) ] ! * THERM_COND - thermal conductivity [ J/(m*s*K) ] ! * DIFFUS - diffusivity of water vapor [ m**2/s ] ! TFACTOR=SQRT(TK*TK*TK)/(TK+120.) DYNVIS=1.496E-6*TFACTOR THERM_COND=2.116E-3*TFACTOR DIFFUS=8.794E-5*TK**1.81/PP ! !--- Air resistance term for the fall speed of ice following the ! basic research by Heymsfield, Kajikawa, others ! GAMMAS=MIN(1.5, (1.E5/PP)**C1) !-- limited to 1.5x ! !--- Air resistance for rain fall speed (Beard, 1985, JAS, p.470) ! GAMMAR=(RHO0/RHO)**.4 ! !---------------------------------------------------------------------- !------------- IMPORTANT MICROPHYSICS DECISION TREE ----------------- !---------------------------------------------------------------------- ! !--- Determine if conditions supporting ice are present ! IF (TC.LT.0. .OR. QI.GT.EPSQ .OR. ASNOW.GT.CLIMIT) THEN ICE_logical=.TRUE. ELSE ICE_logical=.FALSE. QLICE=0. QTICE=0. ENDIF IF (T_ICE <= -100.) THEN ICE_logical=.FALSE. QLICE=0. QTICE=0. ENDIF ! !--- Determine if rain is present ! RAIN_logical=.FALSE. IF (ARAIN.GT.CLIMIT .OR. QR.GT.EPSQ) RAIN_logical=.TRUE. ! ice_test: IF (ICE_logical) THEN ! !--- IMPORTANT: Estimate time-averaged properties. ! !--- ! * FLARGE - ratio of number of large ice to total (large & small) ice ! * FSMALL - ratio of number of small ice crystals to large ice particles ! -> Small ice particles are assumed to have a mean diameter of 50 microns. ! * QSmICE - estimated mixing ratio for small cloud ice !--- ! * TOT_ICE - total mass (small & large) ice before microphysics, ! which is the sum of the total mass of large ice in the ! current layer and the input flux of ice from above ! * PILOSS - greatest loss (<0) of total (small & large) ice by ! sublimation, removing all of the ice falling from above ! and the ice within the layer ! * RimeF1 - Rime Factor, which is the mass ratio of total (unrimed & rimed) ! ice mass to the unrimed ice mass (>=1) ! * VrimeF - the velocity increase due to rime factor or melting (ratio, >=1) ! * VSNOW - Fall speed of rimed snow w/ air resistance correction ! * VCI - Fall speed of 50-micron ice crystals w/ air resistance correction ! * EMAIRI - equivalent mass of air associated layer and with fall of snow into layer ! * XLIMASS - used for debugging, associated with calculating large ice mixing ratio ! * FLIMASS - mass fraction of large ice ! * QTICE - time-averaged mixing ratio of total ice ! * QLICE - time-averaged mixing ratio of large ice ! * NLICE - time-averaged number concentration of large ice ! * NSmICE - number concentration of small ice crystals at current level ! * QSmICE - mixing ratio of small ice crystals at current level !--- !--- Assumed number fraction of large ice particles to total (large & small) ! ice particles, which is based on a general impression of the literature. ! NInuclei=0. NSmICE=0. QSmICE=0. IF (TC<0.) THEN ! !