
Lars Umlauf · Hans Burchard · Karsten Bolding

GOTM

Sourcecode

and

Test Case Documentation

Version 3.2

G
O
T
M

Flow — Mixing — Sediment Transport



2



Contents

1 Introduction 9
1.1 What is GOTM? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 The idea behind GOTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 How to read the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The GOTM main program 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 GOTM — the main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Module gotm — the general framework . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Initialise the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Manage global time–stepping . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 The run is over — now clean up. . . . . . . . . . . . . . . . . . . . . . . . . 18

3 The mean flow model 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Module Mean Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Initialisation of the mean flow variables . . . . . . . . . . . . . . . . . . . . 25

3.3 The vertical grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 The Coriolis rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 The U-momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 The V-momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 The external pressure-gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 The internal pressure-gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 The vertical friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 The temperature equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11 The salinity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.12 The buoyancy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 Calculation of the vertical shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.14 Calculation of the stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.15 Convective adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 The turbulence model 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Second-order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Algebraic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Explicit models for vertical shear and stratification . . . . . . . . . . . . . . . . . . 56

4.4.1 Equilibrium states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Stability of explicit models . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Parameter conversion for other models . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 The model of Gibson and Launder (1978) . . . . . . . . . . . . . . . . . . . 60
4.5.2 The model of Canuto et al. (2001) . . . . . . . . . . . . . . . . . . . . . . . 61

3



4.5.3 The model of Mellor and Yamada (1982) . . . . . . . . . . . . . . . . . . . 62
4.6 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Module turbulence: its all in here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.1 Initialise the turbulence module . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.2 Initialize the second-order model . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.3 Generate a two-equation model . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.4 Analyse the turbulence models . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7.5 Report turbulence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.6 Manage turbulence time-stepping . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.7 Update the turbulent kinetic energy . . . . . . . . . . . . . . . . . . . . . . 81
4.7.8 Update the buoyancy variance . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.9 Update the dissipation length-scale . . . . . . . . . . . . . . . . . . . . . . . 83
4.7.10 Update the desctruction rate of buoyancy variance . . . . . . . . . . . . . . 83
4.7.11 Update diffusivities (Kolmogorov-Prandtl relation) . . . . . . . . . . . . . . 84
4.7.12 Update stability functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7.13 Compute special values of stability functions . . . . . . . . . . . . . . . . . 85
4.7.14 Boundary conditons for the k-equation (k-epsilon style) . . . . . . . . . . . 86
4.7.15 Boundary conditons for the k-equation (Mellor-Yamada style) . . . . . . . . 88
4.7.16 Boundary conditons for the epsilon-equation . . . . . . . . . . . . . . . . . 89
4.7.17 Boundary conditons for the psi-equation . . . . . . . . . . . . . . . . . . . 90
4.7.18 Boundary conditons for the q2l-equation . . . . . . . . . . . . . . . . . . . . 92

4.8 Update turbulence production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.9 Update dimensionless alpha’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.10 Update time scale ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.11 The dynamic k-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.12 The dynamic q2/2-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.13 The dynamic kb-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.14 The dynamic q2l-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.15 The dynamic epsilon-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.16 The dynamic psi-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.17 The algebraic k-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.18 The algebraic kb-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.19 Some algebraic length-scale relations . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.20 The algebraic epsilonb-equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.21 The algebraic velocity variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.22 Algebraic length-scale from ISPRAMIX . . . . . . . . . . . . . . . . . . . . . . . . 119
4.23 Algebraic length-scale with two master scales . . . . . . . . . . . . . . . . . . . . . 121
4.24 The non-local, exact weak-equilibrium stability function . . . . . . . . . . . . . . . 123
4.25 The non-local, approximate weak-equilibrium stability function . . . . . . . . . . . 125
4.26 The local, weak-equilibrium stability functions . . . . . . . . . . . . . . . . . . . . 126
4.27 The quasi-equilibrium stability functions . . . . . . . . . . . . . . . . . . . . . . . 128
4.28 The Munk and Anderson (1948) stability function . . . . . . . . . . . . . . . . . . 129
4.29 The Schumann and Gerz (1995) stability function . . . . . . . . . . . . . . . . . . . 130
4.30 Flux Richardson number stability function . . . . . . . . . . . . . . . . . . . . . . . 131
4.31 Calculate c3 from steady-state Richardson number . . . . . . . . . . . . . . . . . . 133
4.32 Calculate steady-state Richardson number from c3 . . . . . . . . . . . . . . . . . . 134

4



4.33 Update internal wave mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.34 TKE flux from wave-breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.35 Module kpp: the KPP-turbulence model . . . . . . . . . . . . . . . . . . . . . . . 137

4.35.1 Initialise the KPP module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.35.2 Loop over the KPP-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.35.3 Compute interior fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.35.4 Compute turbulence in the surface layer . . . . . . . . . . . . . . . . . . . 147
4.35.5 Compute turbulence in the bottom layer . . . . . . . . . . . . . . . . . . . 148
4.35.6 Compute the velocity scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.36 Printing GOTM library version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5 Air–Sea interaction 152
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2 Module airsea — atmospheric fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.1 Initialise the air–sea interaction module . . . . . . . . . . . . . . . . . . . . 155
5.2.2 Obtain the air–sea fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2.3 Finish the air–sea interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2.4 Compute the exchange coefficients . . . . . . . . . . . . . . . . . . . . . . . 158
5.2.5 Calculate the heat fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.2.6 Calculate the short–wave radiation . . . . . . . . . . . . . . . . . . . . . . 159
5.2.7 Read meteo data, interpolate in time . . . . . . . . . . . . . . . . . . . . . . 160
5.2.8 Read heat flux data, interpolate in time . . . . . . . . . . . . . . . . . . . . 161
5.2.9 Read momentum flux data, interpolate in time . . . . . . . . . . . . . . . . 161
5.2.10 Read P-E, interpolate in time . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2.11 Read SST, interpolate in time . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2.12 Read SSS, interpolate in time . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.13 Integrate short–wave and sea surface fluxes . . . . . . . . . . . . . . . . . . 164
5.2.14 Set the SST to be used from model. . . . . . . . . . . . . . . . . . . . . . . 164

6 Working with observed data in GOTM 165
6.1 Module observations — the ’real’ world . . . . . . . . . . . . . . . . . . . . . . . . 166

6.1.1 Initialise the observation module . . . . . . . . . . . . . . . . . . . . . . . . 170
6.1.2 get all obs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.1.3 read obs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.1.4 read profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.1.5 get s profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.1.6 get t profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1.7 get ext pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.1.8 get int pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.1.9 read extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.1.10 get w adv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.1.11 get zeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.1.12 get vel profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.1.13 get eps profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1.14 analytical profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1.15 const NNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5



6.1.16 const NNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Saving the results 183
7.1 Module output — saving the results . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.1.1 Initialize the output module . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.1.2 Set some variables related to output . . . . . . . . . . . . . . . . . . . . . . 185
7.1.3 Save the model results in file . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.1.4 Close files used for saving model results . . . . . . . . . . . . . . . . . . . . 186
7.1.5 Compute various diagnostic/integrated variables . . . . . . . . . . . . . . . 187

7.2 Module asciiout — saving the results in ASCII . . . . . . . . . . . . . . . . . . . . 188
7.2.1 Open the file unit for writing . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.2.2 Save the model results to file . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2.3 Close files used for saving model results . . . . . . . . . . . . . . . . . . . . 190

7.3 Module ncdfout — saving the results in NetCDF . . . . . . . . . . . . . . . . . . . 191
7.3.1 Create the NetCDF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.3.2 Save model results to file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.3.3 Close files used for saving model results . . . . . . . . . . . . . . . . . . . . 193
7.3.4 Begin or end define mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.3.5 Define a new NetCDF variable . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.3.6 Set attributes for a NetCDF variable. . . . . . . . . . . . . . . . . . . . . . 195
7.3.7 Store values in a NetCDF file . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8 Utilities 197
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.2 Module util — parameters and interfaces for utilities . . . . . . . . . . . . . . . . . 198
8.3 Diffusion schemes — grid centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.4 Diffusion schemes — grid faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.5 Advection schemes — grid centers . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.6 Module mtridiagonal — solving the system . . . . . . . . . . . . . . . . . . . . . . 207

8.6.1 Allocate memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.6.2 Simplified Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.7 Module eqstate — the equation of state . . . . . . . . . . . . . . . . . . . . . . . . 209
8.7.1 Read the namelist eqstate . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.7.2 Select an equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.7.3 Compute thermal expansion coefficient . . . . . . . . . . . . . . . . . . . . . 211
8.7.4 Compute saline contraction coefficient . . . . . . . . . . . . . . . . . . . . . 211
8.7.5 The UNESCO equation of state . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.7.6 The Jackett et al. (2005) equation of state . . . . . . . . . . . . . . . . . . . 213

8.8 Interpolate from observation space to model grid . . . . . . . . . . . . . . . . . . . 214
8.9 Convert between buoyancy fluxes and others . . . . . . . . . . . . . . . . . . . . . 215
8.10 Module time — keep control of time . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.10.1 Initialise the time system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.10.2 Convert true Julian day to calendar date . . . . . . . . . . . . . . . . . . . 217
8.10.3 Convert a calendar date to true Julian day . . . . . . . . . . . . . . . . . . 218
8.10.4 Keep track of time (Julian days and seconds) . . . . . . . . . . . . . . . . . 218
8.10.5 Convert a time string to Julian day and seconds . . . . . . . . . . . . . . . 219

6



8.10.6 Convert Julian day and seconds into a time string . . . . . . . . . . . . . . 219
8.10.7 Return the time difference in seconds . . . . . . . . . . . . . . . . . . . . . 220

9 Extra features 221
9.1 Module seagrass — sea grass dynamics . . . . . . . . . . . . . . . . . . . . . . . . 222

9.1.1 Initialise the sea grass module . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.1.2 Update the sea grass model . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.1.3 Finish the sea grass calculations . . . . . . . . . . . . . . . . . . . . . . . . 224
9.1.4 Storing the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10 GOTM scenarios 227
10.1 Idealised scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10.1.1 Couette-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.1.2 Pressure-gradient driven channel flow . . . . . . . . . . . . . . . . . . . . . 228
10.1.3 Turbulence under breaking surface waves . . . . . . . . . . . . . . . . . . . 229
10.1.4 Some entrainment scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.1.5 Estuarine dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.2 Shelf sea scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.1 Fladenground Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.2 Annual North Sea simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.2.3 Seasonal North Sea simulation . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.2.4 Liverpool Bay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.2.5 Gotland Deep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.2.6 Middelbank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

10.3 Open ocean scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.3.1 Ocean Weather Ship Papa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.4 Lake scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.4.1 Lago Maggiore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Bibliography 239

7



8



1 Introduction

1.1 What is GOTM?

GOTM is the abbreviation for ‘General Ocean Turbulence Model’. It is a one-dimensional water
column model for the most important hydrodynamic and thermodynamic processes related to
vertical mixing in natural waters. In addition, it has been designed such that it can easily be
coupled to 3-D circulation models, and used as a module for the computation of vertical turbulent
mixing. The core of the model computes solutions for the one-dimensional versions of the transport
equations of momentum, salt and heat. The key component in solving these equations is the model
for the turbulent fluxes of these quantities. The strength of GOTM is the vast number of well-tested
turbulence models that have been implemented in the code. These models span the range from
simple prescribed expressions for the turbulent diffusivities up to complex Reynolds-stress models
with several differential transport equations to solve. Even though, evidently, not all turbulence
models published in oceanography could be implemented, at least one member of every relevant
model family can be found in GOTM (empirical models, energy models, two-equation models,
Algebraic Stress Models, K-profile parameterisations, etc).

Besides the classic combination of the hydrodynamic and turbulent part of the model, GOTM
has been growing considerably with the years, and new parts have been developed. Sediment trans-
port and the dynamics of sea grass have been added, state-of-the-art numerical schemes have been
implemented, and an environment for the assimilation of data and the computation of atmosphere-
ocean interactions exists now. In addition, there is a number of scientific research groups that
adopted GOTM for their own projects. Even though the modules developed by these groups (bi-
ological and bio-geochemical components, air-sea interaction modules, plotting routines, etc) are
not part of the core structure of GOTM, as downloadable from our web-site at www.gotm.net, they
are in most cases available directly from these groups. In that sense, GOTM is an integrated, com-
munity based software environment for an almost unlimited range of applications in geophysical
turbulence modelling.

1.2 The idea behind GOTM

Computer codes similar to pieces of GOTM can be found at many scientific institutions. However,
different researchers have different goals. Some are interested in the development of turbulence
models, others in oceanic applications of these models, and yet others want to compare the effects
of different turbulence models on different processes in the ocean or in lakes. The attempt to use
one of their specialised programs for one’s own project resulted in many cases in spending weeks
of work for deciphering non-documented FORTRAN lines, scattered with pre-historic fragments of
code from more or, in some cases, less talented programmers. Additional time had to be spend for
providing components for atmospheric forcing, etc, before the own research project could finally
be attacked.

To overcome these problems, the GOTM project was intiated, its purpose being twofold. First,
GOTM should provide an integrative environment for all researchers interested in the application
of a turbulence model in studies of oceanic processes. Such a software should contain a core part
for solving transport equations of mean and turbulent quantities, but equally well routines to
compute the atmosphere-ocean fluxes from meteorological or measured data, including routines
to interpolate and manipulate them. Second, however, GOTM should also be a research tool for

9



those interested in the development of turbulence models and numerical algorithms. This implies
that GOTM should always contain the state-of-the-art models and algorithms in these disciplines.
The current version of GOTM was developed under these premises.

In both cases, a detailed and comprehensible documentation is crucial, and we spent a lot of
effort to come close to this goal. All methods and models embedded in GOTM can be traced back
to scientific publications, a key requirement for the scientific use of a program. Also, we took great
care to make the FORTRAN95 code as safe, easily understandable, and extensible, as possible.

1.3 How to read the documentation

This document is the official scientific documentation of GOTM. Due to the fast and continuing
evolution of GOTM, we have been looking for a new and flexible way of giving a comprehensive
and up-to-date documentation for GOTM. We decided for the following strategy.

Every module of GOTM is accompanied by an introductory text on the general theory of
the subject, including mathematical derivations, bibliographic references, and the definition of the
most important variables. These introductory parts, which should give the reader a brief theoretical
overview of what is coded in the modules, are expected to be relatively stable. References are given
to more comprehensive introductory or advanced media for each subject.

For the actual documentation of the FORTRAN95 code, which is more likely subject to frequent
changes and extensions, a different strategy has been followed. For every module, internal or
external subroutine or function, a short piece of documentation in LATEX has been directly
written into the code. These fragments of the documentation will be updated every time the code
changes. We use a software called PROTEX, which looks into every FORTRAN file of GOTM,
extracts the LATEX parts, and compiles some information about the FORTRAN interfaces, public
member functions, public data members, defined parameters, etc. All these pieces of information
are assembled by PROTEX to yield a nice documentation including table of contents, figures,
tables, references, and formulae for each part of the program. The largest part of the report has
been created in this way. Note that PROTEX looks for certain key words in the FORTRAN code
to organise the structure of the final document. Therefore, don’t be confused if you find things like
!DESCRIPTION:, !INTERFACE:, !PUBLIC DATA MEMBERS:, etc, in the FORTRAN files. These are
always preceded by an exclamation mark, and thus invisible for your FORTRAN compiler.

If you are new to GOTM, we recommend to completely go through the core parts of GOTM
described in section 2, section 3, and section 4. In these sections, you will find also references to
the relevant introductory literature. The other parts of this documentation should be used like
an encyclopedia: you can look up things fast when you need more information about parts of the
program. Extra comments can be found in the form of standard FORTRAN comments that should
help users to find their way through the lines of the code.

A special status in this documentation has section 10 illustrating particular scenarios prepared
for GOTM. This section contains useful information about the theoretical background and the
implementation of each scenario currently available in GOTM. Scenarios range from simple test
cases, like a turbulent Couette flow, to full oceanic applications including meteorological forcing
and comparison to measured data. The most simple scenarios descibed in section 10 serve as a
little tutorial, in which the key algorithms of GOTM are introduced in a practical way.

This documentation does not contain information about how to download, compile and run
the code and the test cases. All information necessary to run GOTM on a number of well-known
platforms is compiled at www.gotm.net. If you wish to directly contact to the GOTM developers,

10



please write an e-mail to gotm-devel@gotm.net. All users of GOTM, who signed up on the GOTM
web page, will be on the users’ mailing list, gotm-users@gotm.net. Information about updates,
bug fixes, and new versions of GOTM are communicated via this list.

1.4 Acknowledgements

The authors of this report are grateful to the former members of the GOTM Team for their
persisting cooperation. These are particularly members from the very first days of GOTM which
took place at the Joint Research Centre in Ispra (Italy) in 1998: Manuel Ruiz Villarreal who worked
after the Ispra time in Santiago de Compostela (Spain), Lisboa (Portugal), Hamburg (Germany),
and Warnemünde (Germany) before he moved back to his home country for working in A Coruña
(Spain). Pierre-Phillipe Mathieu who went to Reading (U.K.) for some time before he arrived
in Frascati (Italy) recently. We further want to acknowledge those of the almost 200 subscribed
users of GOTM from all over the world who helped us to improve GOTM, reported bugs, and
motivated us to go on with this zero-budget project. It was also the important role which GOTM
played in several projects, mostly funded by the European Commission, which helped a lot to
maintain GOTM. These projects were MAS3-CT96-0053 (’PHASE’), MAS3-CT96-0051 (’MTP II-
MATER’), MAS3-CT97-0025 (’PROVESS’), and especially CARTUM (Comparative Analysis and
Rationalisation of Second-Moment Turbulence Models), a brainstorming activity (MAS3-CT98-
0172), which brought together turbulence specialists from all over the world. We are finally grateful
to all those other people working on the Public Domain Software without which a project like
GOTM would be unthinkable: LATEX, PROTEX, LINUX and many others.

11



12



2 The GOTM main program

2.1 Introduction

The purpose of the main program and its associated module gotm is the construction of a solid
framework for the interaction of all components of GOTM. Almost no actual computations are
carried out inside this part of the program. However, the most important processes are triggered
from there: the initialization of all lower-level modules is actuated and the time stepping of the
differential equations is managed. Also calls to subroutines responsible for the air-sea interaction
and the ouput of the results are managed. Details for each of the (few) routines are given in the
following.

13



2.2 GOTM — the main program

INTERFACE:

program main

DESCRIPTION:

This is the main program of GOTM. However, because GOTM has been programmed in a modular
way, this routine is very short and merely calls internal routines of other modules. Its main purpose
is to update the time and to call the internal routines init_gotm(), time_loop(), and clean_up(),
which are defined in the module gotm as discussed in section 2.3.

USES:

use time
use gotm
IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: main.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1.4 2003/03/10 09:20:28 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.3 2001/11/18 13:07:06 gotm
Cleaned
Revision 1.3 2001/09/19 08:26:08 gotm
Only calls CPU_time() if -DFORTRAN95
Revision 1.2 2001/05/31 12:00:52 gotm
Correction in the calculation of the shear squared calculation - now according
to Burchard 1995 (Ph.D. thesis).
Also some cosmetics and cleaning of Makefiles.
Revision 1.1.1.1 2001/02/12 15:55:59 gotm
initial import into CVS

14



2.3 Module gotm — the general framework

INTERFACE:

module gotm

DESCRIPTION:

This is ’where it all happens’. This module provides the internal routines init_gotm() to initialise
the whole model and time_loop() to manage the time-stepping of all fields. These two routines
in turn call more specialised routines e.g. of the meanflow and turbulence modules to delegate
the job.
Here is also the place for a few words on FORTRAN ‘units’ we used. The method of FORTRAN
units is quite rigid and also a bit dangerous, but lacking a better alternative we adopted it here.
This requires the definition of ranges of units for different purposes. In GOTM we strongly suggest
to use units according to the following conventions.

• unit=10 is reserved for reading namelists.

• units 20-29 are reserved for the airsea module.

• units 30-39 are reserved for the meanflow module.

• units 40-49 are reserved for the turbulence module.

• units 50-59 are reserved for the output module.

• units 60-69 are reserved for the extra modules like those dealing with sediments or sea-grass.

• units 70- are not reserved and can be used as you wish.

USES:

use meanflow
use observations
use output
use time

use airsea, only: init_air_sea,air_sea_interaction
use airsea, only: set_sst,integrated_fluxes
use airsea, only: calc_fluxes
use airsea, only: tx,ty,I_0,heat,p_e

use turbulence, only: turb_method
use turbulence, only: init_turbulence,do_turbulence
use turbulence, only: num,nuh,nus
use turbulence, only: const_num,const_nuh
use turbulence, only: gamu,gamv,gamh,gams
use turbulence, only: kappa

use kpp, only: init_kpp,do_kpp

15



use mtridiagonal,only: init_tridiagonal
use eqstate, only: init_eqstate

ifdef SEAGRASS
use seagrass

endif

IMPLICIT NONE
private

PUBLIC MEMBER FUNCTIONS:

public init_gotm, time_loop, clean_up

DEFINED PARAMETERS:

integer, parameter :: namlst=10
ifdef SEAGRASS
integer, parameter :: unit_seagrass=62

endif

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: gotm.F90,v $
Revision 1.22 2005/08/11 12:29:38 lars
added #ifdef for xP argument in do_turbulence()
Revision 1.21 2005/07/20 09:36:11 lars
bug-fix in variances output
Revision 1.20 2005/07/19 16:46:14 hb
removed superfluous variables - NNT, NNS, SSU, SSV
Revision 1.19 2005/07/19 16:33:22 hb
moved variances() from do_turbulence() to time_loop()
Revision 1.18 2005/07/12 10:13:21 hb
dependence of init_turbulence from depth, z0s, z0b removed
Revision 1.17 2005/07/06 15:30:17 kbk
added KPP, no bio, no sediment, updated documentation
Revision 1.16 2004/08/02 08:35:46 hb
no need to pass time information
Revision 1.15 2004/07/29 17:36:36 hb
separate reading fluxes from bio() - benefit of 3D models
Revision 1.14 2004/05/28 13:24:49 hb
Extention of bio_iow to fluff layer and surface nutrient fluxes
Revision 1.13 2004/03/30 11:31:52 kbk
h in parameter list to init_bio()
Revision 1.12 2004/03/04 10:13:01 kbk
calc_sediment --> do_sediment
Revision 1.11 2003/09/16 12:17:10 hb
added new biological model - bio_iow
Revision 1.10 2003/07/23 12:14:07 hb

16



preparing for general bio interface
Revision 1.9 2003/04/04 14:25:52 hb
First iteration of four-compartment geobiochemical model implemented
Revision 1.8 2003/04/01 17:01:00 hb
Added infrastructure for geobiochemical model
Revision 1.7 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1.6 2003/03/28 09:11:30 kbk
removed tabs
Revision 1.5 2003/03/10 09:20:27 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.3 2001/11/18 15:58:02 gotm
Vertical grid can now be read from file
Revision 1.2 2001/06/13 07:40:39 gotm
Lon, lat was hardcoded in meteo.F90 - now passed via init_meteo()
Revision 1.1.1.1 2001/02/12 15:55:59 gotm
initial import into CVS

2.3.1 Initialise the model

INTERFACE:

subroutine init_gotm()

DESCRIPTION:

This internal routine triggers the initialization of the model. The first section reads the namelists
of gotmrun.inp with the user specifications. Then, one by one each of the modules are initialised
with help of more specialised routines like init_meanflow() or init_turbulence() defined inside
their modules, respectively.
Note that the KPP-turbulence model requires not only a call to init_kpp() but before also a
call to init_turbulence(), since there some fields (fluxes, diffusivities, etc) are declared and the
turbulence namelist is read.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for the gotm module

2.3.2 Manage global time–stepping

INTERFACE:

17



subroutine time_loop()

DESCRIPTION:

This internal routine is the heart of the code. It contains the main time-loop inside of which all
routines required during the time step are called. The following main processes are successively
triggered.

1. The model time is updated and the output is prepared.

2. Air-sea interactions (flux, SST) are computed.

3. The time step is performed on the mean-flow equations (momentum, temperature).

4. Some quantities related to shear and stratification are updated (shear-number, buoyancy
frequency, etc).

5. Turbulence is updated depending on what turbulence closure model has been specified by
the user.

6. The results are written to the output files.

Depending on macros set for the Fortran pre-processor, extra features like the effects of sea-grass
or sediments are considered in this routine (see section 9).

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for the gotm module

2.3.3 The run is over — now clean up.

INTERFACE:

subroutine clean_up()

DESCRIPTION:

This function is just a wrapper for the external routine close_output() discussed in section 7.
All open files will be closed after this call.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for the gotm module

18



3 The mean flow model

3.1 Introduction

This module contains the definitions of the most important mean flow variables used in geophysical
models. In GOTM, these are

• the mean horizontal velocity components, U and V

• the mean potential temperature, Θ, (or the mean buoyancy, B)

• the mean salinity, S

Note that in general a variable φ describing a turbulent field can be decomposed into a mean and
a fluctuating part. In GOTM, we use the notation

φ = 〈φ〉 + φ′ , (1)

where 〈 〉 denotes the ensemble mean and the prime the fluctuating part. In addition, for brevity,
we use the following conventions:

U = 〈u〉 for the x-velocity
V = 〈v〉 for the y-velocity
P = 〈p〉 for the pressure
Θ = 〈θ〉 for the potential temperature
B = 〈b〉 for the buoyancy
S = 〈s〉 for the salinity

(2)

Note that, if not explicitly mentioned, GOTM uses the units kg, m, s, K. Further conventions are
introduced in the turbulence chapter section 4. All operations on these meanflow variables are
executed and coordinated in the meanflow module.

