/* * Copyright 1997, Regents of the University of Minnesota * * initpart.c * * This file contains code that performs log(p) parallel multilevel * recursive bissection * * Started 3/4/96 * George * * $Id: initpart.c 10542 2011-07-11 16:56:22Z karypis $ */ #include #define DEBUG_IPART_ /************************************************************************* * This function is the entry point of the initial partition algorithm * that does recursive bissection. * This algorithm assembles the graph to all the processors and preceeds * by parallelizing the recursive bisection step. **************************************************************************/ void InitPartition(ctrl_t *ctrl, graph_t *graph) { idx_t i, j, ncon, mype, npes, gnvtxs, ngroups; idx_t *xadj, *adjncy, *adjwgt, *vwgt; idx_t *part, *gwhere0, *gwhere1; idx_t *tmpwhere, *tmpvwgt, *tmpxadj, *tmpadjncy, *tmpadjwgt; graph_t *agraph; idx_t lnparts, fpart, fpe, lnpes; idx_t twoparts=2, moptions[METIS_NOPTIONS], edgecut, max_cut; real_t *tpwgts, *tpwgts2, *lbvec, lbsum, min_lbsum, wsum; MPI_Comm ipcomm; struct { double sum; int rank; } lpesum, gpesum; WCOREPUSH; ncon = graph->ncon; ngroups = gk_max(gk_min(RIP_SPLIT_FACTOR, ctrl->npes), 1); IFSET(ctrl->dbglvl, DBG_TIME, gkMPI_Barrier(ctrl->comm)); IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr)); lbvec = rwspacemalloc(ctrl, ncon); /* assemble the graph to all the processors */ agraph = AssembleAdaptiveGraph(ctrl, graph); gnvtxs = agraph->nvtxs; /* make a copy of the graph's structure for later */ xadj = icopy(gnvtxs+1, agraph->xadj, iwspacemalloc(ctrl, gnvtxs+1)); vwgt = icopy(gnvtxs*ncon, agraph->vwgt, iwspacemalloc(ctrl, gnvtxs*ncon)); adjncy = icopy(agraph->nedges, agraph->adjncy, iwspacemalloc(ctrl, agraph->nedges)); adjwgt = icopy(agraph->nedges, agraph->adjwgt, iwspacemalloc(ctrl, agraph->nedges)); part = iwspacemalloc(ctrl, gnvtxs); /* create different processor groups */ gkMPI_Comm_split(ctrl->gcomm, ctrl->mype % ngroups, 0, &ipcomm); gkMPI_Comm_rank(ipcomm, &mype); gkMPI_Comm_size(ipcomm, &npes); /* Go into the recursive bisection */ METIS_SetDefaultOptions(moptions); moptions[METIS_OPTION_SEED] = ctrl->sync + (ctrl->mype % ngroups) + 1; tpwgts = ctrl->tpwgts; tpwgts2 = rwspacemalloc(ctrl, 2*ncon); lnparts = ctrl->nparts; fpart = fpe = 0; lnpes = npes; while (lnpes > 1 && lnparts > 1) { /* determine the weights of the two partitions as a function of the weight of the target partition weights */ for (j=(lnparts>>1), i=0; invtxs, &ncon, agraph->xadj, agraph->adjncy, agraph->vwgt, NULL, agraph->adjwgt, &twoparts, tpwgts2, NULL, moptions, &edgecut, part); /* pick one of the branches */ if (mype < fpe+lnpes/2) { KeepPart(ctrl, agraph, part, 0); lnpes = lnpes/2; lnparts = lnparts/2; } else { KeepPart(ctrl, agraph, part, 1); fpart = fpart + lnparts/2; fpe = fpe + lnpes/2; lnpes = lnpes - lnpes/2; lnparts = lnparts - lnparts/2; } } gwhere0 = iset(gnvtxs, 0, iwspacemalloc(ctrl, gnvtxs)); gwhere1 = iwspacemalloc(ctrl, gnvtxs); if (lnparts == 1) { /* Case npes is greater than or equal to nparts */ /* Only the first process will assign labels (for the reduction to work) */ if (mype == fpe) { for (i=0; invtxs; i++) gwhere0[agraph->label[i]] = fpart; } } else { /* Case in which npes is smaller than nparts */ /* create the normalized tpwgts for the lnparts from ctrl->tpwgts */ tpwgts = rwspacemalloc(ctrl, lnparts*ncon); for (j=0; jtpwgts[(fpart+i)*ncon+j]; wsum += tpwgts[i*ncon+j]; } for (wsum=1.0/wsum, i=0; invtxs, &ncon, agraph->xadj, agraph->adjncy, agraph->vwgt, NULL, agraph->adjwgt, &lnparts, tpwgts, NULL, moptions, &edgecut, part); for (i=0; invtxs; i++) gwhere0[agraph->label[i]] = fpart + part[i]; } gkMPI_Allreduce((void *)gwhere0, (void *)gwhere1, gnvtxs, IDX_T, MPI_SUM, ipcomm); if (ngroups > 1) { tmpxadj = agraph->xadj; tmpadjncy = agraph->adjncy; tmpadjwgt = agraph->adjwgt; tmpvwgt = agraph->vwgt; tmpwhere = agraph->where; agraph->xadj = xadj; agraph->adjncy = adjncy; agraph->adjwgt = adjwgt; agraph->vwgt = vwgt; agraph->where = gwhere1; agraph->vwgt = vwgt; agraph->nvtxs = gnvtxs; edgecut = ComputeSerialEdgeCut(agraph); ComputeSerialBalance(ctrl, agraph, gwhere1, lbvec); lbsum = rsum(ncon, lbvec, 1); gkMPI_Allreduce((void *)&edgecut, (void *)&max_cut, 1, IDX_T, MPI_MAX, ctrl->gcomm); gkMPI_Allreduce((void *)&lbsum, (void *)&min_lbsum, 1, REAL_T, MPI_MIN, ctrl->gcomm); lpesum.sum = lbsum; if (min_lbsum < UNBALANCE_FRACTION*ncon) { if (lbsum < UNBALANCE_FRACTION*ncon) lpesum.sum = edgecut; else lpesum.sum = max_cut; } lpesum.rank = ctrl->mype; gkMPI_Allreduce((void *)&lpesum, (void *)&gpesum, 1, MPI_DOUBLE_INT, MPI_MINLOC, ctrl->gcomm); gkMPI_Bcast((void *)gwhere1, gnvtxs, IDX_T, gpesum.rank, ctrl->gcomm); agraph->xadj = tmpxadj; agraph->adjncy = tmpadjncy; agraph->adjwgt = tmpadjwgt; agraph->vwgt = tmpvwgt; agraph->where = tmpwhere; } icopy(graph->nvtxs, gwhere1+graph->vtxdist[ctrl->mype], graph->where); FreeGraph(agraph); gkMPI_Comm_free(&ipcomm); IFSET(ctrl->dbglvl, DBG_TIME, gkMPI_Barrier(ctrl->comm)); IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr)); WCOREPOP; } /************************************************************************* * This function keeps one parts **************************************************************************/ void KeepPart(ctrl_t *ctrl, graph_t *graph, idx_t *part, idx_t mypart) { idx_t h, i, j, k; idx_t nvtxs, ncon, mynvtxs, mynedges; idx_t *xadj, *vwgt, *adjncy, *adjwgt, *label; idx_t *rename; WCOREPUSH; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; label = graph->label; rename = iwspacemalloc(ctrl, nvtxs); for (mynvtxs=0, i=0; invtxs = mynvtxs; graph->nedges = mynedges; WCOREPOP; }