--- Max # conc of small ice crystals based on 10% of total ice content ! or the parameter NSI_max ! NSImax=MAX(NSI_max, 0.1*RHO*QI/MASSI(MDImin) ) ! !-- Specify Fletcher, Cooper, Meyers, etc. here for ice nuclei concentrations ! NInuclei=MIN(0.01*EXP(-0.6*TC), NSImax) !- Fletcher (1962) IF (QI>EPSQ) THEN DUM=RRHO*MASSI(MDImin) NSmICE=MIN(NInuclei, QI/DUM) QSmICE=NSmICE*DUM ENDIF ! End IF (QI>EPSQ) ENDIF ! End IF (TC<0.) init_ice: IF (QI<=EPSQ .AND. ASNOW<=CLIMIT) THEN INDEXS=MDImin TOT_ICE=0. PILOSS=0. RimeF1=1. VrimeF=1. VEL_INC=GAMMAS VSNOW=0. VCI=0. EMAIRI=THICK XLIMASS=RimeF1*MASSI(INDEXS) FLIMASS=1. QLICE=0. RQLICE=0. QTICE=0. NLICE=0. ELSE init_ice ! !--- For T<0C mean particle size follows Houze et al. (JAS, 1979, p. 160), ! converted from Fig. 5 plot of LAMDAs. Similar set of relationships ! also shown in Fig. 8 of Ryan (BAMS, 1996, p. 66). ! DUM=XMImax*EXP(XMIexp*TC) INDEXS=MIN(MDImax, MAX(MDImin, INT(DUM) ) ) TOT_ICE=THICK*QI+BLEND*ASNOW PILOSS=-TOT_ICE/THICK LBEF=MAX(1,L-1) DUM1=RimeF_col(LBEF) DUM2=RimeF_col(L) QLgICE=MAX(0., QI-QSmICE) !-- 1st-guess estimate of large ice RimeF1=(DUM2*THICK*QLgICE+DUM1*BLEND*ASNOW)/TOT_ICE VCI=GAMMAS*VSNOWI(MDImin) vel_rime: IF (RimeF1<=1.) THEN RimeF1=1. VrimeF=1. ELSE vel_rime !--- Prevent rime factor (RimeF1) from exceeding a maximum value (RFmax) RimeF1=MIN(RimeF1, RFmax) IXS=MAX(2, MIN(INDEXS/100, 9)) XRF=10.492*ALOG(RimeF1) IXRF=MAX(0, MIN(INT(XRF), Nrime)) IF (IXRF .GE. Nrime) THEN VrimeF=VEL_RF(IXS,Nrime) ELSE VrimeF=VEL_RF(IXS,IXRF)+(XRF-FLOAT(IXRF))* & & (VEL_RF(IXS,IXRF+1)-VEL_RF(IXS,IXRF)) ENDIF ENDIF vel_rime VEL_INC=GAMMAS*VrimeF*SQRT(VrimeF) !-- Faster rimed ice fall speeds ! !-- Specify NLImax depending on presence of high density ice (rime factors >10) ! IF (RimeF1>10.) THEN LARGE_RF=.TRUE. !-- Convective precipitation (and sleet) NLImax=1.E3 ELSE LARGE_RF=.FALSE. !-- Non-convective precipitation !-- NLImax slowly decreases from 10 L-1 at 0C to 5 L-1 at -40C and colder. DUM=MAX(TC, T_ICE) NLImax=10.E3*EXP(-0.017*DUM) ! Based on Aligo's email, added on 2012-02-09 !-- Idea from Greg Thompson to smoothly increase the fall speed of melting snow IF (TC>0.) THEN VEL_INC=MAX(VEL_INC, VRabove/VSNOWI(INDEXS) ) ENDIF ENDIF HAIL=.FALSE. two_pass: DO IPASS=1,2 VSNOW=VEL_INC*VSNOWI(INDEXS) EMAIRI=THICK+BLDTRH*VSNOW QLICE=(THICK*QLgICE+BLEND*ASNOW)/EMAIRI !-- Final estimate of large ice QTICE=QLICE+QSmICE FLIMASS=QLICE/QTICE RQLICE=RHO*QLICE hail_mode: IF (.NOT. HAIL) THEN XLIMASS=RimeF1*MASSI(INDEXS) NLICE=RQLICE/XLIMASS !-- NLICE > NLImax ELSE hail_mode !-- Executed only when IPASS=2, RF>10, INDEX=1000, & NLICE=NLImax XLIMASS=RQLICE/NLICE !-- for debugging only ENDIF hail_mode IF (IPASS>=2) THEN EXIT two_pass ENDIF DUM=RRHO*NLImin*MASSI(MDImin) !