3.1.1 Physics

Due to the one-dimensional character of GOTM, the state-variables listed above are assumed to be
horizontally homogeneous, depending only on the vertical z-coordinate. As a consequence, all hor-
izontal gradients have to be taken from observations, or they have to be estimated, parameterised
or neglected.
For example, the surface slopes ∂xζ and ∂yζ representing the barotropic pressure-gradients may
be determined by means of local observations or results from three-dimensional numerical models.
It is also possible to prescribe a time series of the near-bed velocity components for reconstruct-
ing the barotropic pressure gradient, see Burchard (1999). The implementation of these options
for the external pressure gradient is carried out in extpressure.F90, described in section 3.7.
The internal pressure-gradient, which results from horizontal density gradients, can be prescribed
from observations of horizontal gradients of Θ and S or from three-dimensional model results (see
intpressure.F90 in section 3.8). These gradients may also be used for horizontally advecting Θ
and S (see section 3.10 and section 3.11).
Another option in GOTM for parameterising the advection of Θ and S is to relax the model results
to observations. Evidently, this raises questions about the physical consistency of the model, but it
might help to provide a more realistic density field for studies of turbulence dynamics. Nudging is
also possible for the horizontal velocity components. This makes sense in order to initialise inertial

19



oscillations from observed velocity profiles, see section 3.5 and section 3.6. In the momentum
equations, advection and horizontal diffusion terms are neglected.
In hydrostatic ocean models, the vertical velocity is calculated by means of the continuity equation,
where the horizontal gradients of U and V are needed. Since these are not available or set to zero,
the assumption of zero vertical velocity would be consistent. In many applications however, a non-
zero vertical velocity is needed in order to reflect the vertical adiabatic motion of e.g. a thermocline.
In GOTM, we have thus included the option of prescribing a vertical velocity time series at one
height level which might be vertically moving. Vertical velocities at the surface and at the bottom
are prescribed according to the kinematic boundary conditions (w = 0 at the bottom and w = ∂tζ
at the surface), and between these locations and the prescribed vertical velocity at a certain height,
linear interpolation is applied, see updategrid.F90 in section 3.3. This vertical velocity is then
used for the vertical advection of all prognostic quantities.
Standard relations according to the law of the wall are used for deriving bottom boundary con-
ditions for the momentum equations (see friction.F90 in section 3.9). At the sea surface, they
have to be prescribed or calculated from meteorological observations with the aid of bulk formulae
using the simulated or observed sea surface temperature (see section 5.2). In stratification.F90
described in section 3.14, the buoyancy b as defined in equation (33) is calculated by means of the
UNESCO equation of state (Fofonoff and Millard (1983)) or its linearised version. In special cases,
the buoyancy may also be calculated from a simple transport equation. stratification.F90 is
also used for calculating the Brunt-Väisälä frequency, N .
The turbulent fluxes are calculated by means of various different turbulence closure models de-
scribed in great detail in the turbulence module, see section 4.7. As a simplifying alternative,
mixing can be computed according to the so-called ‘convective adjustment’ algorithm, see section
3.15.
Furthermore, the vertical grid is also defined in the meanflow module (see updategrid.F90 in
section 3.3). Choices for the numerical grid are so-called σ-coordinates with layers heights having
a fixed portion of the water depth throughout the simulation. Equidistant and non-equidistant
grids are possible.

3.1.2 Numerics

For the spatial discretisation, the water column is divided into Ni layers of not necessarily equal
thickness hi,

hi = (γi − γi−1)D, i = 1, . . . , Ni , (3)

with nondimensional interfaces γi with γ0 = −1, γi−1 < γi and γNi
= 0, see Burchard and Petersen

(1997).
The discrete values for the mean flow quantities U , V , Θ, and S represent interval means and are
therefore located at the centres of the intervals, and the turbulent quantities like k, L, ε, νt, ν

′

t, N ,
P , G, cµ, and c′µ are positioned at the interfaces of the intervals (see section 4.7). The indexing
is such, that the interface above an interval has the same index as the interval itself. This means
that mean flow quantities range from i = 1, .., Ni while turbulent quantities range from i = 0, .., Ni
(see figure 1). The staggering of the grid allows for a straight-forward discretisation of the vertical
fluxes of momentum and tracers without averaging. However, for the vertical fluxes of e.g. k and
ε, averaging of the eddy diffusivities is necessary. This is only problematic for the fluxes near the
surface and the bottom, where viscosities at the boundaries have to be considered for the averaging.
These can however be derived from the law of the wall.
The time stepping is equidistant, based on two time levels and not limited by Courant numbers,
because of the absence of advection and an implicit treatment of vertical diffusion, see figure 2. In

20



z

Figure 1: Spatial organisation and indexing of the numerical grid.

s(1-s) DD D

Figure 2: Temporal organisation and indexing of the numerical grid. Here, a time stepping slightly
more implicit than the Crank and Nicolson (1947) scheme with σ = 0.6 is shown.

the following, the discretisation of a simple diffusion equation,

∂X

∂t
− ∂

∂z

(

ν
∂X

∂z

)

= 0 , (4)

will be illustrated for Neumann-type boundary conditions

ν
∂X

∂z
= Fs for z = ζ, (5)

and

ν
∂X

∂z
= Fb for z = −H. (6)

The semi-implicit discretisation of (4) can then be written as

Xn+1
Ni

−Xn
Ni

∆t
−
Fs − νnNi−1

Xn+σ

Ni
−Xn+σ

Ni−1

0.5(hn+1

Ni
+hn+1

Ni−1
)

hn+1
Ni

= , (7)

21



Xn+1
i −Xn

i

∆t
−
νni

Xn+σ

i+1
−Xn+σ

i

0.5(hn+1

i+1
+hn+1

i
)
− νni−1

Xn+σ

i
−Xn+σ

i−1

0.5(hn+1

i
+hn+1

i−1
)

hn+1
i

= 0 , (8)

Xn+1
1 −Xn

1

∆t
−
νn1

Xn+σ

2
−Xn+σ

1

0.5(hn+1

2
+hn+1

1
)
− Fb

hn+1
1

= 0 , (9)

for 1 < i < Ni. Here, the semi-implicit time level is defined by

Xn+σ = σXn+1 + (1 − σ)Xn. (10)

Thus, for σ = 0, a fully explicit, for σ = 1 a fully implicit, and for σ = 0.5 the Crank and Nicolson
(1947) second-order scheme are obtained. Figure 2 shows an example for σ = 0.6. It should be
noted that often a time stepping is preferable which is slightly more implicit than the Crank and
Nicolson (1947) scheme in order to obtain asymptotic stability. The resulting linear system of
equations (7) – (9) with tri-diagonal matrix structure is solved by means of the simplified Gaussian
elimination.
With the same strategy, a very similar system of equations can be derived for variables located at
the interfaces of the grid cells, i.e. variables describing turbulence.

22



3.2 Module Mean Flow

INTERFACE:

module meanflow

DESCRIPTION:

This module provides all variables necessary for the meanflow calculation and also makes the proper
initialisations.

USES:

IMPLICIT NONE
Default all is private.
private

PUBLIC MEMBER FUNCTIONS:

public init_meanflow

PUBLIC DATA MEMBERS:

coordinate z, layer thicknesses
REALTYPE, public, dimension(:), allocatable :: z,h,ho

the velocity components
REALTYPE, public, dimension(:), allocatable :: u,v,w

velocity at old time step
REALTYPE, public, dimension(:), allocatable :: uo,vo

potential temperature, salinity
REALTYPE, public, dimension(:), allocatable :: T,S,rho

boyancy frequency squared
(total, from temperature only, from salinity only)
REALTYPE, public, dimension(:), allocatable :: NN,NNT,NNS

shear-frequency squared
(total, from u only, from v only)
REALTYPE, public, dimension(:), allocatable :: SS,SSU,SSV

buoyancy, short-wave radiation,
extra production of tke by see-grass etc
REALTYPE, public, dimension(:), allocatable :: buoy,rad,xP

a dummy array
(most often used for diffusivities)
REALTYPE, public, dimension(:), allocatable :: avh

23



grid-related vertical velocity
REALTYPE, public, dimension(:), allocatable :: w_grid

extra friction terms due to e.g. seagrass
REALTYPE, public, dimension(:), allocatable :: fric,drag

shading in the water column
REALTYPE, public, dimension(:), allocatable :: bioshade

ifdef EXTRA_OUTPUT

dummies for testing
REALTYPE, public, dimension(:), allocatable :: mean1,mean2,mean3,mean4,mean5

endif

the ’meanflow’ namelist
REALTYPE, public :: h0b=0.05
REALTYPE, public :: z0s_min=0.02
logical, public :: charnok=.false.
REALTYPE, public :: charnok_val=1400.
REALTYPE, public :: ddu=0.
REALTYPE, public :: ddl=0.
integer, public :: grid_method=1
REALTYPE, public :: c1ad=0.8
REALTYPE, public :: c2ad=0.0
REALTYPE, public :: c3ad=0.1
REALTYPE, public :: c4ad=0.1
REALTYPE, public :: Tgrid=3600.
REALTYPE, public :: NNnorm=0.2
REALTYPE, public :: SSnorm=0.2
REALTYPE, public :: dsurf=10.0
REALTYPE, public :: dtgrid=5.
character(LEN=PATH_MAX), public :: grid_file=’grid.dat’
REALTYPE, public :: gravity=9.81
REALTYPE, public :: rho_0=1027.
REALTYPE, public :: cp=3985.
REALTYPE, public :: avmolu=1.3e-6
REALTYPE, public :: avmolT=1.4e-7
REALTYPE, public :: avmolS=1.1e-9
integer, public :: MaxItz0b=10
logical, public :: no_shear=.false.

the roughness lengths
REALTYPE, public :: z0b,z0s,za

the coriolis parameter
REALTYPE, public :: cori

the friction velocities

24



REALTYPE, public :: u_taub,u_taus

other stuff
integer, public :: eq_state_method
REALTYPE, public :: depth0=0.
REALTYPE, public :: depth
REALTYPE, public :: obs_heat_content=0.
REALTYPE, public :: calc_heat_content=0.

DEFINED PARAMETERS:

REALTYPE, public, parameter :: pi=3.141592654

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: meanflow.F90,v $
Revision 1.11 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.10 2004/01/27 08:33:20 lars
omega-value bug fix
Revision 1.9 2004/01/12 15:21:09 lars
added za for sediment-induced bottom roughness
Revision 1.8 2003/07/23 12:33:21 hb
fixed bioshade init and use
Revision 1.6 2003/04/05 07:01:16 kbk
moved bioshade variable to meanflow - to compile properly
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:15:01 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 15:58:02 gotm
Vertical grid can now be read from file
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

3.2.1 Initialisation of the mean flow variables

INTERFACE:

subroutine init_meanflow(namlst,fn,nlev,latitude)

DESCRIPTION:

Allocates memory and initialises everything related to the ‘meanflow’ component of GOTM.

USES:

25



IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: namlst
character(len=*), intent(in) :: fn
integer, intent(in) :: nlev
REALTYPE, intent(in) :: latitude

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See log for the meanflow module

26



3.3 The vertical grid

INTERFACE:

subroutine updategrid(nlev,dt,zeta)

DESCRIPTION:

This subroutine calculates for each time step new layer thicknesses in order to fit them to the
changing water depth. Three different grids can be specified:

1. Equidistant grid with possible zooming towards surface and bottom. The number of layers,
nlev, and the zooming factors, ddu=du and ddl=dl, are specified in gotmmean.inp. Zooming
is applied according to the formula

hk = D
tanh

(

(dl + du)
k
M − dl

)

+ tanh(dl)

tanh(dl) + tanh(du)
− 1 . (11)

From this formula, the following grids are constructed:

• dl = du = 0 results in equidistant discretisations.

• dl > 0, du = 0 results in zooming near the bottom.

• dl = 0, du > 0 results in zooming near the surface.

• dl > 0, du > 0 results in double zooming nea both, the surface and the bottom.

2. Sigma-layers. The fraction that every layer occupies is read-in from file, see gotmmean.inp.

3. Cartesian layers. The height of every layer is read in from file, see gotmmean.inp. This
method is not recommended when a varying sea surface is considered.

USES:

use meanflow, only: depth0,depth,z,h,ho,ddu,ddl,grid_method
use meanflow, only: NN,SS,w_grid,grid_file,w
use observations, only: zeta_method,w_adv_method,w_adv,w_height,w_adv_discr
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: dt,zeta

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: updategrid.F90,v $
Revision 1.12 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.11 2004/08/18 11:46:19 lars
updated documentation
Revision 1.10 2003/07/23 10:52:52 hb

27



proper initialisation of gridinit + cleaning
Revision 1.9 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.8 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.7 2003/03/10 13:43:42 lars
double definitions removed - to conform with DEC compiler
Revision 1.6 2003/03/10 08:50:08 gotm
Improved documentation and cleaned up code
Revision 1.5 2002/02/08 08:33:44 gotm
Manuel added support for reading grid distribution from file
Revision 1.4 2001/11/27 19:51:49 gotm
Cleaned
Revision 1.3 2001/11/27 15:38:06 gotm
Possible to read coordinate distribution from file
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

28



3.4 The Coriolis rotation

INTERFACE:

subroutine coriolis(nlev,dt)

DESCRIPTION:

This subroutine carries out the Coriolis rotation by applying a 2×2 rotation matrix with the angle
f∆t on the horizontal velocity vector (U, V ).

USES:

USE meanflow, only: u,v,cori
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: dt

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: coriolis.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:38:03 lars
corrected typo in docu
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

29



3.5 The U-momentum equation

INTERFACE:

subroutine uequation(nlev,dt,cnpar,tx,num,gamu,Method)

DESCRIPTION:

This subroutine computes the transport of momentum in x-direction according to

U̇ = DU − g
∂ζ

∂x
+

∫ ζ

z

∂B

∂x
dz′ − 1

τUR
(U − Uobs) − CfU

√

U2 + V 2 , (12)

where U̇ denotes the material derivative of U , ζ the free surface elevation and B the mean buoyancy
defined in (33). DU is the sum of the turbulent and viscous transport terms modelled according to

DU =
∂

∂z

(

(νt + ν)
∂U

∂z
− Γ̃U

)

. (13)

In this equation, νt and ν are the turbulent and molecular diffusivities of momentum, respectively,
and Γ̃U denotes the non-local flux of momentum, see section 4.
Coriolis rotation is accounted for as described in section 3.4. The external pressure gradient (second
term on right hand side) is applied here only if surface slopes are directly given. Otherwise, the
gradient is computed as described in section 3.7, see Burchard (1999). The internal pressure
gradient (third term on right hand side) is calculated in intpressure.F90, see section 3.8. The
fifth term on the right hand side allows for nudging the velocity to observed profiles with the
relaxation time scale τUR . This is useful for initialising velocity profiles in case of significant inertial
oscillations. Bottom friction is implemented implicitly using the fourth term on the right hand
side. Implicit friction may be applied on all levels in order to allow for inner friction terms such as
seagrass friction (see section 9.1).
Diffusion is numerically treated implicitly, see equations (7)- (9). The tri-diagonal matrix is solved
then by a simplified Gauss elimination. Vertical advection is included, see section 8.5.

USES:

use meanflow, only: gravity,avmolu
use meanflow, only: h,u,uo,v,w,avh
use meanflow, only: drag,SS
use observations, only: w_adv_method,w_adv_discr
use observations, only: uProf,vel_relax_tau,vel_relax_ramp
use observations, only: idpdx,dpdx
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

30



time step (s)
REALTYPE, intent(in) :: dt

numerical "implicitness" parameter
REALTYPE, intent(in) :: cnpar

wind stress in x-direction
divided by rho_0 (m^2/s^2)
REALTYPE, intent(in) :: tx

diffusivity of momentum (m^2/s)
REALTYPE, intent(in) :: num(0:nlev)

non-local flux of momentum (m^2/s^2)
REALTYPE, intent(in) :: gamu(0:nlev)

method to compute external
pressure gradient
integer, intent(in) :: method

DEFINED PARAMETERS:

REALTYPE, parameter :: long=1.0D15

REVISION HISTORY:

Original author(s): Lars Umlauf
(re-write after first version of
Hans Burchard and Karsten Bolding)

$Log: uequation.F90,v $
Revision 1.8 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.7 2004/08/18 11:44:49 lars
updated documentation
Revision 1.6 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.5 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.4 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.3 2001/05/31 12:00:52 gotm
Correction in the calculation of the shear squared calculation
--- now according to Burchard 1995 (Ph.D. thesis).
Also some cosmetics and cleaning of Makefiles.

31



3.6 The V-momentum equation

INTERFACE:

subroutine vequation(nlev,dt,cnpar,ty,num,gamv,Method)

DESCRIPTION:

This subroutine computes the transport of momentum in y-direction according to

V̇ = DV − g
∂ζ

∂y
+

∫ ζ

z

∂B

∂y
dz′ − 1

τVR
(V − Vobs) − CfV

√

U2 + V 2 , (14)

where V̇ denotes the material derivative of V , ζ the free surface elevation and B the mean buoyancy
defined in (33). DV is the sum of the turbulent and viscous transport terms modelled according to

DV =
∂

∂z

(

(νt + ν)
∂V

∂z
− Γ̃V

)

. (15)

In this equation, νt and ν are the turbulent and molecular diffusivities of momentum, respectively,
and Γ̃V denotes the non-local flux of momentum, see section 4.
Coriolis rotation is accounted for as described in section 3.4. All other terms are completely
analogous to those described in section 3.5.

USES:

use meanflow, only: gravity,avmolu
use meanflow, only: h,v,vo,u,w,avh
use meanflow, only: drag,SS
use observations, only: w_adv_method,w_adv_discr
use observations, only: vProf,vel_relax_tau,vel_relax_ramp
use observations, only: idpdy,dpdy
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

numerical "implicitness" parameter
REALTYPE, intent(in) :: cnpar

wind stress in y-direction
divided by rho_0 (m^2/s^2)

32



REALTYPE, intent(in) :: ty

diffusivity of momentum (m^2/s)
REALTYPE, intent(in) :: num(0:nlev)

non-local flux of momentum (m^2/s^2)
REALTYPE, intent(in) :: gamv(0:nlev)

method to compute external
pressure gradient
integer, intent(in) :: method

DEFINED PARAMETERS:

REALTYPE, parameter :: long=1.0D15

REVISION HISTORY:

Original author(s): Lars Umlauf
(re-write after first version of
Hans Burchard and Karsten Bolding)

$Log: vequation.F90,v $
Revision 1.7 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.7 2004/08/18 11:44:49 lars
updated documentation
Revision 1.6 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.5 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.4 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.3 2001/05/31 12:00:52 gotm
Correction in the calculation of the shear squared calculation
--- now according to Burchard 1995 (Ph.D. thesis).
Also some cosmetics and cleaning of Makefiles.

33



3.7 The external pressure-gradient

INTERFACE:

subroutine extpressure(method,nlev)

DESCRIPTION:

This subroutine calculates the external pressure-gradient. Two methods are implemented here,
relating either to the velocity vector at a given height above bed prescribed or to the vector for the
vertical mean velocity. In the first case, dpdx and dpdy are x- and y-components of the prescribed
velocity vector at the height h_press above the bed. The velocity profile will in this routive be
shifted by a vertically constant vector such that the resulting profile has an (interpolated) velocity
at h_press which is identical to the prescribed value. In the second case, dpdx and dpdy are x-
and y-components of the prescribed vertical mean velocity vector, and h_press is not used. Here
the velocity profile is shifted in such a way that the resulting mean velocty vector is identical to
dpdx and dpdy.
For both cases, this is a recalculation of the external pressure gradient, since at all points the same
acceleration has been applied in this operator split method.
If the external pressure-gradient is prescribed by the surface slope, then it is directly inserted in
(12) and (14).
For details of this method, see Burchard (1999).

USES:

use meanflow, only: u,v,h
use observations, only: dpdx,dpdy,h_press
IMPLICIT NONE

INPUT PARAMETERS:

method to compute external
pressure gradient
integer, intent(in) :: method

number of vertical layers
integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: extpressure.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:41:02 lars
corrected typo in docu
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm

34



Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

35



3.8 The internal pressure-gradient

INTERFACE:

subroutine intpressure(nlev)

DESCRIPTION:

With the hydrostatic assumption
∂P

∂z
+ g〈ρ〉 = 0 , (16)

where P denotes the mean pressure, g = 9.81ms−2 the gravitational acceleration and 〈ρ〉 the mean
density, the components of the pressure-gradient may be expressed as

− 1

ρ0

∂P

∂x
= −g ∂ζ

∂x
+

∫ ζ

z

∂B

∂x
dz′ (17)

and

− 1

ρ0

∂P

∂y
= −g ∂ζ

∂y
+

∫ ζ

z

∂B

∂y
dz′ , (18)

where ζ is the surface elevation and B the mean buoyancy as defined in (33).
The first term on the right hand side in (17) and (18) is the external pressure-gradient due to
surface slopes, and the second the internal pressure-gradient due to the density gradient. The
internal pressure-gradient will only be established by gradients of mean potential temperature Θ
and mean salinity S. Sediment concentration is assumed to be horizontally homogeneous.
In this subroutine, first, the horizontal buoyancy gradients, ∂xB and ∂yB, are calculated from the
prescribed gradients of salinity, ∂xS and ∂yS, and temperature, ∂xΘ and ∂yΘ, according to the
finite-difference expression

∂B

∂x
≈ B(S + ∆xS,Θ + ∆xΘ, P ) −B(S,Θ, P )

∆x
, (19)

∂B

∂y
≈ B(S + ∆yS,Θ + ∆yΘ, P ) −B(S, θ, P )

∆y
, (20)

where the defintions
∆xS = ∆x∂xS , ∆yS = ∆y∂yS , (21)

and
∆xΘ = ∆x∂xΘ , ∆yΘ = ∆y∂yΘ , (22)

have been used. ∆x and ∆y are ”small enough”, but otherwise arbitrary length scales. The
buoyancy gradients computed with this method are then vertically integrated according to (17)
and (18).
The horizontal salinity and temperature gradients have to supplied by the user, either as constant
values or as profiles given in a file (see obs.inp).

USES:

36



use meanflow, only: T,S
use meanflow, only: gravity,rho_0,h
use observations, only: dsdx,dsdy,dtdx,dtdy
use observations, only: idpdx,idpdy,int_press_method
use eqstate, only: eqstate1
IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: intpressure.F90,v $
Revision 1.7 2005/08/11 12:32:50 lars
corrected error in Latex referencing
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:43:51 lars
updated documentation
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

37



3.9 The vertical friction

INTERFACE:

subroutine friction(kappa,avmolu,tx,ty)

DESCRIPTION:

This subroutine updates the bottom roughness

zb0 = 0.1
ν

ub
∗

+ 0.03hb0 + za . (23)

The first term on the right hand side of (23) represents the limit for hydraulically smooth surfaces,
the second term the limit for completely rough surfaces. Note that the third term, za, is the
contribution of suspended sediments to the roughness length, see Smith and McLean (1977). It is
updated during calls to the sediment-routines.
The law-of-the-wall relations are used to compute the friction velocity

ub
∗

= r
√

U2
1 + V 2

1 , (24)

where U1 and V1 are the components of the mean velocity at the center of the lowest cell. We used
the abbreviation

r =
κ

ln
(

0.5h1+zb

0

zb

0

) , (25)

where κ is the von Kármán constant and the index ‘1’ indicates values at the center of the first
grid box at the bottom (version 1). Another expression for r can be derived using the mean value
of the velocity in the lowest grid box, and not its value in the middle of the box (version 2). Also
this method is supported in friction() and can be activated by uncommenting one line in the
code.
If no breaking surface waves are considered, the law of the wall also holds at the surface. The
surface roughness length may be calculated according to the Charnok (1955) formula,

zs0 = α
(us

∗
)2

g
. (26)

The model constant α is read in as charnok_val from the meanflow namelist.

USES:

use meanflow, only: h,z0b,h0b,MaxItz0b,z0s,za
use meanflow, only: u,v,gravity
use meanflow, only: u_taub,u_taus,drag
use meanflow, only: charnok,charnok_val,z0s_min

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: kappa,avmolu,tx,ty

38



REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: friction.F90,v $
Revision 1.8 2005/08/11 12:31:54 lars
corrected error in documentation. Thanks to Patrizio Mariani
Revision 1.7 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.6 2004/08/18 12:33:30 lars
updated documentation
Revision 1.5 2004/01/13 08:39:49 lars
included roughness due to suspended sediments
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

39



3.10 The temperature equation

INTERFACE:

subroutine temperature(nlev,dt,cnpar,I_0,heat,nuh,gamh,rad)

DESCRIPTION:

This subroutine computes the balance of heat in the form

Θ̇ = DΘ − 1

τΘ
R

(Θ − Θobs) +
1

Cpρ0

∂I

∂z
, (27)

where Θ̇ denotes the material derivative of the mean potential temperature Θ, and DΘ is the sum
of the turbulent and viscous transport terms modelled according to

DΘ =
∂

∂z

(

(

νΘ
t + νΘ

) ∂Θ

∂z
− Γ̃Θ

)

. (28)

In this equation, νΘ
t and νΘ are the turbulent and molecular diffusivities of heat, respectively, and

Γ̃Θ denotes the non-local flux of heat, see section 4.
Horizontal advection is optionally included (see obs.inp) by means of prescribed horizontal gra-
dients ∂xΘ and ∂yΘ and calculated horizontal mean velocities U and V . Relaxation with the time
scale τΘ

R towards a precribed profile Θobs, changing in time, is possible.
The sum of latent, sensible, and longwave radiation is treated as a boundary condition. Solar
radiation is treated as an inner source, I(z). It is computed according the exponential law (see
Paulson and Simpson (1977))

I(z) = I0

(

Ae−η1z + (1 −A)e−η2z
)

. (29)

The absorbtion coefficients η1 and η2 depend on the water type and have to be prescribed either
by means of choosing a Jerlov (1968) class (see Paulson and Simpson (1977)) or by reading in a
file through the namelist extinct in obs.inp.
Diffusion is numerically treated implicitly, see equations (7)- (9). The tri-diagonal matrix is solved
then by a simplified Gauss elimination. Vertical advection is included, see section 8.5.

