! Copyright 2014 College of William and Mary ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO ) ! ! -- LAPACK routine (version 3.1) -- ! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. ! November 2006 ! ! .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, N ! .. ! .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION AP( * ) ! .. ! ! Purpose ! ======= ! ! DSPTRF computes the factorization of a real symmetric matrix A stored ! in packed format using the Bunch-Kaufman diagonal pivoting method: ! ! A = U*D*U**T or A = L*D*L**T ! ! where U (or L) is a product of permutation and unit upper (lower) ! triangular matrices, and D is symmetric and block diagonal with ! 1-by-1 and 2-by-2 diagonal blocks. ! ! Arguments ! ========= ! ! UPLO (input) CHARACTER*1 ! = 'U': Upper triangle of A is stored; ! = 'L': Lower triangle of A is stored. ! ! N (input) INTEGER ! The order of the matrix A. N >= 0. ! ! AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) ! On entry, the upper or lower triangle of the symmetric matrix ! A, packed columnwise in a linear array. The j-th column of A ! is stored in the array AP as follows: ! if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; ! if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. ! ! On exit, the block diagonal matrix D and the multipliers used ! to obtain the factor U or L, stored as a packed triangular ! matrix overwriting A (see below for further details). ! ! IPIV (output) INTEGER array, dimension (N) ! Details of the interchanges and the block structure of D. ! If IPIV(k) > 0, then rows and columns k and IPIV(k) were ! interchanged and D(k,k) is a 1-by-1 diagonal block. ! If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and ! columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) ! is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = ! IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were ! interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. ! ! INFO (output) INTEGER ! = 0: successful exit ! < 0: if INFO = -i, the i-th argument had an illegal value ! > 0: if INFO = i, D(i,i) is exactly zero. The factorization ! has been completed, but the block diagonal matrix D is ! exactly singular, and division by zero will occur if it ! is used to solve a system of equations. ! ! Further Details ! =============== ! ! 5-96 - Based on modifications by J. Lewis, Boeing Computer Services ! Company ! ! If UPLO = 'U', then A = U*D*U', where ! U = P(n)*U(n)* ... *P(k)U(k)* ..., ! i.e., U is a product of terms P(k)*U(k), where k decreases from n to ! 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 ! and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as ! defined by IPIV(k), and U(k) is a unit upper triangular matrix, such ! that if the diagonal block D(k) is of order s (s = 1 or 2), then ! ! ( I v 0 ) k-s ! U(k) = ( 0 I 0 ) s ! ( 0 0 I ) n-k ! k-s s n-k ! ! If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). ! If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), ! and A(k,k), and v overwrites A(1:k-2,k-1:k). ! ! If UPLO = 'L', then A = L*D*L', where ! L = P(1)*L(1)* ... *P(k)*L(k)* ..., ! i.e., L is a product of terms P(k)*L(k), where k increases from 1 to ! n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 ! and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as ! defined by IPIV(k), and L(k) is a unit lower triangular matrix, such ! that if the diagonal block D(k) is of order s (s = 1 or 2), then ! ! ( I 0 0 ) k-1 ! L(k) = ( 0 I 0 ) s ! ( 0 v I ) n-k-s+1 ! k-1 s n-k-s+1 ! ! If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). ! If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), ! and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). ! ! ===================================================================== ! ! .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION EIGHT, SEVTEN PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 ) ! .. ! .. Local Scalars .. LOGICAL UPPER INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC, & & KSTEP, KX, NPP DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1, & & ROWMAX, T, WK, WKM1, WKP1 ! .. ! .. External Functions .. LOGICAL LSAME INTEGER IDAMAX EXTERNAL LSAME, IDAMAX ! .. ! .. External Subroutines .. EXTERNAL DSCAL, DSPR, DSWAP, XERBLA5 ! .. ! .