-- Minimum large ice mixing ratio IF (QLICE<=DUM) THEN INDEXS=MDImin RimeF1=1. CYCLE two_pass !-- Go to top of DO IPASS with IPASS=2 ENDIF IF (NLICE>=NLImin .AND. NLICE<=NLImax) THEN EXIT two_pass ENDIF ! !--- Force NLICE to be between NLImin and NLImax when IPASS=1 ! NLICE=MAX(NLImin, MIN(NLImax, NLICE) ) XLI=RQLICE/(NLICE*RimeF1) new_size: IF (XLI<=MASSI(MDImin) ) THEN INDEXS=MDImin ELSE IF (XLI<=MASSI(450) ) THEN new_size DLI=9.5885E5*XLI**.42066 ! DLI in microns INDEXS=MIN(MDImax, MAX(MDImin, INT(DLI) ) ) ELSE IF (XLIRevised_LICE) THEN WRITE(6,"(5(a12,g11.4,1x))") '{$ RimeF1=',RimeF1, & & ' RHO*QLICE=',RQLICE,' TC=',TC,' NLICE=',NLICE, & & ' NLICEold=',DUM2 Revised_LICE=1.2*RQLICE ENDIF ENDIF new_size ENDDO two_pass ENDIF init_ice ENDIF ice_test ! !---------------------------------------------------------------------- !--------------- Calculate individual processes ----------------------- !---------------------------------------------------------------------- ! !--- Cloud water autoconversion to rain (PRAUT) and collection of cloud ! water by precipitation ice (PIACW) ! IF (QW.GT.EPSQ .AND. TC.GE.T_ICE) THEN ! !-- July 2010 version follows Liu & Daum (JAS, 2004) and Liu et al. (JAS, 2006) ! DUM=BRAUT*RHO*RHO*QW*QW*QW DUM1=ARAUT*RHO*RHO*QW*QW PRAUT=MIN(QW, DUM*(1.-EXP(-DUM1*DUM1)) ) IF (QLICE .GT. EPSQ) THEN ! !--- Collection of cloud water by large ice particles ("snow") ! PIACWI=PIACW for riming, PIACWI=0 for shedding ! FWS=MIN(1., CIACW*VEL_INC*NLICE*ACCRI(INDEXS)/PP**C1) PIACW=FWS*QW IF (TC .LT. 0.) PIACWI=PIACW ! Large ice riming ENDIF ! End IF (QLICE .GT. EPSQ) ENDIF ! End IF (QW.GT.EPSQ .AND. TC.GE.T_ICE) ! !---------------------------------------------------------------------- !--- Loop around some of the ice-phase processes if no ice should be present !---------------------------------------------------------------------- ! IF (ICE_logical .EQV. .FALSE.) GO TO 20 ! !--- Now the pretzel logic of calculating ice deposition ! IF (TC.LT.T_ICE .AND. (WV.GT.QSWgrd .OR. QW.GT.EPSQ)) THEN ! !--- Adjust to ice saturation at T More extensive units conversion than can be described here to go from ! eq. (13) in Liu et al. (JAS, 2006) to what's programmed below. Note that ! the units used throughout the paper are in cgs units! ! ARAUT=1.03e19/(NCW*SQRT(NCW)) BRAUT=DTPH*1.1E10*BETA6/NCW ! !--- For calculating snow optical depths by considering bulk density of ! snow based on emails from Q. Fu (6/27-28/01), where optical ! depth (T) = 1.5*SWP/(Reff*DENS), SWP is snow water path, Reff ! is effective radius, and DENS is the bulk density of snow. ! ! SWP (kg/m**2)=(1.E-3 kg/g)*SWPrad, SWPrad in g/m**2 used in radiation ! T = 1.5*1.E3*SWPrad/(Reff*DENS) ! ! See derivation for MASSI(INDEXS), note equal to RHO*QSNOW/NSNOW ! ! SDENS=1.5e3/DENS, DENS=MASSI(INDEXS)/[PI_E*(1.E-6*INDEXS)**3] ! DO I=MDImin,MDImax SDENS(I)=PI_E*1.5E-15*FLOAT(I*I*I)/MASSI(I) ENDDO ! Thour_print=-DTPH/3600. ENDIF ! Allowed_to_read RETURN ! !