USES:

use meanflow, only: avmolt,rho_0,cp
use meanflow, only: h,u,v,w,T,avh
use meanflow, only: bioshade
use observations, only: dtdx,dtdy,t_adv
use observations, only: w_adv_discr,w_adv_method
use observations, only: tprof,TRelaxTau
use observations, only: A,g1,g2
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence

IMPLICIT NONE

40



INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

numerical "implicitness" parameter
REALTYPE, intent(in) :: cnpar

surface short waves radiation (W/m^2)
REALTYPE, intent(in) :: I_0

surface heat flux (W/m^2)
(negative for heat loss)
REALTYPE, intent(in) :: heat

diffusivity of heat (m^2/s)
REALTYPE, intent(in) :: nuh(0:nlev)

non-local heat flux (Km/s)
REALTYPE, intent(in) :: gamh(0:nlev)

OUTPUT PARAMETERS:

shortwave radiation profile (W/m^2)
REALTYPE :: rad(0:nlev)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: temperature.F90,v $
Revision 1.12 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.11 2004/08/18 12:31:52 lars
updated documentation
Revision 1.10 2004/07/28 11:29:10 hb
Bug removed, rad is not any more multiplied with bioshade; bug found by Jorn Bruggeman, Amsterdam
Revision 1.9 2003/07/23 12:33:21 hb
fixed bioshade init and use
Revision 1.7 2003/04/05 07:01:16 kbk
moved bioshade variable to meanflow - to compile properly
Revision 1.6 2003/04/04 14:25:52 hb
First iteration of four-compartment geobiochemical model implemented
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 11:50:37 gotm

41



Cleaned
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

42



3.11 The salinity equation

INTERFACE:

subroutine salinity(nlev,dt,cnpar,nus,gams)

DESCRIPTION:

This subroutine computes the balance of salinity in the form

Ṡ = DS − 1

τSR
(S − Sobs) , (30)

where Ṡ denotes the material derivative of the salinity S, and DS is the sum of the turbulent and
viscous transport terms modelled according to

DS =
∂

∂z

(

(

νSt + νS
) ∂S

∂z
− Γ̃S

)

. (31)

In this equation, νSt and νS are the turbulent and molecular diffusivities of salinity, respectively,

and Γ̃S denotes the non-local flux of salinity, see section 4. In the current version of GOTM, we
set νSt = νΘ

t for simplicity.
Horizontal advection is optionally included (see obs.inp) by means of prescribed horizontal gra-
dients ∂xS and ∂yS and calculated horizontal mean velocities U and V . Relaxation with the time
scale τSR towards a precribed (changing in time) profile Sobs is possible.
Inner sources or sinks are not considered. The surface freshwater flux is given by means of the
precipitation - evaporation data read in as P −E through the airsea.inp namelist:

DS = S(P −E), at z = ζ, (32)

with P −E given as a velocity (note that DS is the flux in the direction of z, and thus positive for a
loss of salinity) . Diffusion is numerically treated implicitly, see equations (7)-(9). The tri-diagonal
matrix is solved then by a simplified Gauss elimination. Vertical advection is included, see section
8.5.

USES:

use meanflow, only: avmols
use meanflow, only: h,u,v,w,S,avh
use observations, only: dsdx,dsdy,s_adv
use observations, only: w_adv_discr,w_adv_method
use observations, only: sprof,SRelaxTau
use airsea, only: p_e
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence

IMPLICIT NONE

INPUT PARAMETERS:

43



number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

numerical "implicitness" parameter
REALTYPE, intent(in) :: cnpar

diffusivity of salinity (m^2/s)
REALTYPE, intent(in) :: nus(0:nlev)

non-local salinity flux (psu m/s)
REALTYPE, intent(in) :: gams(0:nlev)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: salinity.F90,v $
Revision 1.8 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.7 2004/08/18 11:43:10 lars
updated documentation
Revision 1.6 2004/01/07 12:17:47 lars
Removed latex bug
Revision 1.5 2003/06/13 09:27:15 hb
Implemented freshwater fluxes
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

44



3.12 The buoyancy equation

INTERFACE:

subroutine buoyancy(nlev,dt,cnpar,nub,gamb)

DESCRIPTION:

This subroutine solves a transport equation for the mean potential buoyancy,

B = −g 〈ρ〉 − ρ0

ρ0
, (33)

where g is the accelaration of gravity, and 〈ρ〉 and ρ0 are the mean potential density and the
reference density, respectively. A simplified transport equation for B can be written as

Ḃ = DB , (34)

where Ḃ denotes the material derivative of B, and Db is the sum of the turbulent and viscous
transport terms modelled according to

DB =
∂

∂z

(

(νBt + νB)
∂B

∂z
− Γ̃B

)

. (35)

In this equation, νBt and νB are the turbulent and molecular diffusivities of buoyancy, respectively,

and Γ̃B denotes the non-local flux of buoyancy, see section 4. In the current version of GOTM,
we set νBt = νΘ

t for simplicity. Source and sink terms are completely disregarded, and thus (34)
mainly serves as a convenient tool for some idealized test cases in GOTM.
Diffusion is treated implicitly in space (see equations (7)- (9)), and then solved by a simplified
Gauss elimination. Vertical advection is included, see section 8.5.

USES:

use meanflow, only: h,w,buoy,T,avh
use meanflow, only: w_grid,grid_method
use observations, only: b_obs_NN,b_obs_surf,b_obs_sbf
use observations, only: w_adv_discr,w_adv_method
use util, only: Dirichlet,Neumann
use util, only: oneSided,zeroDivergence
IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

numerical "implicitness" parameter
REALTYPE, intent(in) :: cnpar

45



diffusivity of buoyancy (m^2/s)
REALTYPE, intent(in) :: nub(0:nlev)

non-local buoyancy flux (m^2/s^3)
REALTYPE, intent(in) :: gamb(0:nlev)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: buoyancy.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

46



3.13 Calculation of the vertical shear

INTERFACE:

subroutine shear(nlev,cnpar)

DESCRIPTION:

The (square of the) shear frequency is defined as

M2 =

(

∂U

∂z

)2

+

(

∂V

∂z

)2

. (36)

It is an important parameter in almost all turbulence models. The U - and V -contributions to
M2 are computed using a new scheme which guarantees conservation of kinetic energy for the
convertion from mean to turbulent kinetic energy, see Burchard (2002a). With this method, the
discretisation of the U -contribution can be written as

(

∂U

∂z

)2

≈ (Ūj+1 − Ūj)(Ũj+1 − Ũj)

(zj+1 − zj)2
(37)

where Ũj = 1
2 (Ûj + Uj). The V -contribution is computed analogously. The shear obtained from

(37) plus the V -contribution is then used for the computation of the turbulence shear production,
see equation (146).

USES:

use meanflow, only: h,u,v,uo,vo
use meanflow, only: SS,SSU,SSV

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

numerical "implicitness" parameter
REALTYPE, intent(in) :: cnpar

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: shear.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

47



3.14 Calculation of the stratification

INTERFACE:

subroutine stratification(nlev,buoy_method,dt,cnpar,nub,gamB)

DESCRIPTION:

This routine computes the mean potential density, 〈ρ〉, the mean potential buoyancy, B, defined
in (33), and the mean buoyancy frequency,

N2 = − g

ρ0

∂ρ

∂z
=
∂B

∂z
, (38)

which is based on potential density or buoyancy such that for N 2 = 0, the entropy is constant in
the whole water column and mixing does not work against buoyancy forces. If GOTM used as a
turbulence library in your own three-dimensional model, you have to insure that the N 2 computed
by you, and passed to the turbulence routines in GOTM, is consistent with the concept of potential
density and your equation of state.
The mean potential density is evaluated from the equation of state, (240), according to

〈ρ〉 = ρ̂(Θ, S, PR) , (39)

where Θ denotes the mean potential temperature, S the mean salinity and PR the mean reference
pressure. The buoyancy frequency defined in (38) can be decomposed into contributions due to
potential temperature and salinity stratification,

N2 = N2
Θ +N2

S , (40)

where we introduced the quantities

N2
Θ = − g

ρ0

∂ρ

∂z

∣

∣

∣

S
= gα(Θ, S, PR)

∂Θ

∂z
, (41)

with the thermal expansion coefficient defined in (242), and

N2
S = − g

ρ0

∂ρ

∂z

∣

∣

∣

Θ
= −gβ(Θ, S, PR)

∂S

∂z
, (42)

with the saline contraction coefficient defined in (243). It is important to note that in the actual
code the reference pressure, PR, has been replaced by the (approximate) hydrostatic pressure. Only
if this dependence is replaced by the constant reference pressure at the surface in the equation of
state, see section 8.7, the model is truely based on potential temperature and density. Otherwise,
the model is based on in-situ quantities.
Alternatively to the procedure outlined above, depending on the values of the parameter buoy_method,
the buoyancy may be calculated by means of the transport equation (34). This equation then re-
places the computation of Θ and S and is only recommended for idealized studies.

USES:

48



use meanflow, only: h,S,T,buoy,rho
use meanflow, only: NN,NNT,NNS
use meanflow, only: gravity,rho_0
use eqstate, only: eqstate1
IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

method to compute buoyancy
integer, intent(in) :: buoy_method

time step (s)
REALTYPE, intent(in) :: dt

numerical "implicitness" parameter
REALTYPE, intent(in) :: cnpar

diffusivity of buoyancy (m^2/s)
REALTYPE, intent(in) :: nub(0:nlev)

non-local buoyancy flux (m^2/s^3)
REALTYPE, intent(in) :: gamb(0:nlev)

OUTPUT PARAMETERS:

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: stratification.F90,v $
Revision 1.7 2005/07/18 08:54:33 lars
changed docu for html compliance
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.3 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 11:50:37 gotm
Cleaned
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

49



3.15 Convective adjustment

INTERFACE:

subroutine convectiveadjustment(nlev,num,nuh,const_num,const_nuh, &
buoy_method,g,rho_0)

DESCRIPTION:

In this subroutine, convective adjustment is performed for the temperature, Θ, and the salinity, S,
or alternatively for the buoyancy, B, if a dynamic equation is solved for this quantity. Beginning
from the first interface below the surface, the water column is checked for static instability. If the
Brunt-Väisälä frequency squared, N2, is negative, the two adjacent boxes are completely mixed.
The stability for the interface below this homogenised upper part of the water column is then
analysed, and, if needed, mixing is performed again. By doing so, the water column is scanned
until the first interface with statically stable or neutral stratification or the bottom is reached. An
equation of state described in section 8.7 is used for calculating the Brunt-Väisälä frequency.
The constant values const_num and const_nuh are then imposed for the eddy viscosity νt and the
eddy diffusivity ν′t, respectively.

USES:

use meanflow, only: h,t,s,buoy,NN
use eqstate, only: eqstate1
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev,buoy_method
REALTYPE, intent(in) :: g,rho_0
REALTYPE, intent(in) :: const_num,const_nuh

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: num(1:nlev),nuh(1:nlev)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: convectiveadjustment.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/18 11:39:10 lars
updated documentation
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.2 2003/03/10 08:50:06 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

50



4 The turbulence model

To close the differential equations for momentum, heat, and salt, parameterisations of the turbulent
fluxes of momentum, 〈u′w′〉, heat 〈w′θ′〉, and salinity 〈w′s′〉 are required. Since turbulence ‘feels’
the effects of temperature and salinity fluctuations essentially through buoyancy fluctuations, only
the buoyancy flux, 〈w′b′〉, is discussed in the following. The assumptions under which one can infer
the fluxes of heat and salinity from the buoyancy flux are addressed below.

4.1 Introduction

There are different types and levels of closure models available in GOTM to compute the vertical
turbulent fluxes. Simple models rely on the idea that theses fluxes can be computed as the product
of a positive turbulent diffusivity and a mean flow gradient. Contributions to the fluxes that are
not ‘down-gradient’, are summarized in so-called counter-gradient terms. Using these assumptions,
the fluxes of momentum and buoyancy can be expressed as

〈u′w′〉 = −νt
∂u

∂z
+ Γ̃U , 〈v′w′〉 = −νt

∂v

∂z
+ Γ̃V , 〈w′b′〉 = −νBt

∂B

∂z
+ Γ̃B , (43)

where Γ̃(U,V,B) denote the counter-gradient fluxes. They can be important under very strong
stratification and in the case of convection. Note, that the current version of GOTM identifies the
diffusivities of heat and salt with νBt (see section 3.10 and section 3.11).
Using an analogy to the kinetic theory of gases, the vertical turbulent diffusivities, νt and νBt ,
are often assumed to be the product of a typical velocity scale of turbulence, q, times a typical
length scale, l, see Tennekes and Lumley (1972). The velocity scale q can e.g. be identified with
the average value of the turbulent fluctuations expressed by the turbulent kinetic energy, k = q2/2.
Then, the diffusivities of momentum and heat can be written as

νt = cµk
1
2 l , νBt = c′µk

1
2 l , (44)

where the dimensionless quantities cµ and cµ
′ are usually referred to as the ‘stability functions’.

Depending on the level of turbulent closure, these stability functions can be either constants,
empirical functions, or functions of some non-dimensional flow parameters resulting from a higher-
order turbulence model. The same applies to the counter-gradient fluxes Γ̃(U,V,B) defined in (43).
There are different possibilities in GOTM to compute the scales q (or k) and l appearing in (44).
According to the level of complexity, they are ordered in GOTM in the following fashion.

1. Both, k and l are computed from algebraic relations. The algebraic equation for k is based
on a simplified form of the transport equation of the turbulent kinetic energy. The equation
for the length-scale may result from different approaches. The most simple models assume
an empirically motivated, prescribed vertical distribution of the length-scale. This level of
closure corresponds to the ‘level 2’ model of Mellor and Yamada (1982), but also to more
recent approaches, see Cheng et al. (2002). Algebraic models are an over-simplification in
numerous situations.

2. At the next level, k is computed from the differential transport equation for the turbulent
kinetic energy (‘energy models’). As before, the length-scale is computed from an empirically
or theoretically based relation. Models of this type are quite popular in geophysical modelling.
A description is given in section 4.19.

51



3. In the so-called two-equation models, both, k and l, are computed from differential transport
equations. As before, k follows from the transport equation of the turbulent kinetic energy.
Now, however, also the length-scale is determined from a differential transport equation. This
equation is usually not directly formulated for the length-scale, but for a related, length-
scale determining variable. Presently, there are different possibilities for the length-scale
determining variables implemented in GOTM, such as the rate of dissipation, ε, or the product
kl. They are discussed in section 4.7.9.

The main advantage of the two-equation models is their greater generality. There are, for
example, a number of fundamental flows which cannot be reproduced with an algebraically
prescribed length-scale. Examples are the temporal decay of homogeneous turbulence, the
behaviour of turbulence in stratified homogeneous shear flows, and the spatial decay of shear-
free turbulence from a planar source. A discussion of these points is given in section 4.7.3
and section 4.7.4. Also see Umlauf et al. (2003) and Umlauf and Burchard (2003).

In addition to the hierarchy of turbulence models in terms of their methods used to compute the
turbulent kinetic energy and the length-scale, GOTM also supports an ordering scheme according
to the extent to which transport equations for the turbulent fluxes are solved.

1. At the lowest level of this scheme, it is postulated that cµ = c0µ and c′µ = c′0µ are constant.
Because these models implicitly assume an isotropic tensor relation between the velocity
gradient and the tensor of the Reynolds-stresses, they usually fail in situations of strong
anisotropy, most notably in stably stratified, curved or shallow flows. In unstratified flows
with balanced aspect ratios (which seldom occur in nature), however, they may compute rea-
sonable results. Models of this type are referred to as the ‘standard’ models in the following.

2. Some problems associated with standard versions of the models can be ameliorated by making
cµ and c′µ empirical functions of one or several significant non-dimensional flow parameters.
At this level, the simplest approach would be to formulate empirical relations suggested from
observations in the field or in the laboratory. An example of such a relation is the model of
Schumann and Gerz (1995) which has been implemented in GOTM (see section 4.29).

3. Another, more consistent, approach results from the solution of simplified forms of the trans-
port equations for the Reynolds-stresses and the turbulent heat fluxes in addition to the
transport equations for k and the length-scale determining variable. Surprisingly, it turns
out that under some assumptions, and after tedious algebra, the turbulent fluxes computed
by these models can be expressed by (44). The important difference is, however, that the
existence of vertical eddy diffusivities is not a postulate, but a consequence of the model.
The stability functions cµ and c′µ can be shown to become functions of some non-dimensional
numbers like

αM =
k2

ε2
M2 , αN =

k2

ε2
N2 , αb =

kkb
ε2

, (45)

with the shear-frequency, M , and the buoyancy frequency, N , computed as described in
section 3.5 and section 3.14, respectively. k and kb are the turbulent kinetic energy and the
buoyancy variance, respectively and ε denotes the rate of dissipation.

The most well-known models of this type have been implemented into GOTM. An up-to-date
account of their derivation can be found in Canuto et al. (2001). Their evaluation for the
oceanic mixed layer has been extensively discussed by Burchard and Bolding (2001).

52



4. Even more complete models include further differential equations for the buoyancy variance
and for some or all of the turbulent fluxes. These models cannot be reduced to the form
(44). The derivation of models of the type discussed in the latter two points are reviewed in
section 4.2

Evidently, this short introduction cannot serve as an introductory text on one-point turbulence
modelling. It serves merely as a place to define the most important quantities and relations used
in this manual. Readers not familiar with this subject will certainly feel the need for a more in-
depth discussion. An excellent introduction to turbulence is still the book of Tennekes and Lumley
(1972). A modern and detailed approach to one and two-equation models for unstratified flows
is given in the book of Wilcox (1998), and the effects of stratification are discussed e.g. by Rodi
(1987) and by Burchard (2002b).

4.2 Second-order models

Since one-point second-order models are an essential part of GOTM, this section is devoted to
a detailed discussion of the derivation and the properties of these models. Second-order models
result from the full or approximate solution of the transport equations for the turbulent fluxes like
〈u′u′〉, 〈u′w′〉, 〈w′b′〉, etc. Model equations for the turbulent momentum fluxes follow directly from
the Navier-Stokes equations. The derivation of these equations for stratified and rotating fluids is
discussed e.g. in Sander (1998).
Considering the one-point correlations for the velocity fluctuations u′

i, the momentum fluxes can
be expressed as

˙〈u′iu′j〉 − Dij = Pij +Gij + Fij + Φij − εij , (46)

where Dij is the sum of the viscous and turbulent transport terms and ˙〈· · ·〉 denots the material
derivative of the ensemble average. The shear-production, Pij , and the buoyancy production, Gij ,
on the right hand side are defined as

Pij = −〈u′iu′m〉 ∂Uj
∂xm

− 〈u′ju′m〉
∂Ui
∂xm

, Gij = δi3〈u′jb′〉 + δj3〈u′ib′〉 , (47)

where b′ is the fluctuating part of the buoyancy, defined analogously to the mean buoyancy, B, in
(33). The tensor of the dissipation rate is assumed to be isotropic, leading to εij = 2/3εδij . Φij
denotes the pressure redistribution terms discussed below. The influence of the Coriolis-acceleration
can be summarized in the tensor Fij which is, however, neglected in the current version of GOTM.
The contraction of (46) yields the equation for the turbulent kinetic energy, (150), with production
terms defined by

P =
1

2
Pii , G =

1

2
Gii . (48)

Similar to (46), the transport equation for the turbulent buoyancy flux is given by

˙〈u′ib′〉 − Db
i = −〈u′iu′m〉 ∂B

∂xm
− 〈u′mb′〉

∂Ui
∂xm

+ F bi + 2δi3kb + Φbi − εbi , (49)

where Db
i denotes the viscous and turbulent transport terms, see Sander (1998). For the dissipation,

one has εbi = 0, following from isotropy. The redistribution terms Φbi are discussed below. As in
(46), the Coriolis term F bi is neglected in the current version of GOTM.

53



Note that kb is half the buoyancy variance and relates to the turbulent potential energy, Ep,
according to

kb = 〈b′2〉/2 = EpN
2 , (50)

where the square of the buoyancy frequency, N 2, is defined in (38).
The crucial point in (46) is the model for the pressure-strain correlation. The most popular models
in engineering trace back to suggestions by Launder et al. (1975) and Gibson and Launder (1976).
With the modifications suggested of Speziale et al. (1991), this model can be written as

Φij = −c1τ−1
u k bij + c2kSij + c3kΣij + c4kZij + c5kNij + c6Γij , (51)

usually extended by the last term to account for the effects of buoyancy, see Gibson and Launder
(1976), Gibson and Launder (1978). The model (51) is expressed here in terms of the dimensionless
tensor of the stress anisotropies,

bij =
〈u′iu′j〉

2k
− 1

3
δij , (52)

and two traceless and symmetric tensors,

Σij = Simbmj + Sjmbmi −
2

3
Smnbmnδij , Zij = Wimbmj +Wjmbmi , (53)

which depend on the symmetric and the anti-symmetric parts of the velocity gradient,

Sij =
1

2
(Lij + Lji) , Wij =

1

2
(Lij − Lji) with Lij =

∂Ui
∂xj

. (54)

Buoyancy enters via the symmetric and traceless tensor

Γij = −
(

Gij −
2

3
Gδij

)

, (55)

with Gij as defined in (47). In view of the derivation of Explicit Algebraic Models (EASMs), the
models implemented in GOTM neglect the term Nij on the right hand side of (51), which is non-
linear in bij , see Speziale et al. (1991). c1–c6 are model constants. In geophysical applications, in
contrast to engineering, virually all authors used c∗1 = 0 in (51). In GOTM, the return-to-isotropy
time scale τu is identified with the dynamic dissipation time scale

τ =
k

ε
, (56)

which is a reasonable model assumption in many applications (Canuto et al. (2001), Jin et al.
(2003)).
For Explicit Algebraic Heat Flux Models, a quite general model for the pressure buoyancy-gradient
correlation appearing in (49) can be written as

Φbi = −cb1τ−1
b 〈u′ib′〉 + cb2Sij〈u′jb′〉 + cb3Wij〈u′jb′〉

+cb4〈u′iu′j〉
∂B

∂xj
− 2cb5kbδi3 ,

(57)

where τb = τ is adopted for the return-to-isotropy time scale.

54



The models (51) and (57) correspond to some recent models used in theoretical and engineering
studies (So et al. (2003), Jin et al. (2003)), and generalize all explicit models so far adopted by
the geophysical community (see Burchard (2002b), Burchard and Bolding (2001)). With all model
assumptions inserted, (46) and (49) constitute a closed system of 9 coupled differential equations,
provided the dissipation time scale τ and the buoyancy variance kb are known. Models for the
latter two quantities and simplifying assumptions reducing the differential equations to algebraic
expressions are discussed in the following subsection.

4.3 Algebraic Models

The key assumptions in deriving algebraic models have been formulated by Rodi (1976) and Gibson
and Launder (1976). These authors suggested to simplify the right hand sides of (46) and (49)
according to

˙〈u′iu′j〉 − Dij =
〈u′iu′j〉
k

(

k̇ −Dk
)

,
˙〈u′ib′〉 − Db

i =
〈u′ib′〉

2

(

k̇ −Dk
k

+
k̇b −Db
kb

)

, (58)

which are reasonable approximations in many situations. Moreover, (58) can be shown to hold
exactly in stably stratified, homogeneous shear flows, when the flow approaches the so-called weak-
equilibrium limit, see Shih et al. (2000). Using (58) and the pressure-strain model (51), it can be
shown after some algebra that the transport equations for the momentum flux (46) reduces to

N bij = −a1Sij − a2Σij − a3Zij − a4N ij − a5Γij (59)

in dimensionless form. The ai relate to the coefficients used in (51) according to a1 = 2/3− c2/2,
a2 = 1 − c3/2, a3 = 1 − c4/2, a4 = c5/2, and a5 = 1/2 − c6/2. The dimensionless, traceless and
symmetric tensors appearing on the right hand side of (59) are defined as

Sij =
k

ε
Sij , Σij =

k

ε
Σij , Zij =

k

ε
Zij . (60)

Additionally,

Γij = Γij/ε =





− 2
3γ3 0 γ1

0 − 2
3γ3 γ2

γ1 γ2
4
3γ3



 , γi = −〈u′ib′〉
ε

(61)

has been introduced in (59) for convenience. Here, the γi correspond to the mixing efficiencies in
each coordinate direction, respectively. Note, that the vertical component,

γ3 = γ = −〈w′b′〉
ε

= −G
ε

=
Rf

1 −Rf
, Rf = −G

P
, (62)

can be identified with the classical mixing efficiency used in many studies of stratified fluids.
Most authors proceed know in deriving, with the help of (58), a dimensionless equation for the

normalised turbulent buoyancy flux, ζi = 〈u′ib′〉/
√

(kkb), see So et al. (2002), Jin et al. (2003).
It can be shown, however, that the resulting algebraic equations alternatively can be expressed,
without further assumptions, in the form of equations for the mixing efficiencies,

Nbγi = −ab1Sijγj − ab2W ijγj + ab3bijN j +
1

3
ab3N i − ab4Tδi3 . (63)

55



Since efficiencies γi are the primary variables appearing on the right hand side of (59) through
the presence of the tensor Γij defined in (61), and since they are variables with a clear physical
interpretation, we prefer (63) to a mathematicall equivalent equation for the normalised buoyancy
flux, ζi.
The new dimensionless quantities entering the problem via (63) are

N i =
k2

ε2
∂B

∂xi
, T =

kkb
ε2

. (64)

Note that the vertical component ofN i can be identified with the square of the buoyancy frequency,
N2, made dimensionless with the dynamic dissipation time scale τ = k/ε.
(59) and (63) are linear in bij and γi, with a non-linear coupling introduced by the terms

N =
P +G

ε
+
c1
2

− 1

Nb =
1

2

(

P +G

ε
− 1

)

+ cb1 +
1

2r

(

Pb
εb

− 1

)

.

(65)

The production-to-dissipation ratios appearing in these expression are exclusively related to known
quantities and thus introduce no new independent variables. However, the time scale ratio,

r =
kb
εb

ε

k
(66)

needs to be described.
(59) and (63) are a system of 9 coupled algebraic equations for the anisotropies bij and the mixing

efficiencies γi, depending solely on the non-dimensional tensors Sij , W ij , the vector N i, and the

scalar T . This system is linear, if N and Nb are treated as knowns and if the nonlinear term Nij
in (59) is neglected, a4 = 0. No closed solution of the complete system in three dimensions has
been reported so far in the literature. Nevertheless, separate solutions in three dimensions for (59)
and (63), respectively, have been reported (see Jin et al. (2003) and the references therein).
In geophysical applications, the system (59) and (63) can be considerably simplified by assuming
that the fluid is horizontally homogeneous (boundary layer approximation), and closed solutions
can be obtained (see Cheng et al. (2002)). The procedure to obtain such solutions is discussed in
the following subsection.

4.4 Explicit models for vertical shear and stratification

In the following, we restrict ourselves to flows with vertical shear and stratification, and assume that
mean quantities are horizontally homogeneous. Under these conditions, (64) yiels N 1 = N2 = 0
and

N3 =
k2

ε2
∂B

∂z
=
k2

ε2
N2 . (67)

The velocity gradient simplifies to

Lij =





0 0 SU
0 0 SV
0 0 0



 , (68)

56



where SU = ∂U/∂z and SV = ∂V/∂z are the vertical shear in U and V , respectively.
Under these conditions, and using the conventions

SU =
k

ε
SU , SV =

k

ε
SV , N

2
= N3 , (69)

(59) reduces to

N b11 = −
(a2

3
+ a3

)

b13SU +
2

3
a2b23SV +

2

3
a5γ3 ,

N b22 = −
(a2

3
+ a3

)

b23SV +
2

3
a2b13SU +

2

3
a5γ3 ,

N b33 = −
(a2

3
− a3

)

b13SU −
(a2

3
− a3

)

b23SV − 4

3
a5γ3 ,

N b12 = −a2 + a3

2
b13SV − a2 + a3

2
b23SU ,

N b13 = −a2 − a3

2
b11SU − a2 + a3

2
b33SU − a2 − a3

2
b12SV − 1

2
a1SU − a5γ1 ,

N b23 = −a2 − a3

2
b22SV − a2 + a3

2
b33SV − a2 − a3

2
b12SU − 1

2
a1SV − a5γ2 .

