!$Id: gotmturb.proto,v 1.1.1.1 2003/03/11 13:38:58 kbk Exp $ !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- ! What type of equations are solved in the turbulence model? ! ! turb_method -> type of turbulence closure ! ! 0: convective adjustment ! 1: analytical eddy visc. and diff. profiles, not coded yet ! 2: turbulence Model calculating TKE and length scale ! (specify stability function below) ! 3: second-order model (see "scnd" namelist below) ! 99: KPP model (requires "kpp.inp" with specifications) ! ! ! tke_method -> type of equation for TKE ! ! 1: algebraic equation ! 2: dynamic equation (k-epsilon style) ! 3: dynamic equation (Mellor-Yamada style) ! ! ! len_scale_method -> type of model for dissipative length scale ! ! 1: parabolic shape ! 2: triangle shape ! 3: Xing and Davies [1995] ! 4: Robert and Ouellet [1987] ! 5: Blackadar (two boundaries) [1962] ! 6: Bougeault and Andre [1986] ! 7: Eifler and Schrimpf (ISPRAMIX) [1992] ! 8: dynamic dissipation rate equation ! 9: dynamic Mellor-Yamada q^2l-equation ! 10: generic length scale (GLS) ! ! ! stab_method -> type of stability function ! ! 1: constant stability functions ! 2: Munk and Anderson [1954] ! 3: Schumann and Gerz [1995] ! 4: Eifler and Schrimpf [1992] ! !------------------------------------------------------------------------------- &turbulence turb_method= 2, tke_method= 2, len_scale_method=10, stab_method= 1 / !------------------------------------------------------------------------------- ! What boundary conditions are used? ! ! k_ubc, k_lbc -> upper and lower boundary conditions ! for k-equation ! 0: prescribed BC ! 1: flux BC ! ! psi_ubc, psi_lbc -> upper and lower boundary conditions ! for the length-scale equation (e.g. ! epsilon, kl, omega, GLS) ! 0: prescribed BC ! 1: flux BC ! ! ! ubc_type -> type of upper boundary layer ! 0: viscous sublayer (not yet impl.) ! 1: logarithmic law of the wall ! 2: tke-injection (breaking waves) ! ! lbc_type -> type of lower boundary layer ! 0: viscous sublayer (not yet impl.) ! 1: logarithmic law of the wall ! !------------------------------------------------------------------------------- &bc k_ubc= 1, k_lbc= 1, psi_ubc= 1, psi_lbc= 1, ubc_type= 2, lbc_type= 1 / !------------------------------------------------------------------------------- ! What turbulence parameters have been described? ! ! cm0_fix -> value of cm0 for turb_method=2 ! Prandtl0_fix -> value of the turbulent Prandtl-number for stab_method=1-4 ! cw -> constant of the wave-breaking model ! (Craig & Banner (1994) use cw=100) ! compute_kappa -> compute von Karman constant from model parameters ! kappa -> the desired von Karman constant (if compute_kappa=.true.) ! compute_c3 -> compute c3 (E3 for Mellor-Yamada) for given Ri_st ! Ri_st -> the desired steady-state Richardson number (if compute_c3=.true.) ! length_lim -> apply length scale limitation (see Galperin et al. 1988) ! galp -> coef. for length scale limitation ! const_num -> minimum eddy diffusivity (only with turb_method=0) ! const_nuh -> minimum heat diffusivity (only with turb_method=0) ! k_min -> minimun TKE ! eps_min -> minimum dissipation rate ! kb_min -> minimun buoyancy variance ! epsb_min -> minimum buoyancy variance destruction rate ! !------------------------------------------------------------------------------- &turb_param cm0_fix= 0.5477, Prandtl0_fix= 0.74, cw= 100., compute_kappa= .true., kappa= 0.4, compute_c3= .true., ri_st= 0.25, length_lim= .false., galp= 0.53, const_num= 5.e-4, const_nuh= 5.e-4, k_min= 1.e-10, eps_min= 1.e-14 kb_min= 1.e-10, epsb_min= 1.e-14 / !------------------------------------------------------------------------------- ! The generic model (Umlauf & Burchard, J. Mar. Res., 2003) ! ! This part is active only, when len_scale_method=10 has been set. ! ! compute_param -> compute the model parameters: ! if this is .false., you have to set all ! model parameters (m,n,cpsi1,...) explicitly ! if this is .true., all model parameters ! set by you (except m) will be ignored and ! re-computed from kappa, d, alpha, etc. ! (see Umlauf&Burchard 2002) ! ! m: -> exponent for k ! n: -> exponent for l ! p: -> exponent for cm0 ! ! Examples: ! ! k-epsilon (Rodi 1987) : m=3/2, n=-1, p=3 ! k-omega (Umlauf et al. 2003) : m=1/2, n=-1, p=-1 ! ! cpsi1 -> emp. coef. in psi equation ! cpsi2 -> emp. coef. in psi equation ! cpsi3minus -> cpsi3 for stable stratification ! cpsi3plus -> cpsi3 for unstable stratification ! sig_kpsi -> Schmidt number for TKE diffusivity ! sig_psi -> Schmidt number for psi diffusivity ! !