----------------------------------------------------------------------- ! 9061 CONTINUE WRITE( errmess , '(A,I4)' ) & 'module_mp_hwrf: error opening ETAMPNEW_DATA on unit ' & &, etampnew_unit1 CALL wrf_error_fatal(errmess) ! !----------------------------------------------------------------------- END SUBROUTINE fer_hires_init ! SUBROUTINE MY_GROWTH_RATES (DTPH) ! !--- Below are tabulated values for the predicted mass of ice crystals ! after 600 s of growth in water saturated conditions, based on ! calculations from Miller and Young (JAS, 1979). These values are ! crudely estimated from tabulated curves at 600 s from Fig. 6.9 of ! Young (1993). Values at temperatures colder than -27C were ! assumed to be invariant with temperature. ! !--- Used to normalize Miller & Young (1979) calculations of ice growth ! over large time steps using their tabulated values at 600 s. ! Assumes 3D growth with time**1.5 following eq. (6.3) in Young (1993). ! IMPLICIT NONE ! REAL,INTENT(IN) :: DTPH ! REAL DT_ICE REAL,DIMENSION(35) :: MY_600 !WRF ! !----------------------------------------------------------------------- DATA MY_600 / & & 5.5e-8, 1.4E-7, 2.8E-7, 6.E-7, 3.3E-6, & & 2.E-6, 9.E-7, 8.8E-7, 8.2E-7, 9.4e-7, & & 1.2E-6, 1.85E-6, 5.5E-6, 1.5E-5, 1.7E-5, & & 1.5E-5, 1.E-5, 3.4E-6, 1.85E-6, 1.35E-6, & & 1.05E-6, 1.E-6, 9.5E-7, 9.0E-7, 9.5E-7, & & 9.5E-7, 9.E-7, 9.E-7, 9.E-7, 9.E-7, & & 9.E-7, 9.E-7, 9.E-7, 9.E-7, 9.E-7 / ! -31 to -35 deg C ! !----------------------------------------------------------------------- ! DT_ICE=(DTPH/600.)**1.5 MY_GROWTH=DT_ICE*MY_600*1.E-3 !-- 20090714: Convert from g to kg ! !----------------------------------------------------------------------- ! END SUBROUTINE MY_GROWTH_RATES ! !----------------------------------------------------------------------- !--------- Old GFS saturation vapor pressure lookup tables ----------- !----------------------------------------------------------------------- ! SUBROUTINE GPVS ! ****************************************************************** !$$$ SUBPROGRAM DOCUMENTATION BLOCK ! . . . ! SUBPROGRAM: GPVS COMPUTE SATURATION VAPOR PRESSURE TABLE ! AUTHOR: N PHILLIPS W/NP2 DATE: 30 DEC 82 ! ! ABSTRACT: COMPUTE SATURATION VAPOR PRESSURE TABLE AS A FUNCTION OF ! TEMPERATURE FOR THE TABLE LOOKUP FUNCTION FPVS. ! EXACT SATURATION VAPOR PRESSURES ARE CALCULATED IN SUBPROGRAM FPVSX. ! THE CURRENT IMPLEMENTATION COMPUTES A TABLE WITH A LENGTH ! OF 7501 FOR TEMPERATURES RANGING FROM 180.0 TO 330.0 KELVIN. ! ! PROGRAM HISTORY LOG: ! 