!$Id: gotmturb.proto,v 1.1.1.1 2003/03/11 13:38:58 kbk Exp $
!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------
! What type of equations are solved in the turbulence model?
!
! turb_method      -> type of turbulence closure
!
!                  0: convective adjustment
!                  1: analytical eddy visc. and diff. profiles, not coded yet
!                  2: turbulence Model calculating TKE and length scale
!                     (specify stability function below)
!                  3: second-order model (see "scnd" namelist below)
!                 99: KPP model (requires "kpp.inp" with specifications)
!
!
! tke_method       -> type of equation for TKE
!
!                  1: algebraic equation
!                  2: dynamic equation (k-epsilon style)
!                  3: dynamic equation (Mellor-Yamada style)
!
!
! len_scale_method -> type of model for dissipative length scale
!
!                  1: parabolic shape
!                  2: triangle shape
!                  3: Xing and Davies [1995]
!                  4: Robert and Ouellet [1987]
!                  5: Blackadar (two boundaries) [1962]
!                  6: Bougeault and Andre [1986]
!                  7: Eifler and Schrimpf (ISPRAMIX) [1992]
!                  8: dynamic dissipation rate equation
!                  9: dynamic Mellor-Yamada q^2l-equation
!                 10: generic length scale (GLS)
!
!
! stab_method      -> type of stability function
!
!                  1: constant stability functions
!                  2: Munk and Anderson [1954]
!                  3: Schumann and Gerz [1995]
!                  4: Eifler and Schrimpf [1992]
!
!-------------------------------------------------------------------------------
 &turbulence
  turb_method=     2,
  tke_method=      2,
  len_scale_method=10,
  stab_method=     1
 /

!-------------------------------------------------------------------------------
! What boundary conditions are used?
!
! k_ubc, k_lbc     -> upper and lower boundary conditions
!                    for k-equation
!                  0: prescribed BC
!                  1: flux BC
!
! psi_ubc, psi_lbc -> upper and lower boundary conditions
!                     for the length-scale equation (e.g.
!                     epsilon, kl, omega, GLS)
!                  0: prescribed BC
!                  1: flux BC
!
!
! ubc_type         -> type of upper boundary layer
!                  0: viscous sublayer (not yet impl.)
!                  1: logarithmic law of the wall
!                  2: tke-injection (breaking waves)
!
! lbc_type         -> type of lower boundary layer
!                  0: viscous sublayer (not yet impl.)
!                  1: logarithmic law of the wall
!
!-------------------------------------------------------------------------------
 &bc
  k_ubc=           1,
  k_lbc=           1,
  psi_ubc=         1,
  psi_lbc=         1,
  ubc_type=        1,
  lbc_type=        1
 /

!-------------------------------------------------------------------------------
!�What turbulence parameters have been described?
!
! cm0_fix          ->   value of cm0 for turb_method=2
! Prandtl0_fix     ->   value of the turbulent Prandtl-number for stab_method=1-4
! cw               ->   constant of the wave-breaking model
!                       (Craig & Banner (1994) use cw=100)
! compute_kappa    ->   compute von Karman constant from model parameters
! kappa            ->   the desired von Karman constant (if compute_kappa=.true.)
! compute_c3       ->   compute c3 (E3 for Mellor-Yamada) for given Ri_st
! Ri_st            ->   the desired steady-state Richardson number (if compute_c3=.true.)
! length_lim       ->   apply length scale limitation (see Galperin et al. 1988)
! galp             ->   coef. for length scale limitation
! const_num        ->   minimum eddy diffusivity (only with turb_method=0)
! const_nuh        ->   minimum heat diffusivity (only with turb_method=0)
! k_min            ->   minimun TKE
! eps_min          ->   minimum dissipation rate
! kb_min           ->  minimun buoyancy variance
! epsb_min         ->  minimum buoyancy variance destruction rate
!
!-------------------------------------------------------------------------------
 &turb_param
  cm0_fix=         0.5477,
  Prandtl0_fix=    0.74,
  cw=              100.,
  compute_kappa=   .true.,
  kappa=           0.4,
  compute_c3=      .true.,
  ri_st=           0.25,
  length_lim=      .false.,
  galp=            0.53,
  const_num=       5.e-4,
  const_nuh=       5.e-4,
  k_min=           1.e-10,
  eps_min=         1.e-14
  kb_min=          1.e-10,
  epsb_min=        1.e-14
 /

!-------------------------------------------------------------------------------
! The generic model (Umlauf & Burchard, J. Mar. Res., 2003)
!
! This part is active only, when len_scale_method=10 has been set.
!
! compute_param    -> compute the model parameters:
!                     if this is .false., you have to set all
!                     model parameters (m,n,cpsi1,...) explicitly
!                     if this is .true., all model parameters
!                     set by you (except m) will be ignored and
!                     re-computed from kappa, d, alpha, etc.
!                     (see Umlauf&Burchard 2002)
!
!  m:              -> exponent for k
!  n:              -> exponent for l
!  p:              -> exponent for cm0
!
!  Examples:
!
!  k-epsilon (Rodi 1987)          :       m=3/2, n=-1, p=3
!  k-omega (Umlauf et al. 2003)   :       m=1/2, n=-1, p=-1
!
! cpsi1            -> emp. coef. in psi equation
! cpsi2            -> emp. coef. in psi equation
! cpsi3minus       -> cpsi3 for stable stratification
! cpsi3plus        -> cpsi3 for unstable stratification
! sig_kpsi         -> Schmidt number for TKE diffusivity
! sig_psi          -> Schmidt number for psi diffusivity
!
!-------------------------------------------------------------------------------
 &generic
  compute_param=   .false.,
  gen_m=           0.5,
  gen_n=           -1.0,
  gen_p=           -1.0,
  cpsi1=           0.55555,
  cpsi2=           0.83333,
  cpsi3minus=      0.0,
  cpsi3plus =      1.0,
  sig_kpsi=        2.0,
  sig_psi=         2.0,
  gen_d=           -1.2,
  gen_alpha=       -2.53,
  gen_l=           0.25
 /