(70)

Similarly, for the mixing efficiencies, (63) yields

Nbγ1 = −ab1 + ab2
2

γ3SU + ab3b13N
2
,

Nbγ2 = −ab1 + ab2
2

γ3SV + ab3b23N
2
,

Nbγ3 = −ab1 − ab2
2

γ1SU − ab1 − ab2
2

γ2SV + ab3b33N
2

+
ab3
3
N

2 − ab4T .

(71)

In geophysical applications, a reasonable assumption is Pb = εb to elimmate the dependence of (71)
on T . From (158), using (62) and (66), it follows that T can be expressed in the form

T = rγ3N
2

. (72)

With the help of (72), the last of (71) can be re-written as

Nbγ3 = −ab1 − ab2
2

γ1SU − ab1 − ab2
2

γ2SV + ab3b33N
2

+
ab3
3
N

2 − ab5γ3N
2

. (73)

Note that the new parameter ab5 = rab4 depends on the time scale ratio, r, and is, in general, not
constant. Nevertheless, constant r = cb is frequently assumed (see below).
In the general case, (70) and (71) can be inverted directly to yield a solution of the form

b13 = −1

2
ĉµSU , b23 = −1

2
ĉµSV , γ3 = ĉ′µN

2 − Γ , (74)

57



from which, by insertion into (70) and (71), all other quantities can be determined. Since N and
Nb defined in (65) have been treated as known, the solution is not yet completely explicit. In the
numerical scheme of GOTM, they are updated from their values at past time steps. By identifying

νt = ĉµ
k2

ε
, ν′t = ĉ′µ

k2

ε
, Γ̃ = εΓ , (75)

(74) corresponds in form exactly to (43). Note that, adopting the equilibrium assumption (72),
the dependence on Γ drops in (74). From (44) and (75), and using the definition of the dissipation
rate (153), it is clear that

ĉµ = (c0µ)
3cµ , ĉ′µ = (c0µ)

3c′µ , . (76)

The structure of the dimensionless parameter functions apearing in (74) is given by

ĉµ =
Nn
D

, ĉ′µ =
Nb
D

, Γ =
NΓ

D
, (77)

where the numerators and the denominator are polynomials of the square of the shear number,

αM = S
2

= S
2

U + S
2

V , the square of the buoyancy number, αN = N
2
, the mixed scalar, αB = T ,

and the functions N and Nb. The latter two functions depend on the production-to-dissipation
ratios for k and kb, which for vertical shear and stratification can be written as

P

ε
= −2b13SU − 2b23SV = ĉµS

2
,

G

ε
= −γ3 = −ĉ′µN

2
+ Γ ,

Pb
εb

= −G
ε

ε

εb
N2 = −rG

ε

N
2

T

. (78)

Once k and kb (and their dissipation ratios, ε and εb) are known, also the time scale ratio r defined
in (66) can be computed, and the problem can be solved. Different possibilities to derive these
quantities are discussed in the following.

4.4.1 Equilibrium states

Some authors use simplifying assumptions to derive more compact forms of the expressions for the
solution in (74). In the following, a few examples, which are special cases of the general solution
discussed here, are reviewed.
In deriving their version of the general solution (74), Canuto et al. (2001) e.g. assumed Pb = εb
and constant r. Under these conditions, because of (72), the dependence on T dissapears, and
the counter-gradient term ΓB in (74) drops. It was further assumed that P + G = ε in (65)
only, leading to N = (c1 + c∗1)/2 and Nb = cb1. These particularly simple expressions linearize
the system, and a fully explicit solution can be obtained, provided k and ε are known. Burchard
and Bolding (2001) adopted the solution of Canuto et al. (2001) and complemented it by k and ε
computed from dynamical equations (‘k-ε model’).
In contrast, Canuto et al. (2001) and Cheng et al. (2002) decided for a further simplification.
They solved (74) with k and ε from algebraic expressions. In their case, k followed from the
approximation P +G = ε of (150) (see section 4.17), and ε from a prescribed length-scale.

58



Using (74), (77), and (78), it is easy to show that the assumption (P +G)/ε leads to

NnS
2 −NbN

2 −D = 0 , (79)

which is polynomial equation in S and N . This expression can be used to replace one of the latter
two variables by the other. An interesting consequence is the fact that all non-dimensional turbulent

quantities can be expressed in terms of the Richardson number Ri = N
2
/S

2
only. Replacing N

2

by S
2
Ri in (79), a quadratic equation for αM = S

2
in terms for Ri can be established (see e.g.

Cheng et al. (2002). Using the definitions given in section 4.26, this equation can be written as

α2
M

(

−d5 + n2 − (d3 − n1 + nb2)Ri− (d4 + nb1)Ri
2
)

+αM (−d2 + n0 − (d1 + nb0)Ri)−d0 = 0 .
(80)

The solution for αM can, via (79), be used to expressed also N
2

in terms of Ri. This implies that
also the stability functions and hence the complete solution of the problem only depends on Ri.
Investigating the solution of the quadratic equation (80), it can be seen that αM becomes infinite
if the factor in front of α2

M vanishes. This is the case for a certain value of the Richardson number,
Ri = Ric, following from

−d5 + n2 − (d3 − n1 + nb2)Ric − (d4 + nb1)Ri
2
c = 0 . (81)

Solutions of this equation for some popular models are given in table 1. For Ri = Ric, equilibrium
models predict complete extinction of turbulence. For non-equilibrium models solving dynamical
equations like (150), however, Ric has no direct signifcance, because turbulence may be sustainned
by turbulent transport and/or the rate term.

GL78 KC94 CHCD01A CHCD01B CCH02
0.47 0.24 0.85 1.02 0.96

Table 1: Critical Richardson number for some models

4.4.2 Stability of explicit models

A physically reasonable condition for an explicit second order model expressed the fact that increas-
ing (non-dimensional) shear S should lead to increasing vertical shear-anisotropies of turbulence,
b13 and b23. It has been shown by Burchard and Deleersnijder (2001) that a violation of this
condition may lead to numerical instabilities of the models.
Mathematically, the shear-condition is expressed by

∂(b213 + b223)
1
2

∂S
=

1

2

∂c̃µS

∂S
≥ 0 , (82)

where (74) has been used. Using the equilibrium form of the stability function described in section

4.26, this condition leads to a cubic equation in αM = S
2
. A simpler condition can be obtained,

when this equation is solved after terms multiplied by d5 and n2, which usually are very small, are
neglected.
The resulting approximate condition is

αM ≤ d0n0 + (d0n1 + d1n0)αN + (d1n1 + d4n0)α
2
N + d4n1α

3
N

d2n0 + (d2n1 + d3n0)αN + d3n1α2
N

. (83)

59



Burchard and Deleersnijder (2001) showed that using (83) the most well-known models yield nu-
merically stable results. However, for some models like those of Mellor and Yamada (1982) and
Kantha and Clayson (1994), the limiter (83) is almost always ‘active’, and hence replaces the actual
turbulence model in a questionable way.

4.5 Parameter conversion for other models

Virtually all pressure-redistribution models used in engineering and geophysical applications can be
considered as special cases of (51) and (57). However, most authors adopted a different notation
and different parameter values. In this section, paramater conversions for the most well-known
models are discussed.

4.5.1 The model of Gibson and Launder (1978)

The pressure-strain model of this important class of engineering models has been originally sug-
gested by Launder et al. (1975). It can be written as

Φij = −2c̃1εbij − c̃2kSij − c̃3

(

Pij −
2

3
Pδij

)

− c̃4

(

Dij −
2

3
Pδij

)

+ c̃6Γij , (84)

where that last term has been added by Gibson and Launder (1978) to account for the effects of
gravity in stratified fluids. This term is identical to the last term in (51). The new production-of-
anisotropy tensor Dij is defined as

Dij = −〈u′iu′m〉∂Um
∂xj

− 〈u′ju′m〉
∂Um
∂xi

. (85)

Using the tensor relations

Pij = −2kΣij − 2kZij +
2

3
Pδij −

4

3
kSij ,

Dij = −2kΣij + 2kZij +
2

3
Pδij −

4

3
kSij ,

(86)

(84) can be re-written in the form

Φij = −2c̃1εbij +

(

4

3
(c̃3 + c̃4) − c̃2

)

kSij + 2 (c̃3 + c̃4) kΣij + 2 (c̃3 − c̃4) kZij + c̃6Γij . (87)

Comparting with (51), the following relations can be estabilished: c1 = 2c̃1, c2 = 4/3(c̃3 + c̃4)− c̃2,
c3 = 2(c̃3 + c̃4), c3 = 2(c̃3 − c̃4), c5 = 0, and c6 = c̃6.
Gibson and Launder (1978) use a slightly different notation for the pressure-scambling model (57).
Their model is somewhat simplified form of the model of Jin et al. (2003), which can be written as

Φbi = −c̃b1
ε

k
〈u′ib′〉 + c̃b2Lij〈u′jb′〉 + c̃b3Lji〈u′jb′〉

+c̃b4〈u′iu′j〉
∂B

∂xj
− 2c̃b5kbδi3 .

(88)

Using the decomposition of the velocity gradient in its symmetric and anti- symmetric part, (54),
the following parameter relation are evident: cb1 = c̃b1, cb2 = c̃b2 + c̃b3, cb3 = c̃b2 − c̃b3, cb4 = c̃b4,
cb5 = c̃b5.

60



c̃1 c̃2 c̃3 c̃4 c̃6 c̃b1 c̃b2 c̃b3 c̃b4 c̃b5 r
GL78 1.8 0 0.6 0 0.5 3 0.33 0 0 0.33 0.8

GLNEW 1.8 0 0.78 0.2545 0.3 3.28 0.4 0 0 0.4 0.8

Table 2: Some parameter sets for the model of Gibson and Launder (1978)

Parameter values for this model are compiled in table 3. ‘GLNEW’ denotes the revised parameter
set for the pressure-strain model given in Wilcox (1998) and for the pressure-buoyancy gradient
model in Zhao et al. (2001).

4.5.2 The model of Canuto et al. (2001)

Canuto et al. (2001) and Cheng et al. (2002) use a model that is virtually identical to the tradi-
tional model of Launder et al. (1975) and Gibson and Launder (1978). The values of their model
parameters and their notation, however, are somewhat different.
Looking for conversion relations, it should be noted that the anisotropy tensor bCCHD

ij used by

Canuto et al. (2001) is twice the tensor defined in (52), bCCHD
ij = 2kbij . Also the dissipative time

scale τCCHD of Canuto et al. (2001) is twice the time scal defined in (56), τCCHD = 2τ . If one
further notes that the turbulent heat flux hi = 〈u′iθ′〉 is related to the buoyancy flux according to
〈u′ib′〉 = αghi, relations between the model parameters can be found.
With these relations, equation (10a) of Canuto et al. (2001) can be re-written as

bij = −λ1Sij − 2λ2Σij − 2λ3Zij − λ4Γij . (89)

The return-to-isotropy part of the pressure-strain model of Canuto et al. (2001) reads

Φij = − 2

λ
εbij , (90)

from which, by comparing with (51), it follows that c1 = 2/λ and c∗1 = 0, and hence from (65)
N = 1/λ. Thus, adopting the relations a1 = λ1/λ, a2 = 2λ2/λ, a3 = 2λ3/λ, a4 = 0, and
a5 = λ4/λ, (89) corresponds exactly to (59),
Similarly, equation (10a) of Cheng et al. (2002) can be re-expressed in the form

λ5

2
γi = −λ6Sijγj − λ7W ijγj + 2bijN j +

2

3
N i − λ0Tδi3 . (91)

The somewhat simpler model of Canuto et al. (2001) adopts the equilibrium assumption (72), and

replaces the last term in (91) by −λ0rγ3N
2
δi3 and, assuming constant r, identifies λ0r = λ8. The

time scale ratio r is computed in equation (20a) of Canuto et al. (2001).
The return-to-isotropy part of this model (see equation (6c) of Cheng et al. (2002)) reads

Φbi = −λ5

2

ε

k
〈u′ib′〉 , (92)

from which follows, by comparison with (57) and (65), that Nb = cb1 = λ5/2. Comparing (91) with
(63) one finds, by inspection, the relations ab1 = λ6, ab2 = λ7, ab3 = 2, ab4 = 2λ0, and ab5 = 2λ8.
Some parameter sets for this model are compiled in table 3.

61



λ λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

CHCD01A 0.4 2/3 0.107 0.0032 0.0864 0.12 11.9 0.4 0 0.48
CHCD01B 0.4 2/3 0.127 0.00336 0.0906 0.101 11.2 0.4 0 0.318

CCH02 0.4 2/3 0.107 0.0032 0.0864 0.1 11.04 0.786 0.643 0.547

Table 3: Some parameter sets for the model of Canuto et al. (2001)

4.5.3 The model of Mellor and Yamada (1982)

The pressure-strain model of Mellor and Yamada (1982) is expressed in terms of q2 = 2k and the
dissipation length scale l = q3/(B1ε), where B1 is a model constant. The time scale ratio in this
model is set to r = cb = B1/B2. Using these expression, their model can be re-written as

Φij = − B1

3A1
εbij + 4C1kSij , (93)

which, by comparison with (51), yields c1 = B1/(3A1) and c2 = 4C1. All other parameters are
zero.
Similarly, the pressure-scrambling model of Mellor and Yamada (1982) (using the extensions sug-
gested by Kantha and Clayson (1994) and Kantha (2003)) reads

Φbi = − B1

6A2

ε

k
〈u′ib′〉 + C2(Sij +Wij)〈u′jb′〉 − 2C3kbδi3 , (94)

which can be compared to (57) to obtain cb1 = B1/(6A2) and cb2 = C2, cb3 = C2, cb5 = C3. All
other parameters are zero.
Several parameter sets suggested for this model are compiled in table 4

A1 A2 B1 B2 C1 C2 C3

MY82 0.92 0.74 16.55 10.1 0.08 0 0
KC94 0.92 0.74 16.55 10.1 0.08 0.7 0.2
K03 0.58 0.62 16.55 11.6 0.038 0.7 0.2

Table 4: Some parameter sets for the model of Mellor and Yamada (1982)

4.6 Numerics

The numerical approximation of the turbulence equations is in principle carried out as explained in
section 3.1.2. One basic difference is however due to the fact that turbulent quantities are generally
non-negative such that it is necessary that the discretised forms of the physical equations retain
the principle of non-negativity. A typical model problem would be the following:

∂X

∂t
= P −QX, P,Q > 0 (95)

with X denoting any non-negative quantity, P a non-negative source term, QX a non-negative
linear sink term, and t denoting time. P and Qmay depend on X and t. It can easily be shown that
with (95), X remains non-negative for any non-negative initial value X0 and limited Q. For the q2l-
equation and the ε-equation (described in section 4.14 and section 4.15), Q would be proportional
to q/l and ε/k, repsectively.

62



A straight-forward, explicit discretisation in time of (95) can be written as

Xn+1 −Xn

∆t
= Pn −QnXn (96)

with the superscripts denoting the old (n) and the new (n+1) time level and ∆t denoting the time
step. In this case, the numerical solution on the new time level would be

Xn+1
i = Xn

i (1 − ∆tQni ) + ∆tPni , (97)

which is negative for negative right hand side of (96), provided that

∆t >
Xn

XnQn − Pn
. (98)

Since it is computationally unreasonable to restrict the time step in such a way that (98) is avoided,
a numerical procedure first published by Patankar (1980) is generally applied

Xn+1 −Xn

∆t
= Pn −QnXn+1 , (99)

which yields an always non-negative solution for Xn+1,

Xn+1 =
Xn + ∆tPn

1 + ∆tQn
. (100)

Thus, the so-called quasi-implicit formulation (99) by Patankar (1980) is a sufficient condition for
positivity applied in almost all numerical turbulence models.

63



4.7 Module turbulence: its all in here . . .

INTERFACE:

module turbulence

DESCRIPTION:

In this module, variables of the turbulence model and some member functions to manipulate
them are defined. The key-functions are init_turbulence(), which initialises the model, and
do_turbulence(), which manages the time step for the whole procedure. These two functions are
the only ‘public’ member functions i.e. they are callable from outside the module. There are many
more internal functions, for which descriptions are provided seperately.
It should be pointed out that the turbulence module of GOTM may be used in combination with
virtually any shallow-wate 3-D circulation model using a structured grid in the vertical direction.
To this end, a clear interface separating the mean flow and the turbulence part of GOTM is required.
Vertical columns of the three-dimensional fields have to copied into one-dimensional vectors, which
are passed to GOTM. With the help of this information, GOTM updates the turbulent fields and
returns one-dimensional vectors of the turbulent diffusivities and/or the turbulent fluxes to the 3-D
model. The ‘door’ between the 3-D model and GOTM is the function do_turbulence(), which
has been designed with these ideas in mind.

USES:

IMPLICIT NONE

default: all is private.
private

PUBLIC MEMBER FUNCTIONS:

public init_turbulence, do_turbulence
public k_bc,q2over2_bc,epsilon_bc,psi_bc,q2l_bc

PUBLIC DATA MEMBERS:

TKE, rate of dissipation, turbulent length-scale
REALTYPE, public, dimension(:), allocatable :: tke,eps,L

TKE at old time level
REALTYPE, public, dimension(:), allocatable :: tkeo

buoyancy variance and its destruction
REALTYPE, public, dimension(:), allocatable :: kb,epsb

shear and buoyancy production
of tke and buoyancy variance
REALTYPE, public, dimension(:), allocatable :: P,B,Pb

turbulent diffusivities

64



of momentum, temperature, salinity
REALTYPE, public, dimension(:), allocatable :: num,nuh,nus

non-local fluxes of momentum
REALTYPE, public, dimension(:), allocatable :: gamu,gamv

non-local fluxes
of buoyancy, temperature, salinity
REALTYPE, public, dimension(:), allocatable :: gamb,gamh,gams

non-dimensional stability functions
REALTYPE, public, dimension(:), allocatable :: cmue1,cmue2

non-dimensional counter-gradient term
REALTYPE, public, dimension(:), allocatable :: gam

alpha_M, alpha_N, and alpha_B
REALTYPE, public, dimension(:), allocatable :: as,an,at

time scale ratio r
REALTYPE, public, dimension(:), allocatable :: r

the gradient Richardson number
REALTYPE, public, dimension(:), allocatable :: Rig

the flux Richardson number
REALTYPE, public, dimension(:), allocatable :: xRf

turbulent velocity variances
REALTYPE, public, dimension(:), allocatable :: uu,vv,ww

ifdef EXTRA_OUTPUT

dummies for testing
REALTYPE, public, dimension(:), allocatable :: turb1,turb2,turb3,turb4,turb5

endif

some additional constants
REALTYPE, public :: cm0,cmsf,cde,rcm, b1

Prandtl-number in neutrally stratified flow
REALTYPE, public :: Prandtl0

parameters for wave-breaking
REALTYPE, public :: craig_m,sig_e0

the ’turbulence’ namelist
integer, public :: turb_method=2
integer, public :: tke_method=2

65



integer, public :: len_scale_method=8
integer, public :: stab_method=3

the ’bc’ namelist
integer, public :: k_ubc=1
integer, public :: k_lbc=1
integer, public :: kb_ubc=1
integer, public :: kb_lbc=1
integer, public :: psi_ubc=1
integer, public :: psi_lbc=1
integer, public :: ubc_type=1
integer, public :: lbc_type=1

the ’turb_param’ namelist
REALTYPE, public :: cm0_fix=0.5477
REALTYPE, public :: Prandtl0_fix=0.74
REALTYPE, public :: cw=100.0
logical :: compute_kappa=.false.
REALTYPE, public :: kappa=0.4
logical :: compute_c3=.false.
REALTYPE :: ri_st=0.25
logical, public :: length_lim=.false.
REALTYPE, public :: galp=0.53
REALTYPE, public :: const_num=5.0e-4
REALTYPE, public :: const_nuh=5.0e-4
REALTYPE, public :: k_min=1.0e-8
REALTYPE, public :: eps_min=1.0e-12
REALTYPE, public :: kb_min=1.0e-8
REALTYPE, public :: epsb_min=1.0e-12

the ’generic’ namelist
logical :: compute_param=.false.
REALTYPE, public :: gen_m=1.5
REALTYPE, public :: gen_n=-1.0
REALTYPE, public :: gen_p=3.0
REALTYPE, public :: cpsi1=1.44
REALTYPE, public :: cpsi2=1.92
REALTYPE, public :: cpsi3minus=0.0
REALTYPE, public :: cpsi3plus=1.0
REALTYPE :: sig_kpsi=1.0
REALTYPE, public :: sig_psi=1.3
REALTYPE :: gen_d=-1.2
REALTYPE :: gen_alpha=-2.0
REALTYPE :: gen_l=0.2

the ’keps’ namelist
REALTYPE, public :: ce1=1.44
REALTYPE, public :: ce2=1.92
REALTYPE, public :: ce3minus=0.0
REALTYPE, public :: ce3plus=1.0

66



REALTYPE, public :: sig_k=1.0
REALTYPE, public :: sig_e=1.3
logical, public :: sig_peps=.false.

the ’my’ namelist
REALTYPE, public :: e1=1.8
REALTYPE, public :: e2=1.33
REALTYPE, public :: e3=1.8
REALTYPE, public :: sq=0.2
REALTYPE, public :: sl=0.2
integer, public :: my_length=1
logical, public :: new_constr=.false.

the ’scnd’ namelist
integer :: scnd_method
integer :: kb_method
integer :: epsb_method
integer :: scnd_coeff
REALTYPE ,public :: cc1
REALTYPE, public :: ct1,ctt
REALTYPE, public :: cc2,cc3,cc4,cc5,cc6
REALTYPE, public :: ct2,ct3,ct4,ct5

the a_i’s for the ASM
REALTYPE, public :: a1,a2,a3,a4,a5
REALTYPE, public :: at1,at2,at3,at4,at5

the ’iw’ namelist
integer, public :: iw_model=0
REALTYPE, public :: alpha=0.0
REALTYPE, public :: klimiw=1e-6
REALTYPE, public :: rich_cr=0.7
REALTYPE, public :: numiw=1.e-4
REALTYPE, public :: nuhiw=5.e-5
REALTYPE, public :: numshear=5.e-3

DEFINED PARAMETERS:

general outline of the turbulence model
integer, parameter, public :: convective=0
integer, parameter, public :: algebraic=1
integer, parameter, public :: first_order=2
integer, parameter, public :: second_order=3

method to update TKE
integer, parameter, public :: tke_local_eq=1
integer, parameter, public :: tke_keps=2
integer, parameter, public :: tke_MY=3

stability functions

67



integer, parameter, public :: Constant=1
integer, parameter, public :: MunkAnderson=2
integer, parameter, public :: SchumGerz=3
integer, parameter, public :: EiflerSchrimpf=4

method to update length scale
integer, parameter :: Parabola=1
integer, parameter :: Triangle=2
integer, parameter :: Xing=3
integer, parameter :: RobertOuellet=4
integer, parameter :: Blackadar=5
integer, parameter :: BougeaultAndre=6
integer, parameter :: ispra_length=7
integer, parameter, public :: diss_eq=8
integer, parameter, public :: length_eq=9
integer, parameter, public :: generic_eq=10

boundary conditions
integer, parameter, public :: Dirichlet=0
integer, parameter, public :: Neumann=1
integer, parameter, public :: viscous=0
integer, parameter, public :: logarithmic=1
integer, parameter, public :: injection=2

type of second-order model
integer, parameter :: quasiEq=1
integer, parameter :: weakEqKbEq=2
integer, parameter :: weakEqKb=3

method to solve equation for k_b
integer, parameter :: kb_algebraic=1
integer, parameter :: kb_dynamic=2

method to solve equation for epsilon_b
integer, parameter :: epsb_algebraic=1
integer, parameter :: epsb_dynamic=2

BUGS:

The algebraic equation for the TKE is not save
to use at the moment. Use it only in conncection
with the prescribed length-scale profiles. The
functions report_model() will report wrong things
for the algebraic TKE equation. To be fixed with
the next version.

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal,

68



Lars Umlauf

$Log: turbulence.F90,v $
Revision 1.13 2005/08/11 13:00:15 lars
Added explicit interface for xP. Bug found by Vicente Fernandez.
Revision 1.12 2005/07/19 16:46:14 hb
removed superfluous variables - NNT, NNS, SSU, SSV
Revision 1.11 2005/07/19 16:33:22 hb
moved variances() from do_turbulence() to time_loop()
Revision 1.10 2005/07/12 10:13:22 hb
dependence of init_turbulence from depth, z0s, z0b removed
Revision 1.9 2005/07/06 14:07:17 kbk
added KPP, updated documentation, new structure of turbulence module
Revision 1.7 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.6 2003/03/28 08:20:01 kbk
removed tabs
Revision 1.5 2003/03/10 09:02:06 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.3 2001/11/27 19:42:58 gotm
Cleaned
Revision 1.2 2001/11/18 16:15:30 gotm
New generic two-equation model
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

4.7.1 Initialise the turbulence module

INTERFACE:

subroutine init_turbulence(namlst,fn,nlev)

DESCRIPTION:

Initialises all turbulence related stuff. This routine reads a number of namelists and allocates
memory for turbulence related vectors. The core consists of calls to the the internal functions
generate_model() and analyse_model(), discussed in great detail in section 4.7.3 and section
4.7.4, respectively. The former function computes the model coefficients for the generic two-
equation model (see Umlauf et al. (2003)) from physically motivated quantities like the von Kármán
constant, κ, the decay rate in homogeneous turbulence, d, the steady-state Richardson number,
Rist, and many others. The latter function does the inverse: it computes the physically moti-
vated quantities from the model constants of any model currently available in GOTM. After the
call to either function, all relevant model parameters are known to GOTM. Then, the function
report_model() is called, which displays all results on the screen.