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT ! .. ! .. Executable Statements .. ! ! Test the input parameters. ! INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA5( 'DSPTRF', -INFO ) RETURN END IF ! ! Initialize ALPHA for use in choosing pivot block size. ! ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT ! IF( UPPER ) THEN ! ! Factorize A as U*D*U' using the upper triangle of A ! ! K is the main loop index, decreasing from N to 1 in steps of ! 1 or 2 ! K = N KC = ( N-1 )*N / 2 + 1 10 CONTINUE KNC = KC ! ! If K < 1, exit from loop ! IF( K.LT.1 ) GO TO 110 KSTEP = 1 ! ! Determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used ! ABSAKK = ABS( AP( KC+K-1 ) ) ! ! IMAX is the row-index of the largest off-diagonal element in ! column K, and COLMAX is its absolute value ! IF( K.GT.1 ) THEN IMAX = IDAMAX( K-1, AP( KC ), 1 ) COLMAX = ABS( AP( KC+IMAX-1 ) ) ELSE COLMAX = ZERO END IF ! IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN ! ! Column K is zero: set INFO and continue ! IF( INFO.EQ.0 ) INFO = K KP = K ELSE IF( ABSAKK.GE.ALPHA*COLMAX ) THEN ! ! no interchange, use 1-by-1 pivot block ! KP = K ELSE ! ! JMAX is the column-index of the largest off-diagonal ! element in row IMAX, and ROWMAX is its absolute value ! ROWMAX = ZERO JMAX = IMAX KX = IMAX*( IMAX+1 ) / 2 + IMAX DO 20 J = IMAX + 1, K IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN ROWMAX = ABS( AP( KX ) ) JMAX = J END IF KX = KX + J 20 CONTINUE KPC = ( IMAX-1 )*IMAX / 2 + 1 IF( IMAX.GT.1 ) THEN JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 ) ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) ) END IF ! IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN ! ! no interchange, use 1-by-1 pivot block ! KP = K ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN ! ! interchange rows and columns K and IMAX, use 1-by-1 ! pivot block ! KP = IMAX ELSE ! ! interchange rows and columns K-1 and IMAX, use 2-by-2 ! pivot block ! KP = IMAX KSTEP = 2 END IF END IF ! KK = K - KSTEP + 1 IF( KSTEP.EQ.2 ) KNC = KNC - K + 1 IF( KP.NE.KK ) THEN ! ! Interchange rows and columns KK and KP in the leading ! submatrix A(1:k,1:k) ! CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 ) KX = KPC + KP - 1 DO 30 J = KP + 1, KK - 1 KX = KX + J - 1 T = AP( KNC+J-1 ) AP( KNC+J-1 ) = AP( KX ) AP( KX ) = T 30 CONTINUE T = AP( KNC+KK-1 ) AP( KNC+KK-1 ) = AP( KPC+KP-1 ) AP( KPC+KP-1 ) = T IF( KSTEP.EQ.2 ) THEN T = AP( KC+K-2 ) AP( KC+K-2 ) = AP( KC+KP-1 ) AP( KC+KP-1 ) = T END IF END IF ! ! Update the leading submatrix ! IF( KSTEP.EQ.1 ) THEN ! ! 1-by-1 pivot block D(k): column k now holds ! ! W(k) = U(k)*D(k) ! ! where U(k) is the k-th column of U ! ! Perform a rank-1 update of A(1:k-1,1:k-1) as ! ! A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' ! R1 = ONE / AP( KC+K-1 ) CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP ) ! ! Store U(k) in column k ! CALL DSCAL( K-1, R1, AP( KC ), 1 ) ELSE ! ! 2-by-2 pivot block D(k): columns k and k-1 now hold ! ! ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) ! ! where U(k) and U(k-1) are the k-th and (k-1)-th columns ! of U ! ! Perform a rank-2 update of A(1:k-2,1:k-2) as ! ! A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' ! = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' ! IF( K.GT.2 ) THEN ! D12 = AP( K-1+( K-1 )*K / 2 ) D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12 D11 = AP( K+( K-1 )*K / 2 ) / D12 T = ONE / ( D11*D22-ONE ) D12 = T / D12 ! DO 50 J = K - 2, 1, -1 WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )- & & AP( J+( K-1 )*K / 2 ) ) WK = D12*( D22*AP( J+( K-1 )*K / 2 )- & & AP( J+( K-2 )*( K-1 ) / 2 ) ) DO 40 I = J, 1, -1 AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) - & & AP( I+( K-1 )*K / 2 )*WK - & & AP( I+( K-2 )*( K-1 ) / 2 )*WKM1 40 CONTINUE AP( J+( K-1 )*K / 2 ) = WK AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1 50 CONTINUE ! END IF ! END IF END IF ! ! Store details of the interchanges in IPIV ! IF( KSTEP.EQ.1 ) THEN IPIV( K ) = KP ELSE IPIV( K ) = -KP IPIV( K-1 ) = -KP END IF ! ! Decrease K and return to the start of the main loop ! K = K - KSTEP KC = KNC - K GO TO 10 ! ELSE ! ! Factorize A as L*D*L' using the lower triangle of A ! ! K is the main loop index, increasing from 1 to N in steps of ! 