!-------------------------------------------------------------------------------
! The k-epsilon model (Rodi 1987)
!
! This part is active only, when len_scale_method=8 has been set.
!
! ce1              -> emp. coef. in diss. eq.
! ce2              -> emp. coef. in diss. eq.
! ce3minus         -> ce3 for stable stratification, overwritten if compute_c3=.true.
! ce3plus          -> ce3 for unstable stratification (Rodi 1987: ce3plus=1.0)
! sig_k            -> Schmidt number for TKE diffusivity
! sig_e            -> Schmidt number for diss. diffusivity
! sig_peps         -> if .true. -> the wave breaking parameterisation suggested
!                     by Burchard (JPO 31, 2001, 3133-3145) will be used.
!-------------------------------------------------------------------------------
 &keps
  ce1=             1.44,
  ce2=             1.92,
  ce3minus=        0.0,
  ce3plus=         1.0,
  sig_k=           1.0,
  sig_e=           1.3,
  sig_peps=        .false.
 /

!-------------------------------------------------------------------------------
! The Mellor-Yamada model (Mellor & Yamada 1982)
!
! This part is active only, when len_scale_method=9 has been set!
!
! e1               -> coef. in MY q**2 l equation
! e2               -> coef. in MY q**2 l equation
! e3               -> coef. in MY q**2 l equation, overwritten if compute_c3=.true.
! sq               -> turbulent diffusivities of q**2 (= 2k)
! sl               -> turbulent diffusivities of q**2 l
! my_length        -> prescribed barotropic lengthscale in q**2 l equation of MY
!                  1: parabolic
!                  2: triangular
!                  3: lin. from surface
! new_constr       -> stabilisation of Mellor-Yamada stability functions
!                     according to Burchard & Deleersnijder (2001)
!                     (if .true.)
!
!-------------------------------------------------------------------------------
 &my
  e1=              1.8,
  e2=              1.33,
  e3=              1.8,
  sq=              0.2,
  sl=              0.2,
  my_length=       1,
  new_constr=      .false.
 /

!-------------------------------------------------------------------------------
! The second-order model
!
! scnd_method      -> type of second-order model
!                  1: EASM with quasi-equilibrium
!                  2: EASM with weak equilibrium, buoy.-variance algebraic
!                  3: EASM with weak equilibrium, buoy.-variance from PDE
!
! kb_method        -> type of equation for buoyancy variance
!
!                  1: algebraic equation for buoyancy variance
!                  2: PDE                for buoyancy variance
!
!
! epsb_method      -> type of equation for variance destruction
!
!                  1: algebraic equation for variance destruction
!                  2: PDE                for variance destruction
!
!
! scnd_coeff       -> coefficients of second-order model
!
!                  0: read the coefficients from this file
!                  1: coefficients of Gibson and Launder (1978)
!                  2: coefficients of Mellor and Yamada (1982)
!                  3: coefficients of Kantha and Clayson (1994)
!                  4: coefficients of Luyten et al. (1996)
!                  5: coefficients of Canuto et al. (2001) (version A)
!                  6: coefficients of Canuto et al. (2001) (version B)
!                  7: coefficients of Cheng et al. (2002)
!
!-------------------------------------------------------------------------------
 &scnd
  scnd_method=     2,
  kb_method=       1,
  epsb_method=     1,
  scnd_coeff=      5,
  cc1=             5.0,
  cc2=             0.8000,
  cc3=             1.9680,
  cc4=             1.1360,
  cc5=             0.0000,
  cc6=             0.4000,
  ct1=             5.9500,
  ct2=             0.6000,
  ct3=             1.0000,
  ct4=             0.0000,
  ct5=             0.3333,
  ctt=             0.7200
 /

!-------------------------------------------------------------------------------
! The internal wave model
!
! iw_model         -> method to compute internal wave mixing
!                  0: no internal waves mixing parameterisation
!                  1: Mellor 1989 internal wave mixing
!                  2: Large et al. 1994 internal wave mixing
!
! alpha            -> coeff. for Mellor IWmodel (0: no IW, 0.7 Mellor 1989)
!
! The following six empirical parameters are used for the
! Large et al. 1994 shear instability and internal wave breaking
! parameterisations (iw_model = 2, all viscosities are in m**2/s):
!
! klimiw           -> critcal value of TKE
! rich_cr          -> critical Richardson number for shear instability
! numshear         -> background diffusivity for shear instability
! numiw            -> background viscosity for internal wave breaking
! nuhiw            -> background diffusivity for internal wave breaking
!-------------------------------------------------------------------------------
 &iw
  iw_model=        0,
  alpha=           0.0,
  klimiw=          1e-6,
  rich_cr=         0.7,
  numshear=        5.e-3,
  numiw=           1.e-4,
  nuhiw=           1.e-5
 /