USES:

IMPLICIT NONE

69



INPUT PARAMETERS:

integer, intent(in) :: namlst
character(len=*), intent(in) :: fn
integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal,
Lars Umlauf

4.7.2 Initialize the second-order model

INTERFACE:

subroutine init_scnd(scnd_coeff)

DESCRIPTION:

This subroutine computes the ai’s defined in (59) and the abi’s defined in (63) from the model
parameters of the pressure redistribution models (51) and (57). Parameter sets from different
authors are converted to the GOTM notation according to the relations discussed in section 4.5.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: scnd_coeff

DEFINED PARAMETERS:

REALTYPE, parameter :: cc1GL78 = 3.6000
REALTYPE, parameter :: cc2GL78 = 0.8000
REALTYPE, parameter :: cc3GL78 = 1.2000
REALTYPE, parameter :: cc4GL78 = 1.2000
REALTYPE, parameter :: cc5GL78 = 0.0000
REALTYPE, parameter :: cc6GL78 = 0.5000
REALTYPE, parameter :: ct1GL78 = 3.0000
REALTYPE, parameter :: ct2GL78 = 0.3333
REALTYPE, parameter :: ct3GL78 = 0.3333
REALTYPE, parameter :: ct4GL78 = 0.0000
REALTYPE, parameter :: ct5GL78 = 0.3333
REALTYPE, parameter :: cttGL78 = 0.8000

REALTYPE, parameter :: cc1MY82 = 6.0000
REALTYPE, parameter :: cc2MY82 = 0.3200

70



REALTYPE, parameter :: cc3MY82 = 0.0000
REALTYPE, parameter :: cc4MY82 = 0.0000
REALTYPE, parameter :: cc5MY82 = 0.0000
REALTYPE, parameter :: cc6MY82 = 0.0000
REALTYPE, parameter :: ct1MY82 = 3.7280
REALTYPE, parameter :: ct2MY82 = 0.0000
REALTYPE, parameter :: ct3MY82 = 0.0000
REALTYPE, parameter :: ct4MY82 = 0.0000
REALTYPE, parameter :: ct5MY82 = 0.0000
REALTYPE, parameter :: cttMY82 = 0.6102

REALTYPE, parameter :: cc1KC94 = 6.0000
REALTYPE, parameter :: cc2KC94 = 0.3200
REALTYPE, parameter :: cc3KC94 = 0.0000
REALTYPE, parameter :: cc4KC94 = 0.0000
REALTYPE, parameter :: cc5KC94 = 0.0000
REALTYPE, parameter :: cc6KC94 = 0.0000
REALTYPE, parameter :: ct1KC94 = 3.7280
REALTYPE, parameter :: ct2KC94 = 0.7000
REALTYPE, parameter :: ct3KC94 = 0.7000
REALTYPE, parameter :: ct4KC94 = 0.0000
REALTYPE, parameter :: ct5KC94 = 0.2000
REALTYPE, parameter :: cttKC94 = 0.6102

REALTYPE, parameter :: cc1LDOR96 = 3.0000
REALTYPE, parameter :: cc2LDOR96 = 0.8000
REALTYPE, parameter :: cc3LDOR96 = 2.0000
REALTYPE, parameter :: cc4LDOR96 = 1.1180
REALTYPE, parameter :: cc5LDOR96 = 0.0000
REALTYPE, parameter :: cc6LDOR96 = 0.5000
REALTYPE, parameter :: ct1LDOR96 = 3.0000
REALTYPE, parameter :: ct2LDOR96 = 0.3333
REALTYPE, parameter :: ct3LDOR96 = 0.3333
REALTYPE, parameter :: ct4LDOR96 = 0.0000
REALTYPE, parameter :: ct5LDOR96 = 0.3333
REALTYPE, parameter :: cttLDOR96 = 0.8000

REALTYPE, parameter :: cc1CHCD01A = 5.0000
REALTYPE, parameter :: cc2CHCD01A = 0.8000
REALTYPE, parameter :: cc3CHCD01A = 1.9680
REALTYPE, parameter :: cc4CHCD01A = 1.1360
REALTYPE, parameter :: cc5CHCD01A = 0.0000
REALTYPE, parameter :: cc6CHCD01A = 0.4000
REALTYPE, parameter :: ct1CHCD01A = 5.9500
REALTYPE, parameter :: ct2CHCD01A = 0.6000
REALTYPE, parameter :: ct3CHCD01A = 1.0000
REALTYPE, parameter :: ct4CHCD01A = 0.0000
REALTYPE, parameter :: ct5CHCD01A = 0.3333
REALTYPE, parameter :: cttCHCD01A = 0.7200

71



REALTYPE, parameter :: cc1CHCD01B = 5.0000
REALTYPE, parameter :: cc2CHCD01B = 0.6983
REALTYPE, parameter :: cc3CHCD01B = 1.9664
REALTYPE, parameter :: cc4CHCD01B = 1.0940
REALTYPE, parameter :: cc5CHCD01B = 0.0000
REALTYPE, parameter :: cc6CHCD01B = 0.4950
REALTYPE, parameter :: ct1CHCD01B = 5.6000
REALTYPE, parameter :: ct2CHCD01B = 0.6000
REALTYPE, parameter :: ct3CHCD01B = 1.0000
REALTYPE, parameter :: ct4CHCD01B = 0.0000
REALTYPE, parameter :: ct5CHCD01B = 0.3333
REALTYPE, parameter :: cttCHCD01B = 0.4770

REALTYPE, parameter :: cc1CCH02 = 5.0000
REALTYPE, parameter :: cc2CCH02 = 0.7983
REALTYPE, parameter :: cc3CCH02 = 1.9680
REALTYPE, parameter :: cc4CCH02 = 1.1360
REALTYPE, parameter :: cc5CCH02 = 0.0000
REALTYPE, parameter :: cc6CCH02 = 0.5000
REALTYPE, parameter :: ct1CCH02 = 5.5200
REALTYPE, parameter :: ct2CCH02 = 0.2134
REALTYPE, parameter :: ct3CCH02 = 0.3570
REALTYPE, parameter :: ct4CCH02 = 0.0000
REALTYPE, parameter :: ct5CCH02 = 0.3333
REALTYPE, parameter :: cttCCH02 = 0.8200

integer, parameter :: LIST = 0
integer, parameter :: GL78 = 1
integer, parameter :: MY82 = 2
integer, parameter :: KC94 = 3
integer, parameter :: LDOR96 = 4
integer, parameter :: CHCD01A = 5
integer, parameter :: CHCD01B = 6
integer, parameter :: CCH02 = 7

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.3 Generate a two-equation model

INTERFACE:

subroutine generate_model

DESCRIPTION:

Computes the parameters of an instance of the ‘generic’ two-equation model according to the
specifications set in gotmturb.inp. This model solves (150) for the k and (166) for the generic

72



length-scale defined in section 4.16 together with an Algebraic Stress Model. For several simple
turbulent flows, analytical solutions of this models exist and can be used to calibrate the model
coefficients. The method is described in great detail in Umlauf and Burchard (2003). Also users
that are not interested in the generic part of GOTM should have a look in this section, because
results derived here are referenced in later parts of the manual.
After the call to generate_model(), all parameters of the generic two-equation model are known.
The user has full control over specific properties of the resulting model (see section 4.16).
In the following sections, the effects of model parameters on the behaviour of two-equation models
in specific situations are briefly reviewed. For a more in-depth discussion, see Umlauf and Burchard
(2003).

The logarithmic boundary layer

In the logarithmic boundary layer one has P = ε and k ∝ u2
∗

by defintion. Under these conditions
it is easy to show that a solution of (150) is

k =
u2
∗

(c0µ)
2
, (101)

and a solution of (166) can only be obtained if the condition

σψ =
n2κ2

(c0µ)
2(cψ2 − cψ1)

(102)

is satisfied. (101) can be conveniently used to obtain boundary conditions for k, whereas (102)
yields for example the value for the turbulent Schmidt-number σψ as a function of the von Kármán
constant (provided, of course, that the other constants are known). The value of the von Kármán
constant is usually assumed to be κ ≈ 0.4.

Decay of homogeneous turbulence

Another example of a simple but fundamental turbulent situation is the temporal decay of isotropic,
homogeneous turbulence (approximated by the spatial decay of turbulence behind grids in labora-
tory settings). At large times, t, data from many experiments are well described by a power law
of the form

k

k0
= A

(

t

τ0

)d

, (103)

with constant A and initial values of the kinetic energy, k0, and the eddy turnover time, τ0. The
decay rates, d, have been thoroughly documented. Experiments (Bradshaw (1975), Townsend
(1976), Domaradzki and Mellor (1984), Mohamed and Larue (1990)) suggest that d is in the range
−1.3 < d < −1. DNS, generally conducted at low Reynolds numbers, produce consistently higher
values. For example, Briggs et al. (1996) obtain a value near −1.5 from their DNS.
In homogeneous decaying turbulence, (150) and (166) reduce to a balance between the rate and
dissipation terms, respectively. The coupled system of ordinary differential equations can be solved
for given initial values k0 and ψ0 (see e.g. Wilcox (1998)). The solution can be shown to reduce to

73



(103) at large times. Then, the decay exponent, d, is determined by

d = − 2n

2m+ n− 2cψ2
, (104)

and thus depends only on the exponents m and n defined in (165) and the model constant cψ2.
For given exponents m and n, the experimental values of d can be used to derive the value of the
model constant cψ2. Note, that the predicted decay rate, d, is completely independent of the ASM
(or the stability functions in other words).

Homogeneous turbulent shear-flows

A natural extension of decaying homogeneous turbulence is the inclusion of a homogeneous shear
and an aligned homogeneous stratification. Since turbulence is still assumed to be homogeneous,
the divergence of any turbulent transport term vanishes and the interplay between the stabilizing
effects of stratification and the destabilizing action of shear can be isolated. Thus, it is not sur-
prising that this interesting special case of turbulence has been explored extensively by laboratory
experiments (Tavoularis and Corrsin (1981a,b), Tavoularis and Karnik (1989), Rohr et al. (1988)),
by Direct Numerical Simulation (Gerz et al. (1989), Holt et al. (1991), Jacobitz et al. (1997), Shih
et al. (2000)) and by Large-Eddy Simulation (Kaltenbach et al. (1994)). That flows of this kind
are crucial also in many oceanographic flows has been pointed out by Baumert and Peters (2000).
In the context of the generic two-equation model, this turbulent flow is mathematically established
by neglecting the turbulent transport terms and the advective part of the material time derivative.
Then, (150) and (166) reduce to a set of ordinary differential equations. Using the chain rule of
differentiation, the relation

1

l

dl

dt
=

1

n

1

ψ

dψ

dt
− m

n

1

k

dk

dt
(105)

for the mixing length, l, follows immediately from (165). With (105), the generic model expressed
by (150) and (166) can be used to derive an evolution equation for the integral length scale, l,

1

l

dl

dt
= −

(

1

n
cψ2

− m

n

)

ε

k

+
1

k

((

1

n
cψ1

− m

n

)

P +

(

1

n
cψ3

− m

n

)

G

)

.

(106)

Tennekes (1989) derived an equation similar to (106), however only for the special case of the
k-ε model applied to unstratified flows, and stated that ‘on dimensional grounds, l cannot depend
upon the shear because the shear is homogeneous and cannot impose a length scale’. This argument
requires immediately

cψ1 = m , (107)

which is used in the subroutine to determine the model parameter cψ1. A more detailed discussion
of this method is given in Umlauf and Burchard (2003).

Shear-free turbulence, wave-breaking

74



The first step in understanding the behaviour of two-equation models in the surface layer affected by
breaking gravity waves is the investigation of a special case, in which turbulence decays spatially
away from a planar source without mean shear. Turbulence generated by an oscillating grid in
a water tank has been used in various laboratory settings to study the spatial decay of velocity
fluctuations in this basic turbulent flow, where turbulent transport and dissipation balance exactly.
For a summary of these results, see Umlauf et al. (2003).
All grid stirring experiments confirmed a power law for the decay of k and a linear increase of the
length scale, l, according to

k = K(z + z0)
α , l = L(z + z0) , (108)

where K, L, and z0 are constants, and the source of turbulence has been assumed to be at z = 0.
In these experiments, z0 = l/L at z = 0 is not related to any kind of surface roughness length.
Rather, it is connected to the length scale of injected turbulence, uniquely determined by the
spectral properties of turbulence at the source. Experiments suggest that the decay rate for the
turbulent kinetic energy is likely to be in the range −3 < α < −2. The value of L, i.e. the slope
of the turbulent length scale, l, was found to be consistently smaller than in wall-bounded shear
flows, L < κ ≈ 0.4, see Umlauf et al. (2003).
In stationary, shear-free, unstratified turbulence, the generic model simplifies to a balance between
the turbulent transport terms and the dissipative terms in (150) and (166). Using the definition
of ψ in (165) and the scaling for the rate of dissipation, (153), the transport and dissipation of k
and ψ are balanced according to

d

dz

(

cµ

σψk
k

1
2 l

dk

dz

)

= (c0µ)
3 k

3
2

l
,

d

dz

(

cµ
σψ
k

1
2 l

d

dz

(

(c0µ)
pkmln

)

)

= cψ2(c
0
µ)
p+3km+ 1

2 ln−1 .

(109)

Note, that in shear-free turbulence, the shear-number defined in (45) is αM = 0 by definition, and
stability functions always reduce to a constant which is, however, different from the constant c0µ
approached in the logarithmic boundary layer, see section 4.7.13.
For the solution of this non-linear system , we inserted the expressions (108) in (109). From (153)
and (44), power-laws follow then also for ε = E(z + z0)

β and νt = N(z + z0)
γ .

Inserting (108) into (109)1 yields the equation

(αL)2 =
2

3
(c0µ)

2Rσψk , (110)

where the constant ratio R = c0µ/cµ follows uniquely from the respective ASM. The power-law
(108) can also be inserted in (109)2 to yield

(αm+ n)

((

1

2
+m

)

α+ n

)

L2 =
(

c0µ
)2
Rσψcψ2 . (111)

We note that with the help of (104) and (107), the relation (102) can be rewritten as

σψ =
2κ2d

(c0µ)
2(d+ 2)

n . (112)

75



Expressing now σψ with (112) and cψ2 with the help of (104) on the right hand side of (111), an
equation expressing the exponent m in terms of n (or vice-versa) can be obtained. The result for
n can be written as

n = − 1

4(2 + d)(κ2R− L2)

(

4dκ2Rm− (1 + 4m)(2 + d)αL2

+

√

8m(1 + 2m)(2 + d)2(κ2R − L2)α2L2 +
(

− 4dκ2R m+ (2 + d)(1 + 4m)αL2
)2
)

.

(113)
After assigning appropriate values for the von Kármán constant, κ, the decay coefficient of homo-
geneous turbulence, d, the spatial decay rate, α, and the slope, L, an infinite number of pairs of m
and n satisfying (113) can be derived. Each corresponds to a different two-equation model. Some
example are given in table 5 (see Umlauf and Burchard (2003)).

α L m n cψ2 σψk σψ

−2.0 0.20 1.00 −0.67 1.22 0.80 1.07
−2.0 0.20 2.00 −1.09 2.36 0.80 1.75

−2.5 0.20 1.00 −1.05 1.35 1.25 1.68
−2.5 0.20 2.00 −1.74 2.58 1.25 2.78

Table 5: Some parameter sets for the generic model with κ = 0.4, d = −1.2, (c0µ)
2 = 0.3, cψ1

= m
and obeying the log-layer compatibility relation (112).

Even though each line in this table represents a different two-equation model with completely
different model constants, each of the two groups of models (with α = −2.0 and α = −2.5,
respectively) performs completely identical in all situations discussed until here. Thus, the generic
model allows for the formulation of groups of two-equation models with fully controlled properties
from the outset. As discussed by Umlauf and Burchard (2003), one more constraint is necessary
to obtain the final values of all parameters, including the exponents m and n. These authors
suggested that the first line in table 5 yields a model with excellent properties in all flows they
considered.

Mixed layer deepending

The correct prediction of mixed layer deepening into a stratified fluid due to a wind stress at the
surface is one of the most crucial requirements for an oceanic turbulence model. This situation has
been frequently interpreted by analogy with the classical experiment of Kato and Phillips (1969)
and its re-interpretation by Price (1979), in which the entrainment in a linearly stratified fluid
subject to a constant surface stress was investigated. The results of this experiment have been
used by numerous authors to calibrate their turbulence models.
In particular, it has been shown by Burchard and Bolding (2001) for the k-ε model of Rodi (1987),
by Burchard (2001b) for the q2lmodel of Mellor and Yamada (1982), and by Umlauf et al. (2003) for
the k-ω model of Wilcox (1988) that, remarkably, the mixed layer depth predicted by these models
depends almost exclusively on the value of the Richardson number, Ri = N 2/M2, computed in a

76



homogeneous, stratified shear-flow in steady-state. This value is usually referred to as the steady-
state Richardson number, Rist (Rohr et al. (1988), Kaltenbach et al. (1994), Jacobitz et al. (1997),
Shih et al. (2000)).
Umlauf et al. (2003) showed that in the context of models considered in GOTM, the steady-state
Richardson number is determined by the relation

Rist =
cµ
cµ′

cψ2 − cψ1

cψ2 − cψ3
. (114)

Since it is well-known that, with the equilibrium assumption P +G = ε, stability functions reduce
to functions of Ri only (Mellor and Yamada (1974), Galperin et al. (1988)), (114) is a non-linear
equation for the model constant cψ3 for given Rist. Note, that the structure parameters, m and
n, do not appear in (114). This implies that the type of the two-equation model is irrelevant for
the prediction of the mixed layer depth, as long as (114) is fulfilled for identical Rist. Numerical
examples with very different values of m and n confirmed indeed that the mixed layer depth only
depends on Rist. The experiment of Kato and Phillips (1969) could almost perfectly be reproduced,
provided the parameter cψ3 was chosen to correspond to Rist ≈ 0.25, see Umlauf et al. (2003).
Note, that in instable situations, a different value of the parameter cψ3 needs to be used. This
does not cause a discontinuity in the model because the buoyancy term in (166) is zero at the
transition. An evaluation of the length-scale equations in convective flows, however, is intimately
related to the third-order modelling of the triple correlation terms, a topic outside the scope of
this documentation.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.4 Analyse the turbulence models

INTERFACE:

subroutine analyse_model

DESCRIPTION:

This routine analyses all models in GOTM for their physical properties implied by chosen model
parameters. These results can be displayed by calling the internal routine report_model(), also
defined in the turbulence module (see section 4.7.5).
In most cases, the relations connecting model parameters and physical properties have already
been derived in section 4.7.3: the von Kármán constant, κ, follows from (102), the decay rate
in homogeneous turbulence , d, from (104), and the steady-state Richardson-number from (114).
These relations have been obtained in ‘generic’ form (see section 4.16), but relations for specific
models, like the k-ε model or the k-ω model, can be derived by simply adopting the parameters
compiled in table 8 and table 9 in section 4.16.

77



The decay rates α and L in shear-free turbulence follow from the physically meaningful roots of
(110) and (111), which are

α = − 4n(σψk )
1
2

(1 + 4m)(σψk )
1
2 − (σψk + 24σψcψ2)

1
2

,

L = c0µR
1
2

(

(1 + 4m+ 8m2)σψk + 12σψcψ2 − (1 + 4m)(σψk (σψk + 24σψcψ2))
1
2

12n2

)
1
2

,

(115)

where it should be recalled that R = c0µ/cµ. For the standard models (without ASM), R = 1 may
be assumed. Then, with the values from table 8 and table 9, solutions for the k-ε model of Rodi
(1987), and the k-ω model of Umlauf et al. (2003) can be directly recovered as special cases of this
equation.
Due to its wall-functions, the model of Mellor and Yamada (1982) described in section 4.14 requires
a slightly more complicated analysis. For this model, the von Kármán constant is computed
according to

κ =

√

E2 −E1 + 1

SlB1
. (116)

The decay rates in shear-free turbulence can be shown to be

α =
5κB

1
2

1 Sl +
(

12E2 (2Sl − Sq) +B1κ
2Sl (Sl + 12Sq)

)
1
2

3κB
1
2

1 (Sq − 2Sl)

L = κ

( N
6Sq(E2 − B1κ2Sl)2

)
1
2

,

(117)

where we introduced the abbreviation

N = 6E2 (2Sl − Sq) +B1κ
2Sl (13Sl + 6Sq)

− 5B
1
2

1 κSl
(

12E2(2Sl − Sq) +B1κ
2Sl(Sl + 12Sq)

)
1
2 .

(118)

These equations replace (115) for the model of Mellor and Yamada (1982). Decay-rates for this
model do not at all depend on the stability functions. However, they depend on the parameter
E2 of the wall-functions. This parameter, however, has been derived for wall-bounded shear flows,
and it is not very plausible to find it in an expression for shear-free flows.
The routine analyse_model() works also for one-equation models, where the length-scale, l, is
prescribed by an analytical expression (see section 4.19). However, some attention has to be paid in
interpreting the results. First, it is clear that these models cannot predict homogeneous turbulence,
simply because all formulations rely on some type of modified boundary layer expressions for the
length-scale. This impies that a well-defined decay rate, d, and a steady-state Richardson-number,
Rist, cannot be computed. Second, the von Kármán constant, κ, does not follow from (102) or
(116), because κ now relates directly to the prescribed slope of the length-scale close to the bottom
or the surface. Third, in shear-free flows, (115)1 or (117)1 remain valid, provided the planar source
of the spatially decaying turbulence is located at z = 0. Then, the slope of the length-scale, L,
defined in (108) can be identified with the prescribed slope, κ, and (115)1 or (117)1 are identical
to the solutions suggested by Craig and Banner (1994).

78



In this context, it should be pointed out that the shear-free solutions also have a direct relation
to an important oceanic situation. If the planar source of turbulence is assumed to be located at
z = 0, and if the injected turbulence is identified with turbulence caused by breaking surface-waves,
then it can be shown that (115) or (117) are valid in a thin boundary layer adjacent to the suface.
Further below, to classical law of the wall determines the flow, see Craig and Banner (1994) and
citeUmlaufetal2003.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.5 Report turbulence model

INTERFACE:

subroutine report_model

DESCRIPTION:

This routine reports on the parameters and the propeties of all turbulence models implemented in
GOTM. Results are written to the screen.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.6 Manage turbulence time-stepping

INTERFACE:

subroutine do_turbulence(nlev,dt,depth,u_taus,u_taub,z0s,z0b,h, &
NN,SS,xP)

79



DESCRIPTION:

This routine is the central point of the turbulence scheme. It determines the order, in which turbu-
lence variables are updated, and calls other member functions updating the TKE, the length-scale,
the dissipation rate, the ASM etc. Note, that the list of arguments in do_turbulence() corresponds
exactly to those mean flow and grid-related variables required to update the turbulent quantities.
These variables have to be passed from a 3-D model, if the turbulence module of GOTM is used
for the computation of the turbulent fluxes. Do not forget to call init_turbulence() from the
3-D model before the first call to do_turbulence().
The variable turb_method determines the essential structure of the calls in do_turbulence(). At
the moment, the following model types are available:

• turb_method = 0 corresponds to the ”convective adjustment” algorithm, see section 3.15.
Since this model is not a real one-point turbulence closure, it is not called from do_turbulence
but directly from the main GOTM loop.

• turb_method = 1 corresponds to a purely algebraic description of the turbulent diffusivities.

• turb_method = 2 corresponds to models computing the diffusivities from the TKE and the
turbulent length scale according to (44). TKE and length scale are computed from dynamic
PDEs or algebraic relations, an empirical (i.e. not derived from a second-order model) stability
function is used, see section 4.7.12.

• turb_method = 3 corresponds to a second-order model for the turbulent fluxes.

The second-order models fall into different categories, depending on the value of second_method.
These models, discussed in detail in section 4.4, are listed in the following.

• second_method = 1 corresponds to algebraic quasi-equilibrium models with scaling in the
spirit of Galperin et al. (1988), see section 4.27.

• second_method = 2 corresponds to algebraic models assuming Pb = εb, and hence using
(72). Furthermore, full equilibrium P +G = ε and Pb = εb is assumed for the computation
of N and Nb in (65), see section 4.26

• second_method = 3 corresponds to algebraic models assuming full equilibrium P + G = ε
and Pb = εb for the computation of N and Nb in (65). Now, however, also an equation for
(half) the buoyancy variance kb is solved, leading to the appearance of the counter-gradient
term in (74), see section 4.25. This model is not yet fully tested and therefore not available.

Depending on the values of kb_method and epsb_method, different algebraic or differential equa-
tions for kb and εb are solved for second_method = 3,4.

USES:

IMPLICIT NONE

interface
subroutine production(nlev,NN,SS,xP)
integer, intent(in) :: nlev
REALTYPE, intent(in) :: NN(0:nlev)
REALTYPE, intent(in) :: SS(0:nlev)
REALTYPE, intent(in), optional :: xP(0:nlev)

80



end subroutine production
end interface

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

distance between surface
and bottom(m)
REALTYPE, intent(in) :: depth

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

surface and bottom
roughness length (m)
REALTYPE, intent(in) :: z0s,z0b

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

boyancy frequency squared (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev)

shear-frequency squared (1/s^2)
REALTYPE, intent(in) :: SS(0:nlev)

TKE production due to seagrass
friction (m^2/s^3)
REALTYPE, intent(in), optional :: xP(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Lars Umlauf

4.7.7 Update the turbulent kinetic energy

INTERFACE:

subroutine do_tke(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

81



Based on user input, this routine calls the appropriate routines for calculating the turbulent kinetic
energy. The user has the choice between an algebraic equation described in section 4.17, and two
versions of the dynamic transport equation of the TKE described in section 4.11 and section 4.12.
The former uses k-ε notation, the latter the notation of Mellor and Yamada (1982). Apart from
this, both equations are identical and update the vectors tke and tkeo, which is the value of the
tke at the old time step.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: dt,u_taus,u_taub,z0s,z0b
REALTYPE, intent(in) :: h(0:nlev)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal, Lars Umlauf

4.7.8 Update the buoyancy variance

INTERFACE:

subroutine do_kb(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

Based on the value of kb_method, this routine calls the appropriate routines for calculating (half)
the buoyancy variance kb defined in (50). The user has the choice between a simple algebraic
expression, described in section 4.18, and a dynamic equation for kb, described in section 4.13.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: dt,u_taus,u_taub,z0s,z0b
REALTYPE, intent(in) :: h(0:nlev)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf

82



4.7.9 Update the dissipation length-scale

INTERFACE:

subroutine do_lengthscale(nlev,dt,depth,u_taus,u_taub, z0s,z0b,h,NN,SS)

DESCRIPTION:

Based on the value of len_scale_method, this routine calls the appropriate routines for calculating
the turbulent length-scale, l, and the rate of dissipation, ε. The user has the choice between several
algebraic equations described in section 4.19, and several differential transport equations for a
length-scale determining variable. At the moment, GOTM implements equations for the rate of
dissipation, described in section 4.15, for the Mellor-Yamada model described in section 4.14, and
for the generic scale formulated by Umlauf and Burchard (2003) and described in section 4.16.
This last transport equation generalises all of the previously mentioned models. For example, the
k-ε model and the k-ω model can be recovered as special cases of the generic equation, see Umlauf
and Burchard (2003).

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: dt,depth,u_taus,u_taub,z0s,z0b
REALTYPE, intent(in) :: h(0:nlev)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal,
Lars Umlauf

4.7.10 Update the desctruction rate of buoyancy variance

INTERFACE:

subroutine do_epsb(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

Based on the value of epsb_method, this routine calls the appropriate routines for calculating the
molecular destruction rate of kb, defined in (158). Presently, only a simple algebraic expression,
described in section 4.20, is available in GOTM.