1 or 2 ! K = 1 KC = 1 NPP = N*( N+1 ) / 2 60 CONTINUE KNC = KC ! ! If K > N, exit from loop ! IF( K.GT.N ) GO TO 110 KSTEP = 1 ! ! Determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used ! ABSAKK = ABS( AP( KC ) ) ! ! IMAX is the row-index of the largest off-diagonal element in ! column K, and COLMAX is its absolute value ! IF( K.LT.N ) THEN IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 ) COLMAX = ABS( AP( KC+IMAX-K ) ) ELSE COLMAX = ZERO END IF ! IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN ! ! Column K is zero: set INFO and continue ! IF( INFO.EQ.0 ) INFO = K KP = K ELSE IF( ABSAKK.GE.ALPHA*COLMAX ) THEN ! ! no interchange, use 1-by-1 pivot block ! KP = K ELSE ! ! JMAX is the column-index of the largest off-diagonal ! element in row IMAX, and ROWMAX is its absolute value ! ROWMAX = ZERO KX = KC + IMAX - K DO 70 J = K, IMAX - 1 IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN ROWMAX = ABS( AP( KX ) ) JMAX = J END IF KX = KX + N - J 70 CONTINUE KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1 IF( IMAX.LT.N ) THEN JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 ) ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) ) END IF ! IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN ! ! no interchange, use 1-by-1 pivot block ! KP = K ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN ! ! interchange rows and columns K and IMAX, use 1-by-1 ! pivot block ! KP = IMAX ELSE ! ! interchange rows and columns K+1 and IMAX, use 2-by-2 ! pivot block ! KP = IMAX KSTEP = 2 END IF END IF ! KK = K + KSTEP - 1 IF( KSTEP.EQ.2 ) KNC = KNC + N - K + 1 IF( KP.NE.KK ) THEN ! ! Interchange rows and columns KK and KP in the trailing ! submatrix A(k:n,k:n) ! IF( KP.LT.N ) CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),1) KX = KNC + KP - KK DO 80 J = KK + 1, KP - 1 KX = KX + N - J + 1 T = AP( KNC+J-KK ) AP( KNC+J-KK ) = AP( KX ) AP( KX ) = T 80 CONTINUE T = AP( KNC ) AP( KNC ) = AP( KPC ) AP( KPC ) = T IF( KSTEP.EQ.2 ) THEN T = AP( KC+1 ) AP( KC+1 ) = AP( KC+KP-K ) AP( KC+KP-K ) = T END IF END IF ! ! Update the trailing submatrix ! IF( KSTEP.EQ.1 ) THEN ! ! 1-by-1 pivot block D(k): column k now holds ! ! W(k) = L(k)*D(k) ! ! where L(k) is the k-th column of L ! IF( K.LT.N ) THEN ! ! Perform a rank-1 update of A(k+1:n,k+1:n) as ! ! A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' ! R1 = ONE / AP( KC ) CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1, AP( KC+N-K+1 ) ) ! ! Store L(k) in column K ! CALL DSCAL( N-K, R1, AP( KC+1 ), 1 ) END IF ELSE ! ! 2-by-2 pivot block D(k): columns K and K+1 now hold ! ! ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) ! ! where L(k) and L(k+1) are the k-th and (k+1)-th columns ! of L ! IF( K.LT.N-1 ) THEN ! ! Perform a rank-2 update of A(k+2:n,k+2:n) as ! ! A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' ! = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' ! D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21 D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21 T = ONE / ( D11*D22-ONE ) D21 = T / D21 ! DO 100 J = K + 2, N WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )- AP( J+K*( 2*N-K-1 ) / 2 ) ) WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )- AP( J+( K-1 )*( 2*N-K ) / 2 ) ) ! DO 90 I = J, N AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )* & & ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) / & & 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1 90 CONTINUE ! AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1 ! 100 CONTINUE END IF END IF END IF ! ! Store details of the interchanges in IPIV ! IF( KSTEP.EQ.1 ) THEN IPIV( K ) = KP ELSE IPIV( K ) = -KP IPIV( K+1 ) = -KP END IF ! ! Increase K and return to the start of the main loop ! K = K + KSTEP KC = KNC + N - K + 2 GO TO 60 ! END IF ! 110 CONTINUE RETURN ! ! End of DSPTRF ! END SUBROUTINE DSPTRI( UPLO, N, AP, IPIV, WORK, INFO ) ! ! -- LAPACK routine (version 3.1) -- ! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. ! November 2006 ! ! .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, N ! .. ! .