! This is part of the netCDF package. ! Copyright 2006 University Corporation for Atmospheric Research/Unidata. ! See COPYRIGHT file for conditions of use. ! This program tests netCDF-4 fill values. ! $Id: f90tst_parallel_fill.f90,v 1.1 2009/12/10 16:44:51 ed Exp $ program f90tst_parallel_fill use typeSizes use netcdf implicit none include 'mpif.h' ! This is the name of the data file we will create. character (len = *), parameter :: FILE_NAME = "f90tst_parallel_fill.nc" integer, parameter :: MAX_DIMS = 2 integer, parameter :: NX = 16, NY = 16 integer, parameter :: HALF_NX = NX / 2, HALF_NY = NY / 2 integer, parameter :: QUARTER_NX = NX / 4, QUARTER_NY = NY / 4 integer, parameter :: NUM_VARS = 8 character (len = *), parameter :: var_name(NUM_VARS) = & (/ 'byte', 'short', 'int', 'float', 'double', 'ubyte', 'ushort', 'uint' /) integer :: ncid, varid(NUM_VARS), dimids(MAX_DIMS) integer :: var_type(NUM_VARS) = (/ nf90_byte, nf90_short, nf90_int, & nf90_float, nf90_double, nf90_ubyte, nf90_ushort, nf90_uint /) integer :: x_dimid, y_dimid integer :: byte_out(QUARTER_NY, QUARTER_NX), byte_in(NY, NX) integer :: short_out(QUARTER_NY, QUARTER_NX), short_in(NY, NX) integer :: int_out(QUARTER_NY, QUARTER_NX), int_in(NY, NX) real :: areal_out(QUARTER_NY, QUARTER_NX), areal_in(NY, NX) real :: double_out(QUARTER_NY, QUARTER_NX), double_in(NY, NX) integer :: ubyte_out(QUARTER_NY, QUARTER_NX), ubyte_in(NY, NX) integer :: ushort_out(QUARTER_NY, QUARTER_NX), ushort_in(NY, NX) integer (kind = EightByteInt) :: uint_out(QUARTER_NY, QUARTER_NX), uint_in(NY, NX) integer :: nvars, ngatts, ndims, unlimdimid, file_format integer :: x, y, v integer :: start_out(MAX_DIMS), count_out(MAX_DIMS) integer :: start_in(MAX_DIMS), count_in(MAX_DIMS) integer :: p, my_rank, ierr call MPI_Init(ierr) call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr) call MPI_Comm_size(MPI_COMM_WORLD, p, ierr) if (my_rank .eq. 0) then print *, print *, '*** Testing fill values with unlimited dimension and parallel I/O.' endif ! There must be 4 procs for this test. if (p .ne. 4) then print *, 'Sorry, this test program must be run on four processors.' stop 1 endif ! Create some pretend data. do x = 1, QUARTER_NX do y = 1, QUARTER_NY byte_out(y, x) = -1 short_out(y, x) = -2 int_out(y, x) = -4 areal_out(y, x) = 2.5 double_out(y, x) = -4.5 ubyte_out(y, x) = 1 ushort_out(y, x) = 2 uint_out(y, x) = 4 end do end do ! Create the netCDF file. call check(nf90_create(FILE_NAME, nf90_netcdf4, ncid, comm = MPI_COMM_WORLD, & info = MPI_INFO_NULL)) ! Define the dimensions. call check(nf90_def_dim(ncid, "x", NX, x_dimid)) call check(nf90_def_dim(ncid, "y", NY, y_dimid)) dimids = (/ y_dimid, x_dimid /) ! Define the variables. do v = 1, NUM_VARS call check(nf90_def_var(ncid, var_name(v), var_type(v), dimids, varid(v))) call check(nf90_var_par_access(ncid, varid(v), nf90_collective)) end do ! This will be the last collective operation. call check(nf90_enddef(ncid)) ! Determine what part of the variable will be written/read for this ! processor. It's a checkerboard decomposition. Only the third ! quadrant of data will be written, so each processor writes a ! quarter of the quadrant, or 1/16th of the total array. (And ! processor 0 doesn't write anyway.) count_out = (/ QUARTER_NX, QUARTER_NY /) if (my_rank .eq. 0) then start_out = (/ HALF_NX + 1, HALF_NY + 1 /) else if (my_rank .eq. 1) then start_out = (/ HALF_NX + 1, HALF_NY + 1 + QUARTER_NY /) else if (my_rank .eq. 2) then start_out = (/ HALF_NX + 1 + QUARTER_NX, HALF_NY + 1 /) else if (my_rank .eq. 3) then start_out = (/ HALF_NX + 1 + QUARTER_NX, HALF_NY + 1 + QUARTER_NY /) endif print *, my_rank, start_out, count_out ! Write this processor's data, except for processor zero. if (my_rank .ne. 0) then call check(nf90_put_var(ncid, varid(1), byte_out, start = start_out, count = count_out)) ! call check(nf90_put_var(ncid, varid(2), short_out, start = start_out, count = count_out)) ! call check(nf90_put_var(ncid, varid(3), int_out, start = start_out, count = count_out)) ! call check(nf90_put_var(ncid, varid(4), areal_out, start = start_out, count = count_out)) ! call check(nf90_put_var(ncid, varid(5), double_out, start = start_out, count = count_out)) ! call check(nf90_put_var(ncid, varid(6), ubyte_out, start = start_out, count = count_out)) ! call check(nf90_put_var(ncid, varid(7), ushort_out, start = start_out, count = count_out)) ! call check(nf90_put_var(ncid, varid(8), uint_out, start = start_out, count = count_out)) endif ! Close the file. call check(nf90_close(ncid)) ! Reopen the file. ! call check(nf90_open(FILE_NAME, nf90_nowrite, ncid, comm = MPI_COMM_WORLD, & ! info = MPI_INFO_NULL)) ! ! Check some stuff out. ! call check(nf90_inquire(ncid, ndims, nvars, ngatts, unlimdimid, file_format)) ! if (ndims /= 2 .or. nvars /= NUM_VARS .or. ngatts /= 0 .or. unlimdimid /= 1 .or. & ! file_format /= nf90_format_netcdf4) stop 2 ! ! Now each processor will read one quarter of the whole array. ! count_in = (/ HALF_NX, HALF_NY /) ! if (my_rank .eq. 0) then ! start_in = (/ 1, 1 /) ! else if (my_rank .eq. 1) then ! start_in = (/ HALF_NX + 1, 1 /) ! else if (my_rank .eq. 2) then ! start_in = (/ 1, HALF_NY + 1 /) ! else if (my_rank .eq. 3) then ! start_in = (/ HALF_NX + 1, HALF_NY + 1 /) ! endif ! ! Read this processor's data. ! call check(nf90_get_var(ncid, varid(1), byte_in, start = start_in, count = count_in)) ! call check(nf90_get_var(ncid, varid(2), short_in, start = start_in, count = count_in)) ! call check(nf90_get_var(ncid, varid(3), int_in, start = start_in, count = count_in)) ! call check(nf90_get_var(ncid, varid(4), areal_in, start = start_in, count = count_in)) ! call check(nf90_get_var(ncid, varid(5), double_in, start = start_in, count = count_in)) ! call check(nf90_get_var(ncid, varid(6), ubyte_in, start = start_in, count = count_in)) ! call check(nf90_get_var(ncid, varid(7), ushort_in, start = start_in, count = count_in)) ! call check(nf90_get_var(ncid, varid(8), uint_in, start = start_in, count = count_in)) ! ! Check the data. All the data from the processor zero are fill ! ! value. ! do x = 1, NX ! do y = 1, NY ! if (my_rank .eq. 0) then ! if (byte_in(y, x) .ne. -1) stop 13 ! if (short_in(y, x) .ne. -2) stop 14 ! if (int_in(y, x) .ne. -4) stop 15 ! if (areal_in(y, x) .ne. 2.5) stop 16 ! if (double_in(y, x) .ne. -4.5) stop 17 ! if (ubyte_in(y, x) .ne. 1) stop 18 ! if (ushort_in(y, x) .ne. 2) stop 19 ! if (uint_in(y, x) .ne. 4) stop 20 ! else ! if (byte_in(y, x) .ne. nf90_fill_byte) stop 3 ! if (short_in(y, x) .ne. nf90_fill_short) stop 4 ! if (int_in(y, x) .ne. nf90_fill_int) stop 5 ! if (areal_in(y, x) .ne. nf90_fill_real) stop 6 ! if (double_in(y, x) .ne. nf90_fill_double) stop 7 ! if (ubyte_in(y, x) .ne. nf90_fill_ubyte) stop 8 ! if (ushort_in(y, x) .ne. nf90_fill_ushort) stop 9 ! if (uint_in(y, x) .ne. nf90_fill_uint) stop 10 ! endif ! end do ! end do ! ! Close the file. ! call check(nf90_close(ncid)) call MPI_Finalize(ierr) if (my_rank .eq. 0) print *,'*** SUCCESS!' contains ! This subroutine handles errors by printing an error message and ! exiting with a non-zero status. subroutine check(errcode) use netcdf implicit none integer, intent(in) :: errcode if(errcode /= nf90_noerr) then print *, 'Error: ', trim(nf90_strerror(errcode)) stop 99 endif end subroutine check end program f90tst_parallel_fill