USES:

IMPLICIT NONE

83



INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: dt,u_taus,u_taub,z0s,z0b
REALTYPE, intent(in) :: h(0:nlev)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.11 Update diffusivities (Kolmogorov-Prandtl relation)

INTERFACE:

subroutine kolpran(nlev)

DESCRIPTION:

Eddy viscosity and diffusivity are calculated by means of the relation of Kolmogorov and Prandtl
from the updated values of k, l and the stability functions according to (44). In addition, the

counter-gradient term Γ̃B = εΓ is updated, see (35) and (75).
Note, that this routine relies on the fact that the lowest and uppermost values of the stability
functions and of k, l, and Γ have been computed using the correct boundary conditions. No special
treatment of νt, ν

B
t , and Γ̃B at the boundaries is processed.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal, Lars Umlauf

4.7.12 Update stability functions

INTERFACE:

subroutine stabilityfunctions(nlev)

84



DESCRIPTION:

Based on the user’s specifications in gotmtub.inp, this internal routine selects the desired stability
functions defined in (44). These simple functions depend on αM and αN defined in (45), which are
in most cases only used to compute the Richardson-number

Ri =
αN
αM

. (119)

A description of individual stability functions starts from section 4.28.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Hans Burchard, Karsten Bollding, Lars Umlauf

4.7.13 Compute special values of stability functions

INTERFACE:

subroutine compute_cm0(turb_method,stab_method,scnd_method)

DESCRIPTION:

Computes the values of the stability function cµ defined in (44) in the logarithmic boundary-layer,
c0µ, and in shear-free, spatially decaying turbulence, csfµ (see section 4.7.4).

c0µ is the value of cµ in unstratified equilibrium flows, i.e. in the logarithmic wall region. It can be
obtained from the relation P = ε, according to (78) written in the form

P

ε
= ĉµαM = 1 . (120)

In unstratified flows, ĉµ only depends on αM (see sections 4.24–4.26), and (120) is a polynomial
equation for the value of αM in equilibrium. Its solution is

αM =
3N 2

a2
2 − 3a2

3 + 3a1N
, (121)

where, according to (65) in equilibrium N = (c1 + c∗1)/2. The value of the stability function in
equilibrium follows directly from (120),

ĉ0µ =
a2
2 − 3a2

3 + 3a1N
3N 2

. (122)

85



Note that ĉ0µ = (c0µ)
4 according to (76).

Algebraic Stress Models exhibit an interesting behaviour in unstratified, shear-free turbulence.
Clearly, in the absence of shear, these models predict isotropic turbulence, bij = 0, according to
(59). This is a direct consequence of the assumption (58), implying an infinitely small return-to-
isotropy time scale. Formally, however, the limit of the stability function ĉµ for αM → 0 follows
from (74) and the definitions given in sections 4.24–4.26. The limiting value is

lim
αM→0

ĉµ = ĉsfµ =
a1

N , (123)

where, according to (65), one has either N = c1/2 − 1 or N = (c1 + c∗1)/2, see section 4.24 and
section 4.26, respectively. The above limit corresponds to nearly isotropic turbulence supporting
a very small momentum flux caused by a very small shear.
Note that ĉsfµ = (c0µ)

3csfµ according to (76).

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: turb_method
integer, intent(in) :: stab_method
integer, intent(in) :: scnd_method

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.14 Boundary conditons for the k-equation (k-epsilon style)

INTERFACE:

REALTYPE function k_bc(bc,type,zi,z0,u_tau)

DESCRIPTION:

Computes prescribed and flux boundary conditions for the transport equation (150). The formal
parameter bc determines whether Dirchlet or Neumann-type boundary conditions are computed.
Depending on the physical properties of the boundary-layer, the parameter type relates either to
a visous, a logarithmic, or an injection-type boundary-layer. In the latter case, the flux of
TKE caused by breaking surface waves has to be specified. Presently, there is only one possibility
to do so implemented in GOTM. It is described in section 4.34. All parameters that determine the
boundary layer have to be set in gotmturb.inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface), and
not the standard coordinate of the same name used in GOTM.

Viscous boundary-layers

This type is not implemented yet in GOTM.

86



Logarithmic boundary-layers

The Dirichlet (prescribed) boundary condition follows from (101) as

k =
u2
∗

(c0µ)
2

. (124)

The Neumann (flux) boundary condition can be derived from the constancy of k in the logarithmic
region. This fact can be written as

Fk = − νt
σk

∂k

∂z
= 0 . (125)

Shear-free boundary-layers with injection of TKE

The Dirichlet (prescribed) boundary condition follows simply from the power-law in (108),

k = K(z + z0)
α . (126)

The Neumann (flux) boundary condition can be written as

Fk = − νt
σk

∂k

∂z
= − cµ

σk
K

3
2Lα(z + z0)

3
2
α , (127)

which follows immediately from (108) and the expression for the turbulent diffusivity, (44). The
parameter K can be determined from an evaluation of (127) at z = 0. The result is

K =

(

− σk
cµαL

Fk

)
2
3 1

zα0
, (128)

where the specification of the flux Fk and the value of z0 have to be determined from a suitable
model of the wave breaking process.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: bc,type
REALTYPE, intent(in) :: zi,z0,u_tau

REVISION HISTORY:

Original author(s): Lars Umlauf

87



4.7.15 Boundary conditons for the k-equation (Mellor-Yamada style)

INTERFACE:

REALTYPE function q2over2_bc(bc,type,zi,z0,u_tau)

DESCRIPTION:

Computes prescribed and flux boundary conditions for the transport equation (154). The formal
parameter bc determines whether Dirchlet or Neumann-type boundary conditions are computed.
Depending on the physical properties of the boundary-layer, the parameter type relates either to
a visous, a logarithmic, or an injection-type boundary-layer. In the latter case, the flux of
TKE caused by breaking surface waves has to be specified. Presently, there is only one possibility
to do so implemented in GOTM. It is described in section 4.34. All parameters that determine the
boundary layer have to be set in gotmturb.inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface), and
not the standard coordinate of the same name used in GOTM.

Viscous boundary-layers

This type is not implemented yet in GOTM.

Logarithmic boundary-layers

The Dirichlet (prescribed) boundary condition follows from (101) and (157) as

q2/2 =
u2
∗
B

2
3

1

2
. (129)

The Neumann (flux) boundary condition can be derived from the constancy of q2/2 in the loga-
rithmic region. This fact can be written as

Fq = −Sqql
∂k

∂z
= 0 . (130)

Shear-free boundary-layers with injection of TKE

The Dirichlet (prescribed) boundary condition follows simply from the power-law in (108),

q2

2
= k = K(z + z0)

α . (131)

The Neumann (flux) boundary condition can be written as

Fq = −Sqql
∂k

∂z
= −

√
2SqK

3
2αL(z + z0)

3
2
α , (132)

88



which follows immediately from (108). The parameter K can be determined from an evaluation of
(132) at z = 0. The result is

K =

(

− Fq√
2SqαL

)
2
3

1

zα0
, (133)

where the specification of the flux Fq and the value of z0 have to be determined from a suitable
model of the wave breaking process.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: bc,type
REALTYPE, intent(in) :: zi,z0,u_tau

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.16 Boundary conditons for the epsilon-equation

INTERFACE:

REALTYPE function epsilon_bc(bc,type,zi,ki,z0,u_tau)

DESCRIPTION:

Computes prescribed and flux boundary conditions for the transport equation (163). The formal
parameter bc determines whether Dirchlet or Neumann-type boundary conditions are computed.
Depending on the physical properties of the boundary-layer, the parameter type relates either to
a visous, a logarithmic, or an injection-type boundary-layer. In the latter case, the flux of
TKE caused by breaking surface waves has to be specified. Presently, there is only one possibility
to do so implemented in GOTM. It is described in section 4.34. All parameters that determine the
boundary layer have to be set in gotmturb.inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface), and
not the standard coordinate of the same name used in GOTM.

Viscous boundary-layers

This type is not implemented yet in GOTM.

Logarithmic boundary-layers

The Dirichlet (prescribed) boundary condition follows from (153) as

ε =
(c0µ)

3k
3
2

κ(z + z0)
, (134)

89



where we used the law-of-the-wall relation l = κ(z + z0).
The Neumann (flux) boundary condition can be expressed as

Fε = − νt
σε

∂ε

∂z
=

(c0µ)
4

σε

k2

z + z0
, (135)

by inserting l = κ(z + z0) into the expression for the diffusivity in (44). Note, that in (134) and
(135), we use ki, the value of k at the current time step, to compute the boundary conditions. By
means of (101), it would have been also possible to express the boundary conditions in terms of
the friction velocity, u∗. This, however, causes numerical difficulties in case of a stress-free surface
boundary-layer as for example in the pressure-driven open channel flow.

Shear-free boundary-layers with injection of TKE

The Dirichlet (prescribed) boundary condition follows simply from the power-law (108) inserted in
(153). This yields

ε = (c0µ)
3K

3
2L−1(z + z0)

3
2
α−1 . (136)

The Neumann (flux) boundary condition is

Fε = − νt
σε

∂ε

∂z
= −

cµ(c
0
µ)

3

σε
K2

(

3

2
α− 1

)

(z + z0)
2α−1 , (137)

which follows from (108) and (44). The parameter K is computed as described in the context of
(128).

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: bc,type
REALTYPE, intent(in) :: zi,ki,z0,u_tau

REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.17 Boundary conditons for the psi-equation

INTERFACE:

REALTYPE function psi_bc(bc,type,zi,ki,z0,u_tau)

DESCRIPTION:

Computes prescribed and flux boundary conditions for the transport equation (166). The formal
parameter bc determines whether Dirchlet or Neumann-type boundary conditions are computed.

90



Depending on the physical properties of the boundary-layer, the parameter type relates either to
a visous, a logarithmic, or an injection-type boundary-layer. In the latter case, the flux of
TKE caused by breaking surface waves has to be specified. Presently, there is only one possibility
to do so implemented in GOTM. It is described in section 4.34. All parameters that determine the
boundary layer have to be set in gotmturb.inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface), and
not the standard coordinate of the same name used in GOTM.

Viscous boundary-layers

This type is not implemented yet in GOTM.

Logarithmic boundary-layers

The Dirichlet (prescribed) boundary condition follows from (165) as

ψ = (c0µ)
pκnkm (z + z0)

n
, (138)

where we used the law-of-the-wall relation l = κ(z + z0).
Neumann (flux) boundary condition can be written as

Fψ = − νt
σψ

∂ψ

∂z
= −n(c0µ)

p+1κn+1

σψ
km+ 1

2 (z + z0)
n (139)

by inserting l = κ(z + z0) into the expression for the diffusivity in (44). Note, that in (138) and
(139), we use ki, the value of k at the current time step, to compute the boundary conditions. By
means of (101), it would have been also possible to express the boundary conditions in terms of
the friction velocity, u∗. This, however, causes numerical difficulties in case of a stress-free surface
boundary-layer as for example in the pressure-driven open channel flow.

Shear-free boundary-layers with injection of TKE

The Dirichlet (prescribed) boundary condition follows simply from the power-law (108) inserted in
(165). This yields

ψ = (c0µ)
pKmLn(z + z0)

mα+n . (140)

The Neumann (flux) boundary condition is

Fψ = − νt
σψ

∂ψ

∂z
= −cµ(c

0
µ)
p

σψ
(mα+ n)Km+ 1

2Ln+1(z + z0)
(m+ 1

2
)α+n , (141)

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: bc,type
REALTYPE, intent(in) :: zi,ki,z0,u_tau

91



REVISION HISTORY:

Original author(s): Lars Umlauf

4.7.18 Boundary conditons for the q2l-equation

INTERFACE:

REALTYPE function q2l_bc(bc,type,zi,ki,z0,u_tau)

DESCRIPTION:

Computes prescribed and flux boundary conditions for the transport equation (160). The formal
parameter bc determines whether Dirchlet or Neumann-type boundary conditions are computed.
Depending on the physical properties of the boundary-layer, the parameter type relates either to
a visous, a logarithmic, or an injection-type boundary-layer. In the latter case, the flux of
TKE caused by breaking surface waves has to be specified. Presently, there is only one possibility
to do so implemented in GOTM. It is described in section 4.34. All parameters that determine the
boundary layer have to be set in gotmturb.inp.
Note that in this section, for brevity, z denotes the distance from the wall (or the surface), and
not the standard coordinate of the same name used in GOTM.

Viscous boundary-layers

This type is not implemented yet in GOTM.

Logarithmic boundary-layers

The Dirchlet (prescribed) boundary conditions can be written as

q2l = 2κk(z + z0) , (142)

where we used the law-of-the-wall relation l = κ(z + z0).
Neumann (flux) boundary condition can be written as

Fl = −Slql
∂q2l

∂z
= −2

√
2Slκ

2k
3
2 (z + z0) (143)

by inserting l = κ(z+ z0) (q is constant in the log-layer). Note, that in (142) and (143), we use ki,
the value of k at the current time step, to compute the boundary conditions. By means of (101), it
would have been also possible to express the boundary conditions in terms of the friction velocity,
u∗. This, however, causes numerical difficulties in case of a stress-free surface boundary-layer as
for example in the pressure-driven open channel flow.

Shear-free boundary-layers with injection of TKE

The Dirichlet (prescribed) boundary condition follows simply from the power-law (108), yielding

q2l = 2KL(z + z0)
α+1 . (144)

92



Neumann (flux) boundary condition is

Fl = −Slql
∂q2l

∂z
= −2

√
2Sl(α+ 1)K

3
2L2(z + z0)

3
2
α+1 , (145)

which follows from (108). The parameter K is computed as described in the context of (133).

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: bc,type
REALTYPE, intent(in) :: zi,ki,z0,u_tau

REVISION HISTORY:

Original author(s): Lars Umlauf

93



4.8 Update turbulence production

INTERFACE:

subroutine production(nlev,NN,SS,xP)

DESCRIPTION:

This subroutine calculates the production terms of turbulent kinetic energy as defined in (152)
and the production of buoayancy variance as defined in (159). The shear-production is computed
according to

P = νt(M
2 + αwN

2) +XP , (146)

with the turbulent diffusivity of momentum, νt, defined in (44). The shear-frequency, M , is discre-
tised as described in section 3.13. The term multiplied by αw traces back to a parameterisation of
breaking internal waves suggested by Mellor (1989). XP is an extra production term, connected
for example with turbulence production caused by sea-grass, see (247) in section 9.1. xP is an
optional argument in the FOTRAN code.
Similarly, according to (78), the buoyancy production is computed from the expression

G = −νBt N2 + Γ̃B , (147)

with the turbulent diffusivity, νBt , defined in (44). The second term in (147) represents the non-local
buoyancy flux. The buoyancy-frequency, N , is discretised as described in section 3.14.
The production of buoyancy variance by vertical meanflow gradients follows from (78) and (147)

Pb = −GN2 . (148)

Thus, according to the definition of the potential energy (50), the buoyancy production G describes
the conversion between turbulent kinetic and potential energy in (150) and (158), respectively.

USES:

use turbulence, only: P,B,Pb
use turbulence, only: num,nuh
use turbulence, only: alpha,iw_model
IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

boyancy frequency squared (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev)

shear-frequency squared (1/s^2)
REALTYPE, intent(in) :: SS(0:nlev)

TKE production due to seagrass
friction (m^2/s^3)
REALTYPE, intent(in), optional :: xP(0:nlev)

94



REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard
$Log: production.F90,v $
Revision 1.3 2005/08/11 13:01:49 lars
Added explicit loops for 3-D z-level support. Thanks to Vicente Fernandez.
Revision 1.2 2005/07/19 16:46:14 hb
removed superfluous variables - NNT, NNS, SSU, SSV
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed
Revision 1.6 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.5 2003/03/28 08:56:56 kbk
removed tabs
Revision 1.4 2003/03/10 08:50:07 gotm
Improved documentation and cleaned up code
Revision 1.3 2002/02/08 08:59:57 gotm
Revision 1.2 2001/11/18 16:02:16 gotm
Allow no_shear calculation
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

95



4.9 Update dimensionless alpha’s

INTERFACE:

subroutine alpha_mnb(nlev,NN,SS)

DESCRIPTION:

This subroutine updates the dimensionless numbers αM , αN , and αb according to (45). Note that
according to (64) and (67) the following identities are valid

αM = S
2
, αN = N

2
, αb = T . (149)

USES:

use turbulence, only: tke,eps,kb
use turbulence, only: as,an,at
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: alpha_mnb.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

96



4.10 Update time scale ratio

INTERFACE:

subroutine r_ratio(nlev)

DESCRIPTION:

This routine updates the ratio r of the dissipation time scales as defined in (66).

USES:

use turbulence, only: tke,eps,kb,epsb
use turbulence, only: r

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: r_ratio.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

97



4.11 The dynamic k-equation

INTERFACE:

subroutine tkeeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

The transport equation for the turbulent kinetic energy, k, follows immediately from the contraction
of the Reynolds-stress tensor. In the case of a Boussinesq-fluid, this equation can be written as

k̇ = Dk + P +G− ε , (150)

where k̇ denotes the material derivative of k. P and G are the production of k by mean shear and
buoyancy, respectively, and ε the rate of dissipation. Dk represents the sum of the viscous and
turbulent transport terms. For horizontally homogeneous flows, the transport term Dk appearing
in (150) is presently expressed by a simple gradient formulation,

Dk =
∂

∂z

(

νt
σk

∂k

∂z

)

, (151)

where σk is the constant Schmidt-number for k.
In horizontally homogeneous flows, the shear and the buoyancy production, P and G, can be
written as

P = −〈u′w′〉∂U
∂z

− 〈v′w′〉∂V
∂z

,

G = 〈w′b′〉 ,
(152)

see (48). Their computation is discussed in section 4.8.
The rate of dissipation, ε, can be either obtained directly from its parameterised transport equation
as discussed in section 4.15, or from any other model yielding an appropriate description of the
dissipative length-scale, l. Then, ε follows from the well-known cascading relation of turbulence,

ε = (c0µ)
3 k

3
2

l
, (153)

where c0µ is a constant of the model.

USES:

use turbulence, only: P,B,num
use turbulence, only: tke,k_min,eps
use turbulence, only: k_bc, k_ubc, k_lbc, ubc_type, lbc_type
use turbulence, only: sig_k
use util, only: Dirichlet,Neumann

IMPLICIT NONE

INPUT PARAMETERS:

98



number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

surface and bottom
roughness length (m)
REALTYPE, intent(in) :: z0s,z0b

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

square of shear and buoyancy
frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
(re-write after first version of
H. Burchard and K. Bolding)

$Log: tkeeq.F90,v $
Revision 1.7 2005/08/11 13:11:50 lars
Added explicit loops for diffusivities for 3-D z-level support. Thanks to Vicente Fernandez.
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/10 09:02:06 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code

99



4.12 The dynamic q2/2-equation

INTERFACE:

subroutine q2over2eq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

The transport equation for the TKE q2/2 = k can be written as

˙
q2/2 = Dq + P +G− ε , (154)

where
˙

q2/2 denotes the material derivative of q2/2. With P and G following from (152), evidently,
this equation is formally identical to (150). The only reason why it is discretized seperately here,
is the slightly different down-gradient model for the transport term,

Dq =
∂

∂z

(

qlSq
∂q2/2

∂z

)

, (155)

where Sq is a model constant. The notation has been chosen according to that introduced by
Mellor and Yamada (1982). Using their notation, also (153) can be expressed in mathematically
identical form as

ε =
q3

B1l
, (156)

where B1 is a constant of the model. Note, that the equivalence of (153) and (156) requires that

(c0µ)
−2 =

1

2
B

2
3

1 . (157)

USES:

use turbulence, only: P,B
use turbulence, only: tke,k_min,eps,L
use turbulence, only: q2over2_bc, k_ubc, k_lbc, ubc_type, lbc_type
use turbulence, only: sq
use util, only: Dirichlet,Neumann

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

surface and bottom

100



friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

surface and bottom
roughness length (m)
REALTYPE, intent(in) :: z0s,z0b

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

square of shear and buoyancy
frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: q2over2eq.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 09:04:04 gotm
Fixed comment char
Revision 1.1 2003/03/10 09:00:36 gotm
Part of new generic turbulence model

101



4.13 The dynamic kb-equation

INTERFACE:

subroutine kbeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

The transport equation for (half the) buoyancy variance, kb = 〈b′2〉/2, follows from the equation
for the buoyancy fluctations (see Sander (1998)). In the case of a Boussinesq-fluid, this equation
can be written as

k̇b = Db + Pb − εb , (158)

where k̇b denotes the material derivative of kb. Pb is the production of kb be mean density gradients,
and εb the rate of molecular destruction. Db represents the sum of the viscous and turbulent
transport terms. It is presently evaluated with a simple down gradient model in GOTM.
The production of buoyancy variance by the vertical density gradient is

Pb = −〈w′b′〉∂B
∂z

= −〈w′b′〉N2 . (159)

Its computation is discussed in section 4.8.
The rate of molecular destruction, εb, can be computed from either a transport equation or a
algebraic expression, section 4.7.10.

USES:

use turbulence, only: Pb,epsb,nuh
use turbulence, only: kb,kb_min
use turbulence, only: k_ubc, k_lbc, ubc_type, lbc_type
use util, only: Dirichlet,Neumann

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

surface and bottom
roughness length (m)
REALTYPE, intent(in) :: z0s,z0b

102



layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

square of shear and buoyancy
frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf

$Log: kbeq.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

103



4.14 The dynamic q2l-equation

INTERFACE:

subroutine lengthscaleeq(nlev,dt,depth,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

Following suggestions of Rotta (1951), Mellor and Yamada (1982) proposed an equation for the
product q2l expressed by

˙
q2l = Dl + l(E1P +E3G−E2Fε) , (160)

where
˙
q2l denotes the material derivative of q2l. The production terms P and G follow from (152),

and ε can be computed either directly from (156), or from (153) with the help (157).
The so-called wall function, F , appearing in (160) is defined by

F = 1 +E2

(

l

κLz

)2

, (161)

κ being the von Kármán constant and Lz some measure for the distance from the wall. Different
possiblities for Lz are implemented in GOTM, which can be activated be setting the parameter
MY_length in gotmturb.inp to appropriate values. Close to the wall, however, one always has
Lz = z, where z is the distance from the wall.
For horizontally homogeneous flows, the transport term Dl appearing in (160) is expressed by a
simple gradient formulation,

Dl =
∂

∂z

(

qlSl
∂q2l

∂z

)

, (162)

where Sl is a constant of the model. The values for the model constants recommended by Mellor
and Yamada (1982) are displayed in table 6. They can be set in gotmturb.inp. Note, that
the parameter E3 in stably stratifed flows is in principle a function of the so-called steady state
Richardson-number, as discussed by Burchard (2001b), see discussion in the context of (114).

B1 Sq Sl E1 E2 E3

Mellor and Yamada (1982) 16.6 0.2 0.2 1.8 1.33 1.8

Table 6: Constants appearing in (160) and (156)

At the end of this routine the length-scale can be constrained according to a suggestion of Galperin
et al. (1988). This feature is optional and can be activated by setting length_lim = .true. in
gotmturb.inp.

USES:

use turbulence, only: P,B
use turbulence, only: tke,k_min,eps,eps_min,L
use turbulence, only: kappa,e1,e2,e3,b1
use turbulence, only: MY_length,cm0,cde,galp,length_lim

104



use turbulence, only: q2l_bc, psi_ubc, psi_lbc, ubc_type, lbc_type
use turbulence, only: sl
use util, only: Dirichlet,Neumann

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

local water depth (m)
REALTYPE, intent(in) :: depth

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

surface and bottom
roughness length (m)
REALTYPE, intent(in) :: z0s,z0b

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

square of shear and buoyancy
frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
(re-write after first version of
H. Burchard and K. Bolding

$Log: lengthscaleeq.F90,v $
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code

105



4.15 The dynamic epsilon-equation

INTERFACE:

subroutine dissipationeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

The k-ε model in its form suggested by Rodi (1987) has been implemented in GOTM. In this
model, the rate of dissipation is balanced according to

ε̇ = Dε +
ε

k
(cε1P + cε3G− cε2ε) , (163)

where ε̇ denotes the material derivative of ε. The production terms P and G follow from (152) and
Dε represents the sum of the viscous and turbulent transport terms.
For horizontally homogeneous flows, the transport term Dε appearing in (163) is presently expressed
by a simple gradient formulation,

Dε =
∂

∂z

(

νt
σε

∂ε

∂z

)

, (164)

where σε is the constant Schmidt-number for ε.
It should be pointed out that not all authors retain the buoyancy term in (163), see e.g. Gibson
and Launder (1976). Similar to the model of Mellor and Yamada (1982), Craft et al. (1996) set
cε1 = cε3. However, in both cases, the k-ε model cannot predict a proper state of full equilibrium
in stratified flows at a predefined value of the Richardson number (see Umlauf et al. (2003) and
discussion around (114)). Model constants are summarised in table 7.

c0µ σk σε cε1 cε2

Rodi (1987) 0.5577 1.0 1.3 1.44 1.92

Table 7: Constants appearing in (163) and (153).

At the end of this routine the length-scale can be constrained according to a suggestion of Galperin
et al. (1988). This feature is optional and can be activated by setting length_lim = .true. in
gotmturb.inp.

USES:

use turbulence, only: P,B,num
use turbulence, only: tke,k_min,eps,eps_min,L
use turbulence, only: ce1,ce2,ce3plus,ce3minus
use turbulence, only: cm0,cde,galp,length_lim
use turbulence, only: epsilon_bc, psi_ubc, psi_lbc, ubc_type, lbc_type
use turbulence, only: sig_e,sig_e0,sig_peps
use util, only: Dirichlet,Neumann

IMPLICIT NONE

106



INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

surface and bottom
roughness length (m)
REALTYPE, intent(in) :: z0s,z0b

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

square of shear and buoyancy
frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
(re-write after first version of
H. Burchard and K. Bolding

$Log: dissipationeq.F90,v $
Revision 1.7 2005/08/11 13:11:50 lars
Added explicit loops for diffusivities for 3-D z-level support. Thanks to Vicente Fernandez.
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/10 13:43:42 lars
double definitions removed - to conform with DEC compiler
Revision 1.3 2003/03/10 09:02:04 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code

107



4.16 The dynamic psi-equation

INTERFACE:

subroutine genericeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)

DESCRIPTION:

This model has been formulated by Umlauf and Burchard (2003), who introduced a ‘generic’
variable,

ψ = (c0µ)
pkmln , (165)

where k is the turbulent kinetic energy computed from (150) and l is the dissipative length-scale
defined in (153). For appropriate choices of the exponents p, m, and n, the variable ψ can be
directly identified with the classic length-scale determining variables like the rate of dissipation, ε,
or the product kl used by Mellor and Yamada (1982) (see section 4.14 and section 4.15). Some
examples are compiled in table 8.