------------------------------------------------------------------------------- &generic compute_param= .true., gen_m= 1.0, gen_n= -0.67, gen_p= 3.0, cpsi1= 1.0, cpsi2= 1.22, cpsi3minus= 0.0, cpsi3plus = 0.0, sig_kpsi= 0.8, sig_psi= 1.07, gen_d= -1.2, gen_alpha= -2.0, gen_l= 0.2 / !------------------------------------------------------------------------------- ! The k-epsilon model (Rodi 1987) ! ! This part is active only, when len_scale_method=8 has been set. ! ! ce1 -> emp. coef. in diss. eq. ! ce2 -> emp. coef. in diss. eq. ! ce3minus -> ce3 for stable stratification, overwritten if compute_c3=.true. ! ce3plus -> ce3 for unstable stratification (Rodi 1987: ce3plus=1.0) ! sig_k -> Schmidt number for TKE diffusivity ! sig_e -> Schmidt number for diss. diffusivity ! sig_peps -> if .true. -> the wave breaking parameterisation suggested ! by Burchard (JPO 31, 2001, 3133-3145) will be used. !------------------------------------------------------------------------------- &keps ce1= 1.44, ce2= 1.92, ce3minus= 0.0, ce3plus= 1.0, sig_k= 1.0, sig_e= 1.3, sig_peps= .false. / !------------------------------------------------------------------------------- ! The Mellor-Yamada model (Mellor & Yamada 1982) ! ! This part is active only, when len_scale_method=9 has been set! ! ! e1 -> coef. in MY q**2 l equation ! e2 -> coef. in MY q**2 l equation ! e3 -> coef. in MY q**2 l equation, overwritten if compute_c3=.true. ! sq -> turbulent diffusivities of q**2 (= 2k) ! sl -> turbulent diffusivities of q**2 l ! my_length -> prescribed barotropic lengthscale in q**2 l equation of MY ! 1: parabolic ! 2: triangular ! 3: lin. from surface ! new_constr -> stabilisation of Mellor-Yamada stability functions ! according to Burchard & Deleersnijder (2001) ! (if .true.) ! !------------------------------------------------------------------------------- &my e1= 1.8, e2= 1.33, e3= 1.8, sq= 0.2, sl= 0.2, my_length= 1, new_constr= .false. / !------------------------------------------------------------------------------- ! The second-order model ! ! scnd_method -> type of second-order model ! 1: EASM with quasi-equilibrium ! 2: EASM with weak equilibrium, buoy.-variance algebraic ! 3: EASM with weak equilibrium, buoy.-variance from PDE ! ! kb_method -> type of equation for buoyancy variance ! ! 1: algebraic equation for buoyancy variance ! 2: PDE for buoyancy variance ! ! ! epsb_method -> type of equation for variance destruction ! ! 1: algebraic equation for variance destruction ! 2: PDE for variance destruction ! ! ! scnd_coeff -> coefficients of second-order model ! ! 0: read the coefficients from this file ! 1: coefficients of Gibson and Launder (1978) ! 2: coefficients of Mellor and Yamada (1982) ! 3: coefficients of Kantha and Clayson (1994) ! 4: coefficients of Luyten et al. (1996) ! 5: coefficients of Canuto et al. (2001) (version A) ! 6: coefficients of Canuto et al. (2001) (version B) ! 7: coefficients of Cheng et al. (2002) ! !------------------------------------------------------------------------------- &scnd scnd_method= 2, kb_method= 1, epsb_method= 1, scnd_coeff= 5, cc1= 5.0, cc2= 0.8000, cc3= 1.9680, cc4= 1.1360, cc5= 0.0000, cc6= 0.4000, ct1= 5.9500, ct2= 0.6000, ct3= 1.0000, ct4= 0.0000, ct5= 0.3333, ctt= 0.7200 / !------------------------------------------------------------------------------- ! The internal wave model ! ! iw_model -> method to compute internal wave mixing ! 0: no internal waves mixing parameterisation ! 1: Mellor 1989 internal wave mixing ! 2: Large et al. 1994 internal wave mixing ! ! alpha -> coeff. for Mellor IWmodel (0: no IW, 0.7 Mellor 1989) ! ! The following six empirical parameters are used for the ! Large et al. 1994 shear instability and internal wave breaking ! parameterisations (iw_model = 2, all viscosities are in m**2/s): ! ! klimiw -> critcal value of TKE ! rich_cr -> critical Richardson number for shear instability ! numshear -> background diffusivity for shear instability ! numiw -> background viscosity for internal wave breaking ! nuhiw -> background diffusivity for internal wave breaking !------------------------------------------------------------------------------- &iw iw_model= 0, alpha= 0.0, klimiw= 1e-6, rich_cr= 0.7, numshear= 5.e-3, numiw= 1.e-4, nuhiw= 1.e-5 /