91-05-07 IREDELL ! 94-12-30 IREDELL EXPAND TABLE ! 96-02-19 HONG ICE EFFECT ! 01-11-29 JIN MODIFIED FOR WRF ! ! USAGE: CALL GPVS ! ! SUBPROGRAMS CALLED: ! (FPVSX) - INLINABLE FUNCTION TO COMPUTE SATURATION VAPOR PRESSURE ! ! COMMON BLOCKS: ! COMPVS - SCALING PARAMETERS AND TABLE FOR FUNCTION FPVS. ! ! ATTRIBUTES: ! LANGUAGE: FORTRAN 90 ! !$$$ IMPLICIT NONE real :: X,XINC,T integer :: JX !---------------------------------------------------------------------- XINC=(XMAX-XMIN)/(NX-1) C1XPVS=1.-XMIN/XINC C2XPVS=1./XINC C1XPVS0=1.-XMIN/XINC C2XPVS0=1./XINC ! DO JX=1,NX X=XMIN+(JX-1)*XINC T=X TBPVS(JX)=FPVSX(T) TBPVS0(JX)=FPVSX0(T) ENDDO ! END SUBROUTINE GPVS !----------------------------------------------------------------------- !*********************************************************************** !----------------------------------------------------------------------- REAL FUNCTION FPVS(T) !----------------------------------------------------------------------- !$$$ SUBPROGRAM DOCUMENTATION BLOCK ! . . . ! SUBPROGRAM: FPVS COMPUTE SATURATION VAPOR PRESSURE ! AUTHOR: N PHILLIPS W/NP2 DATE: 30 DEC 82 ! ! ABSTRACT: COMPUTE SATURATION VAPOR PRESSURE FROM THE TEMPERATURE. ! A LINEAR INTERPOLATION IS DONE BETWEEN VALUES IN A LOOKUP TABLE ! COMPUTED IN GPVS. SEE DOCUMENTATION FOR FPVSX FOR DETAILS. ! INPUT VALUES OUTSIDE TABLE RANGE ARE RESET TO TABLE EXTREMA. ! THE INTERPOLATION ACCURACY IS ALMOST 6 DECIMAL PLACES. ! ON THE CRAY, FPVS IS ABOUT 4 TIMES FASTER THAN EXACT CALCULATION. ! THIS FUNCTION SHOULD BE EXPANDED INLINE IN THE CALLING ROUTINE. ! ! PROGRAM HISTORY LOG: ! 91-05-07 IREDELL MADE INTO INLINABLE FUNCTION ! 94-12-30 IREDELL EXPAND TABLE ! 96-02-19 HONG ICE EFFECT ! 01-11-29 JIN MODIFIED FOR WRF ! ! USAGE: PVS=FPVS(T) ! ! INPUT ARGUMENT LIST: ! T - REAL TEMPERATURE IN KELVIN ! ! OUTPUT ARGUMENT LIST: ! FPVS - REAL SATURATION VAPOR PRESSURE IN KILOPASCALS (CB) ! ! ATTRIBUTES: ! LANGUAGE: FORTRAN 90 !$$$ IMPLICIT NONE real,INTENT(IN) :: T real XJ integer :: JX !----------------------------------------------------------------------- XJ=MIN(MAX(C1XPVS+C2XPVS*T,1.),FLOAT(NX)) JX=MIN(XJ,NX-1.) FPVS=TBPVS(JX)+(XJ-JX)*(TBPVS(JX+1)-TBPVS(JX)) ! END FUNCTION FPVS !----------------------------------------------------------------------- !----------------------------------------------------------------------- REAL FUNCTION FPVS0(T) !----------------------------------------------------------------------- IMPLICIT NONE real,INTENT(IN) :: T real :: XJ1 integer :: JX1 !----------------------------------------------------------------------- XJ1=MIN(MAX(C1XPVS0+C2XPVS0*T,1.),FLOAT(NX)) JX1=MIN(XJ1,NX-1.) FPVS0=TBPVS0(JX1)+(XJ1-JX1)*(TBPVS0(JX1+1)-TBPVS0(JX1)) ! END FUNCTION FPVS0 !----------------------------------------------------------------------- !