ψ two-equation model by: p m n

ω Wilcox (1988) −1 1
2 −1

kl Mellor and Yamada (1982) 0 1 1

ε Rodi (1987) 3 3
2 −1

kτ Zeierman and Wolfshtein (1986) −3 1
2 1

Table 8: Exponents p, n, m defined in (165), and their relation to the variable of the second
equation in some well-known two-equation models.

The transport equation for ψ can written as

ψ̇ = Dψ +
ψ

k
(cψ1

P + cψ3
G− cψ2ε) , (166)

where ψ̇ denotes the material derivative of ψ, see Umlauf and Burchard (2003). The production
terms P and G follow from (152). Dψ represents the sum of the viscous and turbulent transport
terms. The rate of dissipation can computed by solving (165) for l and inserting the result into
(153).
For horizontally homogeneous flows, the transport terms Dψ appearing in (166) are expressed by
a simple gradient formulation,

Dψ =
∂

∂z

(

νt
σψ

∂ψ

∂z

)

. (167)

For appropriate choices of the parameters, most of the classic transport equations can be directly
recovered from the generic equation (166). An example is the transport equation for the inverse
turbulent time scale, ω ∝ ε/k, which has been formulated by Wilcox (1988) and extended to
buoyancy affected flows by Umlauf et al. (2003). The precise definition of ω follows from table 8,
and its transport equation can be written as

ω̇ = Dω +
ω

k
(cω1

P + cω3
G− cω2ε) , (168)

108



which is clearly a special case of (166). Model constants for this and other traditional models are
given in table 9. Apart from having to code only one equation to recover all of the traditional

c0µ σψk σψ cψ1 cψ2 cψ3

k-ε, Rodi (1987) : 0.5477 1.0 1.3 1.44 1.92 (see eq. (114))

k-kl, Mellor and Yamada (1982) : 0.5544 1.96 1.96 0.9 0.5 0.9

k-ω, Wilcox (1988) : 0.5477 2 2 0.555 0.833 (see eq. (114))

k-τ Zeierman and Wolfshtein (1986): 0.5477 1.46 10.8 0.173 0.225 (—)

Table 9: Model constants of some standard models, converted to the notation used here. The
Schmidt-numbers for the model of Mellor and Yamada (1982) are valid only in the logarithmic
boundary-layer, because the diffusion models (155) and (162) are slightly different from (151) and
(167). There is no indication that one class of diffusion models is superior.

models, the main advantage of the generic equation is its flexibility. After choosing meaningful
values for physically relevant parameters like the von Kármán constant, κ, the temporal decay
rate for homogeneous turbulence, d, some parameters related to breaking surface waves, etc, a
two-equation model can be generated, which has exactly the required properties. This is discussed
in great detail in Umlauf and Burchard (2003). All algorithms have been implemented in GOTM
and are described in section 4.7.3.

USES:

use turbulence, only: P,B,num
use turbulence, only: tke,k_min,eps,eps_min,L
use turbulence, only: cpsi1,cpsi2,cpsi3plus,cpsi3minus,sig_psi
use turbulence, only: gen_m,gen_n,gen_p
use turbulence, only: cm0,cde,galp,length_lim
use turbulence, only: psi_bc, psi_ubc, psi_lbc, ubc_type, lbc_type
use util, only: Dirichlet,Neumann

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

time step (s)
REALTYPE, intent(in) :: dt

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

surface and bottom
roughness length (m)

109



REALTYPE, intent(in) :: z0s,z0b

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

square of shear and buoyancy
frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf and Hans Burchard

$Log: genericeq.F90,v $
Revision 1.6 2005/08/11 13:11:50 lars
Added explicit loops for diffusivities for 3-D z-level support. Thanks to Vicente Fernandez.
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code

110



4.17 The algebraic k-equation

INTERFACE:

subroutine tkealgebraic(nlev,u_taus,u_taub,NN,SS)

DESCRIPTION:

This subroutine computes the turbulent kinetic energy based on (150), but using the local equilib-
rium assumption

P +G− ε = 0 . (169)

This statement can be re-expressed in the form

k = (c0µ)
−3 l2(cµM

2 − c′µN
2) , (170)

were we used the expressions in (152) together with (43) and (44). The rate of dissipaton, ε,
has been expressed in terms of l via (153). This equation has been implemented to update k in
a diagnostic way. It is possible to compute the value of k as the weighted average of (170) and
the value of k at the old timestep. The weighting factor is defined by the parameter c_filt.
It is recommended to take this factor small (e.g. c_filt = 0.2) in order to reduce the strong
oscillations associated with this scheme, and to couple it with an algebraically prescribed length
scale with the length scale limitation active (length_lim=.true. in gotmturb.inp, see Galperin
et al. (1988)).

USES:

use turbulence, only: tke,tkeo,L,k_min
use turbulence, only: cmue2,cde,cmue1,cm0

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

surface and bottom
friction velocity (m/s)
REALTYPE, intent(in) :: u_taus,u_taub

square of shear and buoyancy
frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

DEFINED PARAMETERS:

REALTYPE , parameter :: c_filt=1.0

REVISION HISTORY:

111



Original author(s): Hans Burchard & Karsten Bolding
$Log: tkealgebraic.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:29:16 kbk
removed tabs
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

112



4.18 The algebraic kb-equation

INTERFACE:

subroutine kbalgebraic(nlev)

DESCRIPTION:

The algebraic equation for kb simply assumes equilibrium in (158),

Pb = εb . (171)

This equation can be re-written as

kb =
kbε

kεb

k

ε
Pb = r

k

ε
Pb = cb

k

ε
Pb , (172)

where we used the definition of the time scale ratio r in (66), and assumed that r = cb is a constant.

USES:

use turbulence, only: tke,eps,kb,Pb
use turbulence, only: ctt,kb_min

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: kbalgebraic.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

113



4.19 Some algebraic length-scale relations

INTERFACE:

subroutine algebraiclength(method,nlev,z0b,z0s,depth,h,NN)

DESCRIPTION:

This subroutine computes the vertical profile of the turbulent scale l from different types of ana-
lytical expressions. These range from simple geometrical forms to more complicated expressions
taking into account the effects of stratification and shear. The users can select their method in
the input file gotmturb.inp. For convenience, we define here db and ds as the distance from the
bottom and the surface, respectively. The water depth is then given by H = db + ds, and zb0 and
zs0 are the repective roughness lengths. With these abbreviations, the expressions implemented in
GOTM are as follows.

1. The parabolic profile is defined according to

l = κ
(ds + zs0)(db + zb0)

ds + db + zb0 + zs0
, (173)

where it should be noted that only for large water depth this equation converges to κ(z+ z0)
near the bottom or near the surface.

2. The triangular profile is defined according to

l = κ min(ds + zs0, db + zb0) , (174)

which converges always to κ(z + z0) near the bottom or near the surface.

3. A distorted parabola can be constructed by using a slightly modified form of the equation
used by Xing and Davies (1995),

l = κ
(ds + zs0)(d

Xing
b + zb0)

ds + dXing
b + zs0 + zb0

, dXing
b = db exp

(

−β db
H

)

, (175)

where it should be noted that only for large water depth this equation converges to κ(z+ z0)
near the bottom or near the surface. The constant β is a form parameter determining the
distortion of the profile. Currently we use β = 2 in GOTM.

4. A distorted parabola can be constructed by using a slightly modified form of the equation
used by Robert and Ouellet (1987),

l = κ(db + zb0)

√

1 − db − zs0
H

, (176)

where it should be noted that only for large water depth this equation converges to κ(z+ z0)
near the bottom. Near the surface, the slope of l is always different from the law of the
wall, a fact that becomes important when model solutions for the case of breaking waves are
computed, see section 4.7.4.

114



5. Also the famous formula of Blackadar (1962) is based on a parabolic shape, extended by
an extra length–scale la. Using the form of Luyten et al. (1996), the algebraic relation is
expressed by

l =

(

1

κ(ds + zs0)
+

1

κ(db + zb0)
+

1

la

)

, (177)

where

la = γ0

∫ η

−H
k

1
2 zdz

∫ η

−H
k

1
2 dz

(178)

is the natural kinetic energy scale resulting from the first moment of the rms turbulent
velocity. The constant γ0 usually takes the value γ0 = 0.2. It should be noted that this
expression for l converges to κ(z + z0) at the surface and the bottom only for large water
depth, and when la plays only a minor role.

6. The so–called ISPRAMIX method to compute the length–scale is described in detail in section
4.22.

After the length–scale has been computed, it is optionally limited by the method suggested by
Galperin et al. (1988). This option can be activated in gotmturb.inp by setting length_lim =
.true. The rate of dissipation is computed according to (153).

USES:

use turbulence, only: L,eps,tke,k_min,eps_min
use turbulence, only: cde,galp,kappa,length_lim
IMPLICIT NONE

INPUT PARAMETERS:

type of length scale
integer, intent(in) :: method

number of vertical layers
integer, intent(in) :: nlev

surface and bottom roughness (m)
REALTYPE, intent(in) :: z0b,z0s

local depth (m)
REALTYPE, intent(in) :: depth

layer thicknesses (m)
REALTYPE, intent(in) :: h(0:nlev)

buoyancy frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev)

DEFINED PARAMETERS:

integer, parameter :: Parabola=1
integer, parameter :: Triangle=2

115



integer, parameter :: Xing=3
integer, parameter :: RobertOuellet=4
integer, parameter :: Blackadar=5
integer, parameter :: ispra_length=7

REVISION HISTORY:

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: algebraiclength.F90,v $
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:03 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

116



4.20 The algebraic epsilonb-equation

INTERFACE:

subroutine epsbalgebraic(nlev)

DESCRIPTION:

The algebraic equation for εb, the molecular rate of destruction of buoyancy variance, see (158),
simply assumes a constant time scale ratio r = cb, see (66). From this assumption, it follows
immediately that

εb =
1

cb

ε

k
kb . (179)

USES:

use turbulence, only: tke,eps,kb,epsb
use turbulence, only: ctt,epsb_min

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: epsbalgebraic.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

117



4.21 The algebraic velocity variances

INTERFACE:

subroutine variances(nlev,SSU,SSV)

DESCRIPTION:

Using (70) and the solution shown in (74) and the variances of the turbulent velocity fluctations
can be evaluated according to

〈u′2〉
k

=
2

3
+

1

N ε

(

(a2

3
+ a3

)

νt

(

∂U

∂z

)2

− 2

3
a2νt

(

∂V

∂z

)2

− 4

3
a5G

)

,

〈v′2〉
k

=
2

3
+

1

N ε

(

(a2

3
+ a3

)

νt

(

∂V

∂z

)2

− 2

3
a2νt

(

∂U

∂z

)2

− 4

3
a5G

)

,

〈w′2〉
k

=
2

3
+

1

N ε

(

(a2

3
− a3

)

P +
8

3
a5G

)

,

(180)

where the diffusivities are computed according to (44) (also see section 4.26 and section 4.27), and
the buoyancy production, G, follows from (147).

USES:

use turbulence, only: uu,vv,ww
use turbulence, only: tke,eps,P,B,num
use turbulence, only: cc1,ct1,a2,a3,a5
IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

square of shear frequency (1/s^2)
(from u- and v-component)
REALTYPE, intent(in) :: SSU(0:nlev),SSV(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: variances.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

118



4.22 Algebraic length-scale from ISPRAMIX

INTERFACE:

subroutine ispralength(nlev,NN,h,depth)

DESCRIPTION:

This subroutine calculates the lengthscale used in the ISPRAMIX model, see Eifler and Schrimpf
(1992) and Demirov et al. (1998). In both mixing regions (close to the surface and the bottom), l
is obtained from the formula

l =
κz̃

1 + κz̃
c2·hm

(1 −Rf )
e (181)

where z̃ is the distance from the interface (surface or bottom). The fraction in (181) predicts an
approximation to a linear behavior of l near boundaries and a value proportional to the thickness of
the mixed layer far from the interface, l = c2hm, where c2 = 0.065 is estimated from experimental
data as discussed in Eifler and Schrimpf (1992). The factor (1 − Rf ), with the flux Richardson
number Rf = −G/P , accounts for the effect of stratification on the length-scale. The parameter
e is here a tuning parameter (pers. comm. Walter Eifler, JRC, Ispra, Italy) which is usually set to
e = 1.

USES:

use turbulence, only: L,tke,k_min,eps_min,xRF,kappa,cde

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

buoyancy frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev)

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

local depth (m)
REALTYPE, intent(in) :: depth

REVISION HISTORY:

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: ispralength.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:30:15 kbk
removed tabs

119



Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

120



4.23 Algebraic length-scale with two master scales

INTERFACE:

subroutine potentialml(nlev,z0b,z0s,h,depth,NN)

DESCRIPTION:

Computes the length scale by defining two master length scales lu and ld

∫ z0+lu(z0)

z0
(b(z0) − b(z))dz = k(z0) ,

∫ z0
z0−ld(z0)

(b(z) − b(z0))dz = k(z0)
(182)

From lu and ld two length–scales are defined: lk, a characteristic mixing length, and lε, a charac-
teristic dissipation length. They are computed according to

lk(z0) = Min(ld(z0), lu(z0)) ,

lε(z0) = (ld(z0)lu(z0))
1
2 .

(183)

lk is used in kolpran() to compute eddy viscosity/difussivity. lε is used to compute the dissipation
rate, ε according to

ε = Cεk
3/2l−1

ε , Cε = 0.7 . (184)

USES:

use turbulence, only: L,eps,tke,k_min,eps_min
use turbulence, only: cde,galp,kappa,length_lim

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

bottom and surface roughness (m)
REALTYPE, intent(in) :: z0b,z0s

layer thickness (m)
REALTYPE, intent(in) :: h(0:nlev)

local depth (m)
REALTYPE, intent(in) :: depth

buoyancy frequency (1/s^2)
REALTYPE, intent(in) :: NN(0:nlev)

121



REVISION HISTORY:

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: potentialml.F90,v $
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:59 gotm

Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

122



4.24 The non-local, exact weak-equilibrium stability function

INTERFACE:

subroutine cmue_a(nlev)

DESCRIPTION:

The solution of (70) and (71) has the shape indicated by (74). This subroutine is used to update
the quantities cµ, c

′

µ and Γ, defined in (74), from which all turbulent fluxes can be computed. The
non-linear terms N and Nb are updated by evaluating the right hand side of (65) at the old time
step.
The numerators and the denominator appearing in (77) are polynomials of the form

D = d0 + d1N
2
+ d2S

2
+ d3N

2
S

2
+ d4N

4
+ d5S

4
,

Nn = n0 + n1N
2

+ n2S
2

+ n3T ,

Nb = nb0 + nb1N
2

+ nb2S
2
,

NΓ = (g0 + g1N
2
+ g2S

2
)T .

(185)

The coefficients of D are given by

d0 = 36N 3N 2
b ,

d1 = 84a5ab3N 2Nb ,

d2 = 9(a2
b2 − a2

b1)N 3 + 12(3a2
3 − a2

2)NN 2
b ,

d3 = 12(a2ab1 − 3a3ab2)a5ab3N + 12(a2
3 − a2

2)a5ab3Nb ,

d4 = 48a2
5a

2
b3N ,

d5 = 3(3a2
3 − a2

2)(a
2
b2 − a2

b1)N .

(186)

The coefficients of the numerators Nn and Nb can be expressed as

n0 = 36a1N 2N 2
b ,

n1 = −12a5ab3(ab1 + ab2)N 2 − 8a5ab3(−6a1 + a2 + 3a3)NNb ,

n2 = 9a1(a
2
b2 − a2

b1)N 2 ,

n3 = 36a5ab4(ab1 + ab2)N 2 + 24a5ab4(a2 + 3a3)NNb ,

(187)

nb0 = 12ab3N 3Nb ,

nb1 = 12a5a
2
b3N 2 ,

nb2 = 9a1ab3(ab1 − ab2)N 2 + ab3(6a1(a2 − 3a3) − 4(a2
2 − 3a2

3))NNb ,

(188)

123



and the numerator of the term Γ is

g0 = 36ab4N 3Nb ,

g1 = 36a5ab3ab4N 2 ,

g2 = 12ab4(3a
2
3 − a2

2)NNb .

(189)

USES:

use turbulence, only: eps
use turbulence, only: P,B,Pb,epsb
use turbulence, only: an,as,at,r
use turbulence, only: cmue1,cmue2,gam
use turbulence, only: cm0
use turbulence, only: cc1
use turbulence, only: ct1,ctt
use turbulence, only: a1,a2,a3,a4,a5
use turbulence, only: at1,at2,at3,at4,at5

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

BUGS:

Test stage. Do not yet use.

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: cmue_a.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

124



4.25 The non-local, approximate weak-equilibrium stability function

INTERFACE:

subroutine cmue_b(nlev)

DESCRIPTION:

This subroutine is used to update the quantities cµ, c
′

µ and Γ, defined in (74), from which all
turbulent fluxes can be computed. This done exactly as described in section 4.24, with the exception
that equilibrium P + G = ε and Pb = εb is assumed in computing the non-linear terms in (65),
leading to the particularly simple expressions

N =
c1
2
, Nb = cb1 . (190)

USES:

use turbulence, only: an,as,at
use turbulence, only: cmue1,cmue2,gam
use turbulence, only: cm0
use turbulence, only: cc1
use turbulence, only: ct1,ctt
use turbulence, only: a1,a2,a3,a4,a5
use turbulence, only: at1,at2,at3,at4,at5

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

BUGS:

Test stage. Do not yet use.

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: cmue_b.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

125



4.26 The local, weak-equilibrium stability functions

INTERFACE:

subroutine cmue_c(nlev)

DESCRIPTION:

This subroutine updates the explicit solution of (70) and (71) with shape indicated by (74). In
addition to the simplifications discussed in section 4.25, Pb = εb is assumed in (71) to eliminate
the dependency on T according to (72). As discussed in section 4.4, this implies that the last of
(71) is replaced by (73). Thus, the Γ-term in (74) drops out, and the solution is characterized by
cµ and c′µ only.
As a consequence, the numerators and the denominator appearing in (77) are of somewhat different
form compared to the result in section 4.24. They can be written as

D = d0 + d1N
2
+ d2S

2
+ d3N

2
S

2
+ d4N

4
+ d5S

4
,

Nn = n0 + n1N
2

+ n2S
2
,

Nb = nb0 + nb1N
2

+ nb2S
2

.

(191)

The coefficients of D are given by

d0 = 36N 3N 2
b ,

d1 = 84a5ab3N 2Nb + 36ab5N 3Nb ,

d2 = 9(a2
b2 − a2

b1)N 3 + 12(3a2
3 − a2

2)NN 2
b ,

d3 = 12(a2ab1 − 3a3ab2)a5ab3N + 12(a2
3 − a2

2)a5ab3Nb

+ 12(3a2
3 − a2

2)ab5NNb ,

d4 = 48a2
5a

2
b3N + 36a5ab3ab5N 2 ,

d5 = 3(3a2
3 − a2

2)(a
2
b2 − a2

b1)N ,

(192)

and the coefficients of the numerators are

n0 = 36a1N 2N 2
b ,

n1 = −12a5ab3(ab1 + ab2)N 2 − 8a5ab3(−6a1 + a2 + 3a3)NNb

+ 36a1ab5N 2Nb ,

n2 = 9a1(a
2
b2 − a2

b1)N 2

(193)

and
nb0 = 12ab3N 3Nb ,

nb1 = 12a5a
2
b3N 2 ,

nb2 = 9a1ab3(ab1 − ab2)N 2 + ab3(6a1(a2 − 3a3) − 4(a2
2 − 3a2

3))NNb ,

(194)

126



These polynomials correspond to a slightly generalized form of the solution suggested by Canuto
et al. (2001) and Cheng et al. (2002). For cases with unstable stratification, the same clipping
conditions on αN is applied as described in section 4.27. For the cases of extreme shear, the limiter
described in the context of (83) is active.

USES:

use turbulence, only: an,as,at
use turbulence, only: cmue1,cmue2
use turbulence, only: cm0
use turbulence, only: cc1
use turbulence, only: ct1,ctt
use turbulence, only: a1,a2,a3,a4,a5
use turbulence, only: at1,at2,at3,at4,at5

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

DEFINED PARAMETERS:

REALTYPE, parameter :: asLimitFact=1.0d0
REALTYPE, parameter :: anLimitFact=0.5d0

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: cmue_c.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

127



4.27 The quasi-equilibrium stability functions

INTERFACE:

subroutine cmue_d(nlev)

DESCRIPTION:

This subroutine updates the explicit solution of (70) and (71) under the same assumptions as those
discussed in section 4.26. Now, however, an additional equilibrium assumption is invoked. With
the help of (78), one can write the equilibrium condition for the TKE as

P +G

ε
= ĉµ(αM , αN )αM − ĉ′µ(αM , αN )αN = 1 , (195)

where (149) has been used. This is an implicit relation to determine αM as a function of αN .
With the definitions given in section 4.26, it turns out that αM (αN ) is a quadratic polynomial that
is easily solved. The resulting value for αM is substituted into the stability functions described
in section 4.26. For negative αN (convection) the shear number αM computed in this way may
become negative. The value of αN is limited such that this does not happen, see Umlauf and
Burchard (2005).

USES:

use turbulence, only: an,as,at
use turbulence, only: cmue1,cmue2
use turbulence, only: cm0
use turbulence, only: cc1
use turbulence, only: ct1,ctt
use turbulence, only: a1,a2,a3,a4,a5
use turbulence, only: at1,at2,at3,at4,at5

IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: nlev

DEFINED PARAMETERS:

REALTYPE, parameter :: anLimitFact = 0.5D0
REALTYPE, parameter :: small = 1.0D-10

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: cmue_d.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

128



4.28 The Munk and Anderson (1948) stability function

INTERFACE:

subroutine cmue_ma(nlev)

DESCRIPTION:

This subroutine computes the stability functions according to Munk and Anderson (1948). These
are expressed by the empirical relations

cµ = c0µ ,

c′µ =
cµ
Pr0t

(1 + 10Ri)1/2

(1 + 3.33Ri)3/2
, Ri ≥ 0

c′µ = cµ , Ri < 0 ,

(196)

where where Ri is the gradient Richardson-number and Pr0t is the turbulent Prandtl-number for
Ri→ 0. Pr0t and the fixed value c0µ have to be set in gotmturb.inp.

USES:

use turbulence, only: cm0_fix,Prandtl0_fix
use turbulence, only: cmue1,cmue2,as,an
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: cmue_ma.F90,v $
Revision 1.8 2005/07/18 08:54:56 lars
changed docu for html compliance
Revision 1.7 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.6 2004/08/18 12:53:07 lars
updated documentation
Revision 1.5 2003/03/28 09:38:54 kbk
removed tabs
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 09:02:04 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm

Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

129



4.29 The Schumann and Gerz (1995) stability function

INTERFACE:

subroutine cmue_sg(nlev)

DESCRIPTION:

This subroutine computes stability functions according to

cµ = c0µ, c′µ =
c0µ
Prt

(197)

with constant c0µ. Based simulation data on stratified homogeneous shear-flows, Schumann and
Gerz (1995) proposed the empirical relation for the turbulent Prandtl–number,

Prt = Pr0t exp

(

− Ri

Pr0tRi
∞

)

− Ri

Ri∞
, (198)

where where Ri is the gradient Richardson–number and Pr0t is the turbulent Prandtl–number for
Ri→ 0. Pr0t and the fixed value c0µ have to be set in gotmturb.inp. Schumann and Gerz (1995)

suggested Pr0t = 0.74 and Ri∞ = 0.25.

USES:

use turbulence, only: Prandtl0_fix,cm0_fix
use turbulence, only: cmue1,cmue2,as,an
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: cmue_sg.F90,v $
Revision 1.6 2005/07/18 08:54:56 lars
changed docu for html compliance
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2004/08/18 12:53:07 lars
updated documentation
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 09:02:04 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

130



4.30 Flux Richardson number stability function

INTERFACE:

subroutine cmue_rf(nlev)

DESCRIPTION:

In the ISPRAMIX ocean model (see Eifler and Schrimpf (1992)), another approach is used for
considering stability effects on vertical mixing. The stability functions in this model are of the
form:

cµ = const = 0.5, (199)

c′µ = cµf(Rf ) = cµ
1

P 0
r

(1 −Rf )
1/2. (200)

The neutral Prandtl number used there is P 0
r = 0.7143. The function f(Rf ) is assumed to lay

between the values 0.18 (corresponding to a supercritically stratified situation) and 2.0 (preventing
it from growing too much under unstable conditions).
A formulation for (1 − Rf ) can be derived from the definition of the flux Richardson number

Rf =
c′µ
cµ
Ri (201)

and (200), see Beckers (1995):

(1 −Rf ) = [(R̃2
i + 1)1/2 − R̃i]

2 (202)

with

R̃i =
0.5

P 0
r

Ri (203)

where Ri is the gradient Richardson number.

USES:

use turbulence, only: cm0_fix,Prandtl0_fix,xRF
use turbulence, only: cmue1,cmue2,an,as
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev

REVISION HISTORY:

Original author(s): Manuel Ruiz Villarreal, Hans Burchard
$Log: cmue_rf.F90,v $
Revision 1.7 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.6 2004/08/18 12:53:07 lars
updated documentation
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files

131



Revision 1.4 2003/03/28 08:37:27 kbk
removed tabs
Revision 1.3 2003/03/10 09:02:04 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.2 2002/02/08 08:59:58 gotm

Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

132



4.31 Calculate c3 from steady-state Richardson number

INTERFACE:

REALTYPE function compute_cpsi3(c1,c2,Ri)

DESCRIPTION:

Numerically computes cψ3 for two-equation models from given steady-state Richardson-number
Rist and parameters cψ1 and cψ2 according to (114). A Newton-iteration is used to solve the
resulting implicit non-linear equation.

USES:

use turbulence, only: an,as,cmue1,cmue2
use turbulence, only: cm0,cm0_fix,Prandtl0_fix
use turbulence, only: turb_method,stab_method
use turbulence, only: Constant
use turbulence, only: MunkAnderson
use turbulence, only: SchumGerz
use turbulence, only: EiflerSchrimpf
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: c1,c2,Ri

REVISION HISTORY:

Original author(s): Hans Burchard, Lars Umlauf
$Log: compute_cpsi3.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

133



4.32 Calculate steady-state Richardson number from c3

INTERFACE:

REALTYPE function compute_rist(c1,c2,c3)

DESCRIPTION:

Numerically computes the steady-state Richardson-number Rist for two-equations models from
the given cψ3 and the parameters cψ1 and cψ2 according to (114). A (very tricky) double Newton-
iteration is used to solve the resulting implicit non-linear equation.