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION AP( * ), WORK( * ) ! .. ! ! Purpose ! ======= ! ! DSPTRI computes the inverse of a real symmetric indefinite matrix ! A in packed storage using the factorization A = U*D*U**T or ! A = L*D*L**T computed by DSPTRF. ! ! Arguments ! ========= ! ! UPLO (input) CHARACTER*1 ! Specifies whether the details of the factorization are stored ! as an upper or lower triangular matrix. ! = 'U': Upper triangular, form is A = U*D*U**T; ! = 'L': Lower triangular, form is A = L*D*L**T. ! ! N (input) INTEGER ! The order of the matrix A. N >= 0. ! ! AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) ! On entry, the block diagonal matrix D and the multipliers ! used to obtain the factor U or L as computed by DSPTRF, ! stored as a packed triangular matrix. ! ! On exit, if INFO = 0, the (symmetric) inverse of the original ! matrix, stored as a packed triangular matrix. The j-th column ! of inv(A) is stored in the array AP as follows: ! if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; ! if UPLO = 'L', ! AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. ! ! IPIV (input) INTEGER array, dimension (N) ! Details of the interchanges and the block structure of D ! as determined by DSPTRF. ! ! WORK (workspace) DOUBLE PRECISION array, dimension (N) ! ! INFO (output) INTEGER ! = 0: successful exit ! < 0: if INFO = -i, the i-th argument had an illegal value ! > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its ! inverse could not be computed. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) ! .. ! .. Local Scalars .. LOGICAL UPPER INTEGER J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP DOUBLE PRECISION AK, AKKP1, AKP1, D, T, TEMP ! .. ! .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DDOT EXTERNAL LSAME, DDOT ! .. ! .. External Subroutines .. EXTERNAL DCOPY, DSPMV, DSWAP, XERBLA5 ! .. ! .. Intrinsic Functions .. INTRINSIC ABS ! .. ! .. Executable Statements .. ! ! Test the input parameters. ! INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA5( 'DSPTRI', -INFO ) RETURN END IF ! ! Quick return if possible ! IF( N.EQ.0 ) RETURN ! ! Check that the diagonal matrix D is nonsingular. ! IF( UPPER ) THEN ! ! Upper triangular storage: examine D from bottom to top ! KP = N*( N+1 ) / 2 DO 10 INFO = N, 1, -1 IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO ) RETURN KP = KP - INFO 10 CONTINUE ELSE ! ! Lower triangular storage: examine D from top to bottom. ! KP = 1 DO 20 INFO = 1, N IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO ) RETURN KP = KP + N - INFO + 1 20 CONTINUE END IF INFO = 0 ! IF( UPPER ) THEN ! ! Compute inv(A) from the factorization A = U*D*U'. ! ! K is the main loop index, increasing from 1 to N in steps of ! 1 or 2, depending on the size of the diagonal blocks. ! K = 1 KC = 1 30 CONTINUE ! ! If K > N, exit from loop. ! IF( K.GT.N ) GO TO 50 ! KCNEXT = KC + K IF( IPIV( K ).GT.0 ) THEN ! ! 1 x 1 diagonal block ! ! Invert the diagonal block. ! AP( KC+K-1 ) = ONE / AP( KC+K-1 ) ! ! Compute column K of the inverse. ! IF( K.GT.1 ) THEN CALL DCOPY( K-1, AP( KC ), 1, WORK, 1 ) CALL DSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),1) AP( KC+K-1 ) = AP( KC+K-1 ) - DDOT( K-1, WORK, 1, AP( KC ), 1 ) END IF KSTEP = 1 ELSE ! ! 2 x 2 diagonal block ! ! Invert the diagonal block. ! T = ABS( AP( KCNEXT+K-1 ) ) AK = AP( KC+K-1 ) / T AKP1 = AP( KCNEXT+K ) / T AKKP1 = AP( KCNEXT+K-1 ) / T D = T*( AK*AKP1-ONE ) AP( KC+K-1 ) = AKP1 / D AP( KCNEXT+K ) = AK / D AP( KCNEXT+K-1 ) = -AKKP1 / D ! ! Compute columns K and K+1 of the inverse. ! IF( K.GT.1 ) THEN CALL DCOPY( K-1, AP( KC ), 1, WORK, 1 ) CALL DSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),1) AP( KC+K-1 ) = AP( KC+K-1 ) - DDOT( K-1, WORK, 1, AP( KC ), 1 ) AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) - DDOT( K-1, AP( KC ), 1, AP( KCNEXT ),1) CALL DCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 ) CALL DSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KCNEXT ), 1 ) AP( KCNEXT+K ) = AP( KCNEXT+K ) - DDOT( K-1, WORK, 1, AP( KCNEXT ), 1 ) END IF KSTEP = 2 KCNEXT = KCNEXT + K + 1 END IF ! KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN ! ! Interchange rows and columns K and KP in the leading ! submatrix A(1:k+1,1:k+1) ! KPC = ( KP-1 )*KP / 2 + 1 CALL DSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 ) KX = KPC + KP - 1 DO 40 J = KP + 1, K - 1 KX = KX + J - 1 TEMP = AP( KC+J-1 ) AP( KC+J-1 ) = AP( KX ) AP( KX ) = TEMP 40 CONTINUE TEMP = AP( KC+K-1 ) AP( KC+K-1 ) = AP( KPC+KP-1 ) AP( KPC+KP-1 ) = TEMP IF( KSTEP.EQ.2 ) THEN TEMP = AP( KC+K+K-1 ) AP( KC+K+K-1 ) = AP( KC+K+KP-1 ) AP( KC+K+KP-1 ) = TEMP END IF END IF ! K = K + KSTEP KC = KCNEXT GO TO 30 50 CONTINUE ! ELSE ! ! Compute inv(A) from the factorization A = L*D*L'. ! ! K is the main loop index, increasing from 1 to N in steps of ! 