/* * Copyright 1997, Regents of the University of Minnesota * * mfm2.c * * This file contains code that implements the edge-based FM refinement * * Started 7/23/97 * George * * $Id: mfm2.c,v 1.1.1.1 2003/01/23 17:21:05 estrade Exp $ */ #include "metis.h" /************************************************************************* * This function performs an edge-based FM refinement **************************************************************************/ void MocFM_2WayEdgeRefine2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *orgubvec, int npasses) { int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *swaps, *perm, *qnum; float *nvwgt, *npwgts, origdiff[MAXNCON], origbal[MAXNCON], minbal[MAXNCON]; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut, initcut, newcut, mincutorder; float *maxwgt, *minwgt, ubvec[MAXNCON], tvec[MAXNCON]; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; nvwgt = graph->nvwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); swaps = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); limit = amin(amax(0.01*nvtxs, 15), 100); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, origbal); for (i=0; i<ncon; i++) { origdiff[i] = fabs(tpwgts[0]-npwgts[i]); ubvec[i] = amax(origbal[i], orgubvec[i]); } /* Setup the weight intervals of the two subdomains */ minwgt = fwspacemalloc(ctrl, 2*ncon); maxwgt = fwspacemalloc(ctrl, 2*ncon); for (i=0; i<2; i++) { for (j=0; j<ncon; j++) { maxwgt[i*ncon+j] = tpwgts[i]*ubvec[j]; minwgt[i*ncon+j] = tpwgts[i]*(1.0/ubvec[j]); } } /* Initialize the queues */ for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: ", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut); for (i=0; i<ncon; i++) printf("%.3f ", origbal[i]); printf("\n"); } idxset(nvtxs, -1, moved); for (pass=0; pass<npasses; pass++) { /* Do a number of passes */ for (i=0; i<ncon; i++) { PQueueReset(&parts[i][0]); PQueueReset(&parts[i][1]); } mincutorder = -1; newcut = mincut = initcut = graph->mincut; Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, minbal); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); /* Insert boundary nodes in the priority queues */ nbnd = graph->nbnd; RandomPermute(nbnd, perm, 1); for (ii=0; ii<nbnd; ii++) { i = bndind[perm[ii]]; ASSERT(ed[i] > 0 || id[i] == 0); ASSERT(bndptr[i] != -1); PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]); } for (nswaps=0; nswaps<nvtxs; nswaps++) { SelectQueue2(ncon, npwgts, tpwgts, &from, &cnum, parts, maxwgt); to = (from+1)%2; if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1) break; ASSERT(bndptr[higain] != -1); newcut -= (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); if ((newcut < mincut && AreAllBelow(ncon, tvec, ubvec)) || (newcut == mincut && IsBetter2wayBalance(ncon, tvec, minbal, ubvec))) { mincut = newcut; for (i=0; i<ncon; i++) minbal[i] = tvec[i]; mincutorder = nswaps; } else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */ newcut += (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); break; } where[higain] = to; moved[higain] = nswaps; swaps[nswaps] = higain; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: "); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); if (mincutorder == nswaps) printf(" *\n"); else printf("\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update its boundary information and queue position */ if (bndptr[k] != -1) { /* If k was a boundary vertex */ if (ed[k] == 0) { /* Not a boundary vertex any more */ BNDDelete(nbnd, bndind, bndptr, k); if (moved[k] == -1) /* Remove it if in the queues */ PQueueDelete(&parts[qnum[k]][where[k]], k, oldgain); } else { /* If it has not been moved, update its position in the queue */ if (moved[k] == -1) PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]); } } else { if (ed[k] > 0) { /* It will now become a boundary vertex */ BNDInsert(nbnd, bndind, bndptr, k); if (moved[k] == -1) PQueueInsert(&parts[qnum[k]][where[k]], k, ed[k]-id[k]); } } } } /**************************************************************** * Roll back computations *****************************************************************/ for (i=0; i<nswaps; i++) moved[swaps[i]] = -1; /* reset moved array */ for (nswaps--; nswaps>mincutorder; nswaps--) { higain = swaps[nswaps]; to = where[higain] = (where[higain]+1)%2; SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); else if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); if (bndptr[k] != -1 && ed[k] == 0) BNDDelete(nbnd, bndind, bndptr, k); if (bndptr[k] == -1 && ed[k] > 0) BNDInsert(nbnd, bndind, bndptr, k); } } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("], LB: "); Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec); for (i=0; i<ncon; i++) printf("%.3f ", tvec[i]); printf("\n"); } graph->mincut = mincut; graph->nbnd = nbnd; if (mincutorder == -1 || mincut == initcut) break; } for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); fwspacefree(ctrl, 2*ncon); fwspacefree(ctrl, 2*ncon); } /************************************************************************* * This function selects the partition number and the queue from which * we will move vertices out **************************************************************************/ void SelectQueue2(int ncon, float *npwgts, float *tpwgts, int *from, int *cnum, PQueueType queues[MAXNCON][2], float *maxwgt) { int i, j, maxgain=0; float diff, max, maxdiff=0.0; *from = -1; *cnum = -1; /* First determine the side and the queue, irrespective of the presence of nodes */ for (j=0; j<2; j++) { for (i=0; i<ncon; i++) { diff = npwgts[j*ncon+i]-maxwgt[j*ncon+i]; if (diff >= maxdiff) { maxdiff = diff; *from = j; *cnum = i; } } } if (*from != -1 && PQueueGetSize(&queues[*cnum][*from]) == 0) { /* The desired queue is empty, select a node from that side anyway */ for (i=0; i<ncon; i++) { if (PQueueGetSize(&queues[i][*from]) > 0) { max = (npwgts[(*from)*ncon+i] - maxwgt[(*from)*ncon+i]); *cnum = i; break; } } for (i++; i<ncon; i++) { diff = npwgts[(*from)*ncon+i] - maxwgt[(*from)*ncon+i]; if (diff > max && PQueueGetSize(&queues[i][*from]) > 0) { max = diff; *cnum = i; } } } /* Check to see if you can focus on the cut */ if (maxdiff <= 0.0 || *from == -1) { maxgain = -100000; for (j=0; j<2; j++) { for (i=0; i<ncon; i++) { if (PQueueGetSize(&queues[i][j]) > 0 && PQueueGetKey(&queues[i][j]) > maxgain) { maxgain = PQueueGetKey(&queues[i][j]); *from = j; *cnum = i; } } } /* printf("(%2d %2d) %3d\n", *from, *cnum, maxgain); */ } } /************************************************************************* * This function checks if the newbal is better than oldbal given the * ubvector ubvec **************************************************************************/ int IsBetter2wayBalance(int ncon, float *newbal, float *oldbal, float *ubvec) { int i, j; float max1=0.0, max2=0.0, sum1=0.0, sum2=0.0, tmp; for (i=0; i<ncon; i++) { tmp = (newbal[i]-1)/(ubvec[i]-1); max1 = (max1 < tmp ? tmp : max1); sum1 += tmp; tmp = (oldbal[i]-1)/(ubvec[i]-1); max2 = (max2 < tmp ? tmp : max2); sum2 += tmp; } if (max1 < max2) return 1; else if (max1 > max2) return 0; else return sum1 <= sum2; }