*********************************************************************** !----------------------------------------------------------------------- REAL FUNCTION FPVSX(T) !----------------------------------------------------------------------- !$$$ SUBPROGRAM DOCUMENTATION BLOCK ! . . . ! SUBPROGRAM: FPVSX COMPUTE SATURATION VAPOR PRESSURE ! AUTHOR: N PHILLIPS W/NP2 DATE: 30 DEC 82 ! ! ABSTRACT: EXACTLY COMPUTE SATURATION VAPOR PRESSURE FROM TEMPERATURE. ! THE WATER MODEL ASSUMES A PERFECT GAS, CONSTANT SPECIFIC HEATS ! FOR GAS AND LIQUID, AND NEGLECTS THE VOLUME OF THE LIQUID. ! THE MODEL DOES ACCOUNT FOR THE VARIATION OF THE LATENT HEAT ! OF CONDENSATION WITH TEMPERATURE. THE ICE OPTION IS NOT INCLUDED. ! THE CLAUSIUS-CLAPEYRON EQUATION IS INTEGRATED FROM THE TRIPLE POINT ! TO GET THE FORMULA ! PVS=PSATK*(TR**XA)*EXP(XB*(1.-TR)) ! WHERE TR IS TTP/T AND OTHER VALUES ARE PHYSICAL CONSTANTS ! THIS FUNCTION SHOULD BE EXPANDED INLINE IN THE CALLING ROUTINE. ! ! PROGRAM HISTORY LOG: ! 91-05-07 IREDELL MADE INTO INLINABLE FUNCTION ! 94-12-30 IREDELL EXACT COMPUTATION ! 96-02-19 HONG ICE EFFECT ! 01-11-29 JIN MODIFIED FOR WRF ! ! USAGE: PVS=FPVSX(T) ! REFERENCE: EMANUEL(1994),116-117 ! ! INPUT ARGUMENT LIST: ! T - REAL TEMPERATURE IN KELVIN ! ! OUTPUT ARGUMENT LIST: ! FPVSX - REAL SATURATION VAPOR PRESSURE IN KILOPASCALS (CB) ! ! ATTRIBUTES: ! LANGUAGE: FORTRAN 90 !$$$ IMPLICIT NONE !----------------------------------------------------------------------- real, parameter :: TTP=2.7316E+2,HVAP=2.5000E+6,PSAT=6.1078E+2 & , CLIQ=4.1855E+3,CVAP= 1.8460E+3 & , CICE=2.1060E+3,HSUB=2.8340E+6 ! real, parameter :: PSATK=PSAT*1.E-3 real, parameter :: DLDT=CVAP-CLIQ,XA=-DLDT/RV,XB=XA+HVAP/(RV*TTP) real, parameter :: DLDTI=CVAP-CICE & , XAI=-DLDTI/RV,XBI=XAI+HSUB/(RV*TTP) real T,TR !----------------------------------------------------------------------- TR=TTP/T ! IF(T.GE.TTP)THEN FPVSX=PSATK*(TR**XA)*EXP(XB*(1.-TR)) ELSE FPVSX=PSATK*(TR**XAI)*EXP(XBI*(1.-TR)) ENDIF ! END FUNCTION FPVSX !----------------------------------------------------------------------- !----------------------------------------------------------------------- REAL FUNCTION FPVSX0(T) !----------------------------------------------------------------------- IMPLICIT NONE real,parameter :: TTP=2.7316E+2,HVAP=2.5000E+6,PSAT=6.1078E+2 & , CLIQ=4.1855E+3,CVAP=1.8460E+3 & , CICE=2.1060E+3,HSUB=2.8340E+6 real,PARAMETER :: PSATK=PSAT*1.E-3 real,PARAMETER :: DLDT=CVAP-CLIQ,XA=-DLDT/RV,XB=XA+HVAP/(RV*TTP) real,PARAMETER :: DLDTI=CVAP-CICE & , XAI=-DLDT/RV,XBI=XA+HSUB/(RV*TTP) real :: T,TR !----------------------------------------------------------------------- TR=TTP/T FPVSX0=PSATK*(TR**XA)*EXP(XB*(1.-TR)) ! END FUNCTION FPVSX0 ! END MODULE module_mp_fer_hires