1 or 2, depending on the size of the diagonal blocks. ! NPP = N*( N+1 ) / 2 K = N KC = NPP 60 CONTINUE ! ! If K < 1, exit from loop. ! IF( K.LT.1 ) GO TO 80 ! KCNEXT = KC - ( N-K+2 ) IF( IPIV( K ).GT.0 ) THEN ! ! 1 x 1 diagonal block ! ! Invert the diagonal block. ! AP( KC ) = ONE / AP( KC ) ! ! Compute column K of the inverse. ! IF( K.LT.N ) THEN CALL DCOPY( N-K, AP( KC+1 ), 1, WORK, 1 ) CALL DSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1, ZERO, AP( KC+1 ), 1 ) AP( KC ) = AP( KC ) - DDOT( N-K, WORK, 1, AP( KC+1 ), 1 ) END IF KSTEP = 1 ELSE ! ! 2 x 2 diagonal block ! ! Invert the diagonal block. ! T = ABS( AP( KCNEXT+1 ) ) AK = AP( KCNEXT ) / T AKP1 = AP( KC ) / T AKKP1 = AP( KCNEXT+1 ) / T D = T*( AK*AKP1-ONE ) AP( KCNEXT ) = AKP1 / D AP( KC ) = AK / D AP( KCNEXT+1 ) = -AKKP1 / D ! ! Compute columns K-1 and K of the inverse. ! IF( K.LT.N ) THEN CALL DCOPY( N-K, AP( KC+1 ), 1, WORK, 1 ) CALL DSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1, ZERO, AP( KC+1 ), 1 ) AP( KC ) = AP( KC ) - DDOT( N-K, WORK, 1, AP( KC+1 ), 1 ) AP( KCNEXT+1 ) = AP( KCNEXT+1 ) - DDOT( N-K, AP( KC+1 ), 1,AP( KCNEXT+2 ), 1 ) CALL DCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 ) CALL DSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1, ZERO, AP( KCNEXT+2 ), 1 ) AP( KCNEXT ) = AP( KCNEXT ) - DDOT( N-K, WORK, 1, AP( KCNEXT+2 ), 1 ) END IF KSTEP = 2 KCNEXT = KCNEXT - ( N-K+3 ) END IF ! KP = ABS( IPIV( K ) ) IF( KP.NE.K ) THEN ! ! Interchange rows and columns K and KP in the trailing ! submatrix A(k-1:n,k-1:n) ! KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1 IF( KP.LT.N ) CALL DSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 ) KX = KC + KP - K DO 70 J = K + 1, KP - 1 KX = KX + N - J + 1 TEMP = AP( KC+J-K ) AP( KC+J-K ) = AP( KX ) AP( KX ) = TEMP 70 CONTINUE TEMP = AP( KC ) AP( KC ) = AP( KPC ) AP( KPC ) = TEMP IF( KSTEP.EQ.2 ) THEN TEMP = AP( KC-N+K-1 ) AP( KC-N+K-1 ) = AP( KC-N+KP-1 ) AP( KC-N+KP-1 ) = TEMP END IF END IF ! K = K - KSTEP KC = KCNEXT GO TO 60 80 CONTINUE END IF ! RETURN ! ! End of DSPTRI ! END SUBROUTINE XERBLA5(SRNAME,INFO) ! ! -- LAPACK auxiliary routine (preliminary version) -- ! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. ! November 2006 ! ! .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME ! .. ! ! Purpose ! ======= ! ! XERBLA5 is an error handler for the LAPACK routines. ! It is called by an LAPACK routine if an input parameter has an ! invalid value. A message is printed and execution stops. ! ! Installers may consider modifying the STOP statement in order to ! call system-specific exception-handling facilities. ! ! Arguments ! ========= ! ! SRNAME (input) CHARACTER*6 ! The name of the routine which called XERBLA5. ! ! INFO (input) INTEGER ! The position of the invalid parameter in the parameter list ! of the calling routine. ! ! WRITE (*,FMT=9999) SRNAME,INFO ! STOP ! 9999 FORMAT (' ** On entry to ',A6,' parameter number ',I2,' had ', & & 'an illegal value') ! ! End of XERBLA5 ! END SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) ! .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER INCX,INCY,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE PRECISION AP(*),X(*),Y(*) ! .. ! ! Purpose ! ======= ! ! DSPMV performs the matrix-vector operation ! ! y := alpha*A*x + beta*y, ! ! where alpha and beta are scalars, x and y are n element vectors and ! A is an n by n symmetric matrix, supplied in packed form. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the matrix A is supplied in the packed ! array AP as follows: ! ! UPLO = 'U' or 'u' The upper triangular part of A is ! supplied in AP. ! ! UPLO = 'L' or 'l' The lower triangular part of A is ! supplied in AP. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - DOUBLE PRECISION. ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! AP - DOUBLE PRECISION array of DIMENSION at least ! ( ( n*( n + 1 ) )/2 ). ! Before entry with UPLO = 'U' or 'u', the array AP must ! contain the upper triangular part of the symmetric matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) ! and a( 2, 2 ) respectively, and so on. ! Before entry with UPLO = 'L' or 'l', the array AP must ! contain the lower triangular part of the symmetric matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) ! and a( 3, 1 ) respectively, and so on. ! Unchanged on exit. ! ! X - DOUBLE PRECISION array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! BETA - DOUBLE PRECISION. ! On entry, BETA specifies the scalar beta. When BETA is ! supplied as zero then Y need not be set on input. ! Unchanged on exit. ! ! Y - DOUBLE PRECISION array of dimension at least ! ( 1 + ( n - 1 )*abs( INCY ) ). ! Before entry, the incremented array Y must contain the n ! element vector y. On exit, Y is overwritten by the updated ! vector y. ! ! INCY - INTEGER. ! On entry, INCY specifies the increment for the elements of ! Y. INCY must not be zero. ! Unchanged on exit. ! ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ! .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) ! .. ! .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA5 ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 6 ELSE IF (INCY.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA5('DSPMV ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN ! ! Set up the start points in X and Y. ! IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF ! ! Start the operations. In this version the elements of the array AP ! are accessed sequentially with one pass through AP. ! ! First form y := beta*y. ! IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KK = 1 IF (LSAME(UPLO,'U')) THEN ! ! Form y when AP contains the upper triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO K = KK DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 50 CONTINUE Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 K = KK,KK + J - 2 Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE ! ! Form y when AP contains the lower triangle. ! IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*AP(KK) K = KK + 1 DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 KK = KK + (N-J+1) 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*AP(KK) IX = JX IY = JY DO 110 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + (N-J+1) 120 CONTINUE END IF END IF ! RETURN ! ! End of DSPMV . ! END SUBROUTINE DSWAP(N,DX,INCX,DY,INCY) ! .. Scalar Arguments .. INTEGER INCX,INCY,N ! .. ! .. Array Arguments .. DOUBLE PRECISION DX(*),DY(*) ! .. ! ! Purpose ! ======= ! ! interchanges two vectors. ! uses unrolled loops for increments equal one. ! jack dongarra, linpack, 3/11/78. ! modified 12/3/93, array(1) declarations changed to array(*) ! ! ! .. Local Scalars .. DOUBLE PRECISION DTEMP INTEGER I,IX,IY,M,MP1 ! .. ! .. Intrinsic Functions .. INTRINSIC MOD ! .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20 ! ! code for unequal increments or equal increments not equal ! to 1 ! IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO 10 I = 1,N DTEMP = DX(IX) DX(IX) = DY(IY) DY(IY) = DTEMP IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN ! ! code for both increments equal to 1 ! ! ! clean-up loop ! 20 M = MOD(N,3) IF (M.EQ.0) GO TO 40 DO 30 I = 1,M DTEMP = DX(I) DX(I) = DY(I) DY(I) = DTEMP 30 CONTINUE IF (N.LT.3) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,3 DTEMP = DX(I) DX(I) = DY(I) DY(I) = DTEMP DTEMP = DX(I+1) DX(I+1) = DY(I+1) DY(I+1) = DTEMP DTEMP = DX(I+2) DX(I+2) = DY(I+2) DY(I+2) = DTEMP 50 CONTINUE RETURN END SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP) ! .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,N CHARACTER UPLO ! .. ! .. Array Arguments .. DOUBLE PRECISION AP(*),X(*) ! .. ! ! Purpose ! ======= ! ! DSPR performs the symmetric rank 1 operation ! ! A := alpha*x*x' + A, ! ! where alpha is a real scalar, x is an n element vector and A is an ! n by n symmetric matrix, supplied in packed form. ! ! Arguments ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the upper or lower ! triangular part of the matrix A is supplied in the packed ! array AP as follows: ! ! UPLO = 'U' or 'u' The upper triangular part of A is ! supplied in AP. ! ! UPLO = 'L' or 'l' The lower triangular part of A is ! supplied in AP. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! ALPHA - DOUBLE PRECISION. ! On entry, ALPHA specifies the scalar alpha. ! Unchanged on exit. ! ! X - DOUBLE PRECISION array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. ! Unchanged on exit. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! AP - DOUBLE PRECISION array of DIMENSION at least ! ( ( n*( n + 1 ) )/2 ). ! Before entry with UPLO = 'U' or 'u', the array AP must ! contain the upper triangular part of the symmetric matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) ! and a( 2, 2 ) respectively, and so on. On exit, the array ! AP is overwritten by the upper triangular part of the ! updated matrix. ! Before entry with UPLO = 'L' or 'l', the array AP must ! contain the lower triangular part of the symmetric matrix ! packed sequentially, column by column, so that AP( 1 ) ! contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) ! and a( 3, 1 ) respectively, and so on. On exit, the array ! AP is overwritten by the lower triangular part of the ! updated matrix. ! ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ! .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) ! .. ! .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. External Subroutines .. EXTERNAL XERBLA5 ! .. ! ! Test the input parameters. ! INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 END IF IF (INFO.NE.0) THEN CALL XERBLA5('DSPR ',INFO) RETURN END IF ! ! Quick return if possible. ! IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN ! ! Set the start point in X if the increment is not unity. ! IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF ! ! Start the operations. In this version the elements of the array AP ! are accessed sequentially with one pass through AP. ! KK = 1 IF (LSAME(UPLO,'U')) THEN ! ! Form A when upper triangle is stored in AP. ! IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) K = KK DO 10 I = 1,J AP(K) = AP(K) + X(I)*TEMP K = K + 1 10 CONTINUE END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 K = KK,KK + J - 1 AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE ! ! Form A when lower triangle is stored in AP. ! IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) K = KK DO 50 I = J,N AP(K) = AP(K) + X(I)*TEMP K = K + 1 50 CONTINUE END IF KK = KK + N - J + 1 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 K = KK,KK + N - J AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX KK = KK + N - J + 1 80 CONTINUE END IF END IF ! RETURN ! ! End of DSPR . ! END SUBROUTINE DSCAL(N,DA,DX,INCX) ! .. Scalar Arguments .. DOUBLE PRECISION DA INTEGER INCX,N ! .. ! .. Array Arguments .. DOUBLE PRECISION DX(*) ! .. ! ! Purpose ! ======= !* ! scales a vector by a constant. ! uses unrolled loops for increment equal to one. ! jack dongarra, linpack, 3/11/78. ! modified 3/93 to return if incx .le. 0. ! modified 12/3/93, array(1) declarations changed to array(*) ! ! ! .. Local Scalars .. INTEGER I,M,MP1,NINCX ! .. ! .. Intrinsic Functions .. INTRINSIC MOD ! .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) GO TO 20 ! ! code for increment not equal to 1 ! NINCX = N*INCX DO 10 I = 1,NINCX,INCX DX(I) = DA*DX(I) 10 CONTINUE RETURN ! ! code for increment equal to 1 ! ! ! clean-up loop ! 20 M = MOD(N,5) IF (M.EQ.0) GO TO 40 DO 30 I = 1,M DX(I) = DA*DX(I) 30 CONTINUE IF (N.LT.5) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,5 DX(I) = DA*DX(I) DX(I+1) = DA*DX(I+1) DX(I+2) = DA*DX(I+2) DX(I+3) = DA*DX(I+3) DX(I+4) = DA*DX(I+4) 50 CONTINUE RETURN END LOGICAL FUNCTION LSAME(CA,CB) ! ! -- LAPACK auxiliary routine (version 3.1) -- ! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. ! November 2006 ! ! .. Scalar Arguments .. CHARACTER CA,CB ! .. ! ! Purpose ! ======= ! ! LSAME returns .TRUE. if CA is the same letter as CB regardless of ! case. ! ! Arguments ! ========= ! ! CA (input) CHARACTER*1 ! ! CB (input) CHARACTER*1 ! CA and CB specify the single characters to be compared. ! ! ===================================================================== ! ! .. Intrinsic Functions .. INTRINSIC ICHAR ! .. ! .. Local Scalars .. INTEGER INTA,INTB,ZCODE ! .. ! ! Test if the characters are equal ! LSAME = CA .EQ. CB IF (LSAME) RETURN ! ! Now test for equivalence if both characters are alphabetic. ! ZCODE = ICHAR('Z') ! ! Use 'Z' rather than 'A' so that ASCII can be detected on Prime ! machines, on which ICHAR returns a value with bit 8 set. ! ICHAR('A') on Prime machines returns 193 which is the same as ! ICHAR('A') on an EBCDIC machine. ! INTA = ICHAR(CA) INTB = ICHAR(CB) ! IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN ! ! ASCII is assumed - ZCODE is the ASCII code of either lower or ! upper case 'Z'. ! IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32 IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32 ! ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN ! ! EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or ! upper case 'Z'. ! IF (INTA.GE.129 .AND. INTA.LE.137 .OR. & & INTA.GE.145 .AND. INTA.LE.153 .OR. & & INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64 IF (INTB.GE.129 .AND. INTB.LE.137 .OR. & & INTB.GE.145 .AND. INTB.LE.153 .OR. & & INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64 ! ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN ! ! ASCII is assumed, on Prime machines - ZCODE is the ASCII code ! plus 128 of either lower or upper case 'Z'. ! IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32 IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32 END IF LSAME = INTA .EQ. INTB ! ! RETURN ! ! End of LSAME ! END INTEGER FUNCTION IDAMAX(N,DX,INCX) ! .. Scalar Arguments .. INTEGER INCX,N ! .. ! .. Array Arguments .. DOUBLE PRECISION DX(*) ! .. ! ! Purpose ! ======= ! ! finds the index of element having max. absolute value. ! jack dongarra, linpack, 3/11/78. ! modified 3/93 to return if incx .le. 0. ! modified 12/3/93, array(1) declarations changed to array(*) ! ! ! .. Local Scalars .. DOUBLE PRECISION DMAX INTEGER I,IX ! .. ! .. Intrinsic Functions .. INTRINSIC DABS ! .. IDAMAX = 0 IF (N.LT.1 .OR. INCX.LE.0) RETURN IDAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) GO TO 20 ! ! code for increment not equal to 1 ! IX = 1 DMAX = DABS(DX(1)) IX = IX + INCX DO 10 I = 2,N IF (DABS(DX(IX)).LE.DMAX) GO TO 5 IDAMAX = I DMAX = DABS(DX(IX)) 5 IX = IX + INCX 10 CONTINUE RETURN ! ! code for increment equal to 1 ! 20 DMAX = DABS(DX(1)) DO 30 I = 2,N IF (DABS(DX(I)).LE.DMAX) GO TO 30 IDAMAX = I DMAX = DABS(DX(I)) 30 CONTINUE RETURN END SUBROUTINE DCOPY (N,DX,INCX,DY,INCY) ! ! COPY DOUBLE PRECISION DX TO DOUBLE PRECISION DY. ! DOUBLE PRECISION DX(N),DY(N) IF (N.LE.0) RETURN IF (INCX.EQ.INCY) IF (INCX-1) 10 , 30 , 70 10 CONTINUE ! ! CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS. ! IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX+1 IF (INCY.LT.0) IY = (-N+1)*INCY+1 DO 20 I = 1,N DY(IY) = DX(IX) IX = IX+INCX IY = IY+INCY 20 CONTINUE RETURN ! ! CODE FOR BOTH INCREMENTS EQUAL TO 1 ! ! CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 7. ! 30 M = N-(N/7)*7 IF (M.EQ.0) GO TO 50 DO 40 I = 1,M DY(I) = DX(I) 40 CONTINUE IF (N.LT.7) RETURN 50 MP1 = M+1 DO 60 I = MP1,N,7 DY(I) = DX(I) DY(I+1) = DX(I+1) DY(I+2) = DX(I+2) DY(I+3) = DX(I+3) DY(I+4) = DX(I+4) DY(I+5) = DX(I+5) DY(I+6) = DX(I+6) 60 CONTINUE RETURN ! ! CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS. ! 70 CONTINUE NS = N*INCX DO 80 I = 1,NS,INCX DY(I) = DX(I) 80 CONTINUE RETURN END DOUBLE PRECISION FUNCTION DDOT (N,DX,INCX,DY,INCY) ! ! RETURNS THE DOT PRODUCT OF DOUBLE PRECISION DX AND DY. ! DOUBLE PRECISION DX(N),DY(N) DDOT = 0.D0 IF (N.LE.0) RETURN IF (INCX.EQ.INCY) IF (INCX-1) 10 , 30 , 70 10 CONTINUE ! ! CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS. ! IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX+1 IF (INCY.LT.0) IY = (-N+1)*INCY+1 DO 20 I = 1,N DDOT = DDOT+DX(IX)*DY(IY) IX = IX+INCX IY = IY+INCY 20 CONTINUE RETURN ! ! CODE FOR BOTH INCREMENTS EQUAL TO 1. ! ! CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5. ! 30 M = N-(N/5)*5 IF (M.EQ.0) GO TO 50 DO 40 I = 1,M DDOT = DDOT+DX(I)*DY(I) 40 CONTINUE IF (N.LT.5) RETURN 50 MP1 = M+1 DO 60 I = MP1,N,5 DDOT = DDOT+DX(I)*DY(I)+DX(I+1)*DY(I+1)+DX(I+2)*DY(I+2)+DX(I+3)& & *DY(I+3)+DX(I+4)*DY(I+4) 60 CONTINUE RETURN ! ! CODE FOR POSITIVE EQUAL INCREMENTS .NE.1. ! 70 CONTINUE NS = N*INCX DO 80 I = 1,NS,INCX DDOT = DDOT+DX(I)*DY(I) 80 CONTINUE RETURN END