USES:

use turbulence, only: as,an,cmue1,cmue2
use turbulence, only: cm0
use turbulence, only: turb_method,stab_method,cm0_fix,Prandtl0_fix
use turbulence, only: Constant
use turbulence, only: MunkAnderson
use turbulence, only: SchumGerz
use turbulence, only: EiflerSchrimpf
IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: c1,c2,c3

REVISION HISTORY:

Original author(s): Hans Burchard, Lars Umlauf

134



4.33 Update internal wave mixing

INTERFACE:

subroutine internal_wave(nlev,NN,SS)

DESCRIPTION:

Imposes eddy viscosity and diffusivity characteristic of internal wave activity and shear instability
when there is extinction of turbulence as suggested by Kantha and Clayson (1994). In this case,
the new values of νt and ν′t = νBt , defined in (43), are used instead of those computed with the
model.
When k is small (extinction of turbulence, diagnosed by k <klimiw), νt and ν′t are set to empirical
values typical in the presence of internal wave activity (IW) and shear instability (SI). This model
is described by

νt = νIWt + νSIt , ν′t = ν′IWt + ν′SIt , (204)

where
νIWt = 10−4 , ν′IWt = 5 · 10−5 . (205)

The ‘SI’ parts are functions of the Richardson number according to

νSIt = ν′SIt = 0 , Ri > 0.7 , (206)

νSIt = ν′SIt = 5 · 10−3

(

1 −
(

Ri
0.7

)2
)3

, 0 < Ri < 0.7 , (207)

νSIt = ν′SIt = 5 · 10−3 , Ri < 0 . (208)

The unit of all diffusivities is m2s−1.

USES:

use turbulence, only: iw_model,alpha,klimiw,rich_cr
use turbulence, only: numiw,nuhiw,numshear
use turbulence, only: tke,num,nuh
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: NN(0:nlev),SS(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard,
Manuel Ruiz Villarreal

135



4.34 TKE flux from wave-breaking

INTERFACE:

REALTYPE function fk_craig(u_tau)

DESCRIPTION:

This functions returns the flux of k caused by breaking surface waves according to

Fk = ηu3
∗

. (209)

This form has also been used by Craig and Banner (1994), who suggested η ≈ 100.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: u_tau

DEFINED PARAMETERS:

REALTYPE, parameter :: eta=100.

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: fk_craig.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2004/08/18 12:50:57 lars
updated documentation
Revision 1.2 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.1 2003/03/10 09:00:36 gotm
Part of new generic turbulence model

136



4.35 Module kpp: the KPP-turbulence model

INTERFACE:

module kpp

DESCRIPTION:

This implentation of the KPP turbulence parameterisation is based on the publications of Large
et al. (1994) and Durksi et al. (2004). The general expression for the turbulent fluxes used in the
KPP model is identical to that suggested in (43). It assumes that the turbulent flux is the sum of
a down-gradient flux and a non-local contribution,

〈w′φ′〉 = −νφt
∂〈φ〉
∂z

+ Γ̃φ , (210)

where the super- or subscript φ is a placeholder for the symbols m, h, and s, indicating whether
a quantity relates to momentum, heat, or salinity (or any other tracer), respectively. Note that
turbulence parameters due to salinity stratification are updated only if the pre-processor macro
KPP_SALINITY has been defined in cppdefs.h.
In the notation of the KPP model, the non-local flux is expressed as

Γ̃φ = νφt γφ , (211)

where independent models are valid for νφt and γφ. The KPP model assumes that the turbulent

diffusivity, νφt , inside the surface or bottom boundary layer is determined by a relation of the form

νφt = hwφ(σ)G(σ) , (212)

where h denotes the thickness of the boundary layer, computed according to the algorithm discussed
below. The non-dimensional boundary layer coordinate σ is defined according to

σ =
d

h
, (213)

where d is the distance from the free surface (or the bottom boundary). The velocity scale, wφ, in
(212) is computed as described in section 4.35.6. The dimensionless shape function G is a cubic
polynomial,

G(σ) = a0 + a1σ + a2σ
2 + a3σ

3 . (214)

Physical arguments discussed in Large et al. (1994) require a0 = 0, a1 = 1. The remaining two
parameters a2 and a3 may be re-expressed in terms of the value of G and its derivative, G′, at the
edge of the boundary layer, σ = 1. Then, (214) can be re-expressed as

G(σ) = σ
[

1 + σ
(

(σ − 2) + (3 − 2σ)G(1) + (σ − 1)G′(1)
)]

(215)

Apart from the boundary layer diffusivities, the KPP model also computes ”interior” diffusivities,

here denoted by νφti. The function G and its derivative can be evaluted from the requirement that,
at the edge of the boundary layer, the boundary layer diffusivity and its derivative correspond
exactly to the interior diffusivity and its derivative, respectively.

137



Continuity of the boundary and interior diffusivites is obviously insured, see (212), if we require
that

G(1) =
1

hwφ(1)
νφti(zbl) , (216)

where zbl denotes the vertical coordinate of the surface (or bottom) boundary layer.

A condition for the continuity of the derivatives of νφt and νφti can be obtained by carrying out the

derivative with respect to z of (212), and setting it equal to the z-derivative of νφti. For the surface
layer this results in

G′(1) = −G(1)

w(1)

∂w

∂σ

∣

∣

∣

σ=1
− 1

w(1)

∂νφti
∂z

∣

∣

∣

z=zbl

, (217)

where we used the relation
∂

∂z
= − 1

h

∂

∂σ
, (218)

if the motion of the free surface is ignored.
The derivative of wφ appearing in (217) can be evaluted with the help of the formulae given in
section 4.35.6. As discussed in section 4.35.6, at σ = 1, the derivative of wφ is different from zero
only for stably stratified flows. Then, the non-dimensional function Φφ appearing in (225) is given
by (227), and it is easy to show that

∂w

∂σ

∣

∣

∣

σ=1
= −5hwφ(1)

Bf
u4
∗

, (219)

valid for both, bottom and surface boundary layers. Note that in the original publication of Large
et al. (1994), erroneously, there appears an additional factor κ in this relation.
With the help of (219), one can re-write (217) as

G′(1) =
Bf
u4
∗

νφti

∣

∣

∣

z=zbl

− 1

w(1)

∂νφti
∂z

∣

∣

∣

z=zbl

, (220)

valid only for the surface boundary layer. For the bottom boundary layer, the minus sign in (218)
disappears, with the consequence that the minus sign in (220) has to be replaced by a plus. Note
that if the pre-processor macro KPP_CLIP_GS is defined in cppdef.h, the slope of G is set to zero
for negative slopes. For stably stratified flows with a stabilizing buoyancy flux, this limiter breaks
the continuity of the first derivatives.
The non-local transport term defined in (211) is computed as described in Large et al. (1994), if
the pre-processor macro NONLOCAL is defined. Otherwise, non-local transport is ignored.
The position of the surface boundary layer depth, zbl, corresponds to the position where the bulk
Richardson number,

Rib =
(Br −B(zbl))d

|U r − U (zbl)|2 + V 2
t (zbl)

, (221)

defined by Large et al. (1994), reaches the critical value Ric. The subscript ”r” in (221) denotes
a certain reference value of the buoyancy and velocity close to the surface. The choice of this
reference value is not unique, and several possibilities have been implemented in numerical models.
Presently, GOTM uses the uppermost grid point as the reference value. The bulk Richardson-
number is then computed at the grid faces by linear interpolation of quantities defined at the
centers (if KPP TWOPOINT REF is defined) or by simply identifying the neighbouring center-value
with the value at the face. The ”turbulent velocity shear”, Vt, is computed as described by Large
et al. (1994). The value of zbl is then found from (221) by linear interpolation.

138



To check the boundary layer limit according to the condition

Rib(zbl) =
Ritop(zbl)

Ribot(zbl)
= Ric , (222)

two methods have been implemented in GOTM. The first method simply evaluates (222) with a
linear interpolation scheme. The second method is activated if the pre-processor macro KPP IP FC
is defined. Then, the condition (222) is reformulated as

Fc(zbl) = Ritop(zbl) −RicRibot(zbl) = 0 . (223)

The position where the function Fc changes sign is computed from linear interpolation. This
method has been suggested in the ROMS code as the numerically more stable alternative. Clearly,
all approaches are grid-depending, a difficulty that cannot be overcome with the KPP model.
Finally, provided clip_mld=.true. in kpp.inp, the boundary layer is cut if it exceeds the Ekman
or the Monin-Obukhov length scale, see Large et al. (1994).

USES:

use turbulence, only: num,nuh,nus
use turbulence, only: gamu,gamv,gamh,gams
use turbulence, only: Rig
use turbulence, only: kappa

ifdef EXTRA_OUTPUT
use turbulence, only: turb1,turb2,turb3,turb4,turb5
endif

use eqstate

IMPLICIT NONE

private

PUBLIC MEMBER FUNCTIONS:

public init_kpp, do_kpp

PUBLIC DATA MEMBERS:

z-position of surface boundary layer depth
REALTYPE, public :: zsbl

z-position of bottom boundary layer depth
REALTYPE, public :: zbbl

DEFINED PARAMETERS:

139



non-dimensional extent of the surface layer (epsilon=0.1)
REALTYPE, parameter :: epsilon = 0.1

critical gradient Richardson number below which turbulent
mixing occurs (Ri0=0.7)
REALTYPE, parameter :: Ri0 = 0.7

value of double-diffusive density ratio where mixing goes
to zero in salt fingering (Rrho0=1.9)
REALTYPE, parameter :: Rrho0 = 1.9

buoancy frequency (1/s2) limit for convection (bvfcon=-2.0E-5)
REALTYPE, parameter :: bvfcon = -2.0E-5

scaling factor for double diffusion of temperature in salt
fingering case (fdd=0.7)
REALTYPE, parameter :: fdd = 0.7

maximum interior convective viscosity and diffusivity
due to shear instability (nu0c=0.01)
REALTYPE, parameter :: nu0c = 0.01

maximum interior viscosity (m2/s) due to shear
instability (nu0m=10.0E-4)
REALTYPE, parameter :: nu0m = 10.0E-4

maximum interior diffusivity (m2/s) due to shear
instability (nu0s=10.0E-4)
REALTYPE, parameter :: nu0s = 10.0E-4

scaling factor for double diffusion in salt fingering (nu=1.5E-6)
REALTYPE, parameter :: nu = 1.5E-6

scaling factor for double diffusion in salt fingering (nuf=10.0E-4)
REALTYPE, parameter :: nuf = 10.0E-4

interior viscosity (m2/s) due to wave breaking (nuwm=1.0E-5)
REALTYPE, parameter :: nuwm = 1.0E-5

interior diffusivity (m2/s) due to wave breaking (nuwm=1.0E-6)
REALTYPE, parameter :: nuws = 1.0E-6

double diffusion constant for salinity in diffusive
convection case (sdd1=0.15)
REALTYPE, parameter :: sdd1 = 0.15

double diffusion constant for salinity in diffusive convection
(sdd2=1.85)
REALTYPE, parameter :: sdd2 = 1.85

140



double diffusion constant for salinity in diffusive convection
(sdd3=0.85)
REALTYPE, parameter :: sdd3 = 0.85

double diffusion constant for temperature in diffusive convection
(tdd1=0.909)
REALTYPE, parameter :: tdd1 = 0.909

double diffusion constant for temperature in diffusive convection
(tdd2=4.6)
REALTYPE, parameter :: tdd2 = 4.6

double diffusion constant for temperature in diffusive convection case
(tdd3=0.54).
REALTYPE, parameter :: tdd3 = 0.54

proportionality coefficient parameterizing nonlocal transport (Cstar=10.0)
REALTYPE, parameter :: Cstar = 10.0

ratio of interior Brunt-Vaisala frequency to that
at entrainment depth (Cv=1.5-1.6)
REALTYPE, parameter :: Cv = 1.6

ratio of entrainment flux to surface buoyancy flux (betaT=-0.2)
REALTYPE, parameter :: betaT = -0.2

constant for computation of Ekman scale (cekman=0.7)
REALTYPE, parameter :: cekman = 0.7

constant for computation of Monin-Obukhov scale (cmonob = 1.0)
REALTYPE, parameter :: cmonob = 1.0

coefficient of flux profile for momentum in their
1/3 power law regimes (am=1.26)
REALTYPE, parameter :: am = 1.257

coefficient of flux profile for momentum in their
1/3 power law regimes (as=-28.86)
REALTYPE, parameter :: as = -28.86

coefficient of flux profile for momentum in their
1/3 power law regimes (cm=8.38)
REALTYPE, parameter :: cm = 8.38

coefficient of flux profile for momentum in their
1/3 power law regimes (cs=98.96)
REALTYPE, parameter :: cs = 98.96

maximum stability parameter "zeta" value of the 1/3
power law regime of flux profile for momentum (zetam=-0.2)

141



REALTYPE, parameter :: zetam = -0.2

maximum stability parameter "zeta" value of the 1/3
power law regime of flux profile for tracers (zetas=-1.0)
REALTYPE, parameter :: zetas = -1.0

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: kpp.F90,v $
Revision 1.2 2005/07/21 10:20:00 lars
polished documentation
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

LOCAL VARIABLES:

proportionality coefficient for
parameterizing non-local transport
REALTYPE :: Cg

coefficient from computation of
turbulent shear velocity
REALTYPE :: Vtc

acceleration of gravity
REALTYPE :: g

reference density
REALTYPE :: rho_0

g/rho_0
REALTYPE :: gorho0

critical bulk Richardson number
REALTYPE :: Ric

compute surface and bottom BBL
logical :: kpp_sbl,kpp_bbl

compute internal mixing
logical :: kpp_interior

use clipping of MLD at Ekman and Monin-Oboukhov scale
logical :: clip_mld

positions of grid faces and centers
REALTYPE, dimension(:), allocatable :: z_w,z_r

142



distance between centers
REALTYPE, dimension(:), allocatable :: h_r

integer :: ksblOld
REALTYPE :: zsblOld

4.35.1 Initialise the KPP module

INTERFACE:

subroutine init_kpp(namlst,fn,nlev,h0,h,kpp_g,kpp_rho_0)

DESCRIPTION:

This routine first reads the namelist kpp, which has to be contained in a file with filename spec-
ified by the string fn (typically called kpp.inp). Since the kpp module uses fields defined in the
turbulence module, it has to allocate dynamic memory for them. Apart from this, this routine
reports the model settings and initialises a number of parameters needed later in the time loop.
If you call the GOTM KPP routines from a three-dimensional model, make sure that this function
is called after the call to init_turbulence(). Also make sure that you pass the correct arguments.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

namelist reference
integer, intent(in) :: namlst

filename containing namelist
character(len=*), intent(in) :: fn

number of grid cells
integer, intent(in) :: nlev

bathymetry (m)
REALTYPE, intent(in) :: h0

size of grid cells (m)
REALTYPE, intent(in) :: h(0:nlev)

acceleration of gravity (m/s^2)
REALTYPE, intent(in) :: kpp_g

reference density (kg/m^3)
REALTYPE, intent(in) :: kpp_rho_0

143



REVISION HISTORY:

Original author(s): Lars Umlauf

4.35.2 Loop over the KPP-algorithm

INTERFACE:

subroutine do_kpp(nlev,h0,h,rho,u,v,NN,NNT,NNS,SS,u_taus,u_taub, &
tFlux,btFlux,sFlux,bsFlux,tRad,bRad,f)

DESCRIPTION:

Here, the time step for the KPP model is managed. If kpp_interior=.true. in kpp.inp, the
mixing algorithm for the computation of the interior diffusivities is called first. This algorithm is
described in section 4.35.3. Then, if kpp_sbl=.true. and kpp_bbl=.true., the algorithms for
the surface and bottom boundary layer are called. They are described in section 4.35.4 and section
4.35.5, respectively.
If this routine is called from a three-dimensional code, it is essential to pass the correct arguments.
The first 3 parameters relate to the numerical grid, discussed in section 3.1.2. Note that h0 denotes
the local bathymetry, i.e. the positive distance between the reference level z = 0 and the bottom.
The next three parameters denote the potential density, ρ, and the two mean velocity components,
U and V . The buoyancy frequency, N 2, and the different contributions to it, N 2

Θ and N2
S , have

to be computed from the potential density as discussed in section 3.14. The shear frequency, M 2,
is defined in (36). The vertical discretisation does not necessarly have to follow (37), since in the
KPP model no TKE equation is solved and thus energy conservation is not an issue. All three-
dimensional fields have to be interpolated ”in a smart way”to the water column defined by GOTM.
The corresponding interpolation schemes may be quite different for the different staggered grids,
finite volume, and finite element approaches used in the horizontal. Therefore, we cannot offer a
general recipe here.
The bottom friction velocity is computed as described in section 3.9. If this parameter is passed
from a three-dimensional code, it has to be insured that the parameter r in (24) is computed
consistently, see (25).
All fluxes without exception are counted positive, if they enter the water body. Note that for
consistency, the equations of state in GOTM cannot be used if the KPP routines are called from
a 3-D model. Therefore, it is necessary to pass the temperature and salinity fluxes, as well as the
corresponding buoyancy fluxes. The same applies to the radiative fluxes. The user is responsible
for performing the flux conversions in the correct way. To get an idea have a look at section 8.9.
The last argument is the Coriolis parameter, f . It is only used for clippling the mixing depth at
the Ekman depth.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

number of grid cells
integer :: nlev

144



bathymetry (m)
REALTYPE :: h0

thickness of grid cells (m)
REALTYPE :: h(0:nlev)

potential density at grid centers (kg/m^3)
REALTYPE :: rho(0:nlev)

velocity components at grid centers (m/s)
REALTYPE :: u(0:nlev),v(0:nlev)

square of buoyancy frequency (1/s^2)
REALTYPE :: NN(0:nlev)

square of buoyancy frequency caused by
temperature and salinity stratification
REALTYPE :: NNT(0:nlev),NNS(0:nlev)

square of shear frequency (1/s^2)
REALTYPE :: SS(0:nlev)

surface and bottom friction velocities (m/s)
REALTYPE :: u_taus,u_taub

surface temperature flux (K m/s) and
salinity flux (psu m/s) (negative for loss)
REALTYPE :: tFlux,sFlux

surface buoyancy fluxes (m^2/s^3) due to
heat and salinity fluxes
REALTYPE :: btFlux,bsFlux

radiative flux [ I(z)/(rho Cp) ] (K m/s)
and associated buoyancy flux (m^2/s^3)
REALTYPE :: tRad(0:nlev),bRad(0:nlev)

Coriolis parameter (rad/s)
REALTYPE :: f

REVISION HISTORY:

Original author(s): Lars Umlauf

145



4.35.3 Compute interior fluxes

INTERFACE:

subroutine interior(nlev,NN,NNT,NNS,SS)

DESCRIPTION:

Here, the interior diffusivities (defined as the diffusivities outside the surface and bottom boundary
layers) are computed. The algorithms are identical to those suggested by Large et al. (1994).
For numerical efficiency, the algorithms for different physical processes are active only if certain
pre-processor macros are defined in cppdefs.h.

• The shear instability algorithm is active if the macro KPP_SHEAR is defined.

• The internal wave algorithm is active if the macro KPP_INTERNAL_WAVE is defined.

• The convective instability algorithm is active if the macro KPP_CONVEC is defined.

• The double-diffusion algorithm is active if the macro KPP_DDMIX is defined. Note that in this
case, the macro SALINITY has to be defined as well.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

number of grid cells
integer :: nlev

square of buoyancy frequency (1/s^2)
REALTYPE :: NN(0:nlev)

square of buoyancy frequencies caused by
temperature and salinity stratification
REALTYPE :: NNT(0:nlev),NNS(0:nlev)

square of shear frequency (1/s^2)
REALTYPE :: SS(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf

146



4.35.4 Compute turbulence in the surface layer

INTERFACE:

subroutine surface_layer(nlev,h0,h,rho,u,v,NN,u_taus,u_taub, &
tFlux,btFlux,sFlux,bsFlux,tRad,bRad,f)

DESCRIPTION:

In this routine all computations related to turbulence in the surface layer are performed. The
algorithms are described in section 4.35. Note that these algorithms are affected by some pre-
processor macros defined in cppdefs.inp, and by the parameters set in kpp.inp, see section 4.35.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

number of grid cells
integer :: nlev

bathymetry (m)
REALTYPE :: h0

thickness of grid cells (m)
REALTYPE :: h(0:nlev)

potential density at grid centers (kg/m^3)
REALTYPE :: rho(0:nlev)

velocity components at grid centers (m/s)
REALTYPE :: u(0:nlev),v(0:nlev)

square of buoyancy frequency (1/s^2)
REALTYPE :: NN(0:nlev)

surface and bottom friction velocities (m/s)
REALTYPE :: u_taus,u_taub

surface temperature flux (K m/s) and
salinity flux (sal m/s) (negative for loss)
REALTYPE :: tFlux,sFlux

surface buoyancy fluxes (m^2/s^3) due to
heat and salinity fluxes
REALTYPE :: btFlux,bsFlux

radiative flux [ I(z)/(rho Cp) ] (K m/s)
and associated buoyancy flux (m^2/s^3)
REALTYPE :: tRad(0:nlev),bRad(0:nlev)

147



Coriolis parameter (rad/s)
REALTYPE :: f

REVISION HISTORY:

Original author(s): Lars Umlauf

4.35.5 Compute turbulence in the bottom layer

INTERFACE:

subroutine bottom_layer(nlev,h0,h,rho,u,v,NN,u_taus,u_taub, &
tFlux,btFlux,sFlux,bsFlux,tRad,bRad,f)

DESCRIPTION:

In this routine all computations related to turbulence in the bottom layer are performed. The
algorithms are described in section 4.35. Note that these algorithms are affected by some pre-
processor macros defined in cppdefs.inp, and by the parameters set in kpp.inp, see section 4.35.
The computation of the bulk Richardson number is slightly different from the surface boundary
layer, since for the bottom boundary layer this quantity is defined as,

Rib =
(B(zbl) −Br)d

|U (zbl) − U r|2 + V 2
t (zbl)

, (224)

where zbl denotes the position of the edge of the bottom boundary layer.
Also different from the surface layer computations is the absence of non-local fluxes.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

number of grid cells
integer :: nlev

bathymetry (m)
REALTYPE :: h0

thickness of grid cells (m)
REALTYPE :: h(0:nlev)

potential density at grid centers (kg/m^3)
REALTYPE :: rho(0:nlev)

148



velocity components at grid centers (m/s)
REALTYPE :: u(0:nlev),v(0:nlev)

square of buoyancy frequency (1/s^2)
REALTYPE :: NN(0:nlev)

surface and bottom friction velocities (m/s)
REALTYPE :: u_taus,u_taub

bottom temperature flux (K m/s) and
salinity flux (sal m/s) (negative for loss)
REALTYPE :: tFlux,sFlux

bottom buoyancy fluxes (m^2/s^3) due to
heat and salinity fluxes
REALTYPE :: btFlux,bsFlux

radiative flux [ I(z)/(rho Cp) ] (K m/s)
and associated buoyancy flux (m^2/s^3)
REALTYPE :: tRad(0:nlev),bRad(0:nlev)

Coriolis parameter (rad/s)
REALTYPE :: f

REVISION HISTORY:

Original author(s): Lars Umlauf

4.35.6 Compute the velocity scale

INTERFACE:

subroutine wscale(Bfsfc,u_taus,d,wm,ws)

DESCRIPTION:

This routine computes the turbulent velocity scale for momentum and tracer as a function of
the turbulent friction velocity, u∗, the ”limited” distance, dlim, and the total buoyancy flux, Bf ,
according to

wφ =
κu∗

Φφ(ζ)
. (225)

In this equation, Φφ is a non-dimensional function of the stability parameter ζ = dlim/L, using the
Monin-Obukhov length,

L =
u3
∗

κBf
. (226)

149



In stable situations, Bf ≥ 0, the length scale dlim is just the distance from the surface or bottom,
d. Then, the non-dimensional function is of the form

Φφ = 1 + ζ , (227)

and identical for momentum, heat, and tracers.
In unstable situations, Bf < 0, the scale dlim corresponds to the distance from surface or bottom
only until it reaches the end of the surface (or bottom) layer at d = εh. Then it stays constant at
this maximum value.
The different functional forms of Φφ(ζ) for unstable flows are discussed in Large et al. (1994).

USES:

IMPLICIT NONE

INPUT PARAMETERS:

buoyancy flux (m^2/s^3)
REALTYPE, intent(in) :: Bfsfc

friction velocity (m/s)
REALTYPE, intent(in) :: u_taus

(limited) distance (m)
REALTYPE, intent(in) :: d

OUTPUT PARAMETERS:

velocity scale (m/s)
for momentum and tracer
REALTYPE, intent(out) :: wm, ws

REVISION HISTORY:

Original author(s): Lars Umlauf

150



4.36 Printing GOTM library version

INTERFACE:

subroutine gotm_lib_version(unit)

DESCRIPTION:

Simply prints the version number of the GOTM turbulence library to unit.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: unit

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: gotm_lib_version.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 09:02:05 gotm
Added new Generic Turbulence Model + improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

151



5 Air–Sea interaction

5.1 Introduction

This module provides the surface forcing for GOTM. For all dynamic equations, surface boundary
conditions need to be specified. For the momentum equations described in section 3.5 and section
3.6, these are the surface momentum fluxes τ sx and τsy in N m−2. For the temperature equation
described in section 3.10, it is the total surface heat flux,

Qtot = QE +QH +QB (228)

in W m−2 that has to be determined1. The total surface heat flux Qtot is calculated as the sum
of the latent heat flux QE , the sensible heat flux QH , and the long wave back radiation QB . In
contrast to the total surface heat flux Qtot, the net short wave radiation at the surface, I0, is not
used as a boundary condition but as a source of heat, as calculated by means of equation (29),
see Paulson and Simpson (1977). For the salinity equation described in section 3.11, the fresh
water fluxes at the surface are given by the difference of the evaporation and the precipitation, pe,
given in m s−1, see also the surface boundary condition for salinity, (32). The way how boundary
conditions for the transport equations of turbulent quantities are derived, is discussed in section 4.
There are basically two ways of calculating the surface heat and momentum fluxes implemented
into GOTM. They are either prescribed (as constant values or to be read in from files) or calculated
on the basis of standard meteorological data which have to be read in from files. The necessary
parameters are the wind velocity vector at 10 m height in m s−1, the sea surface temperature (SST
in Celsius), air temperature in Celsius), air humidity (either as relative humidity in %, as wet bulb
temperature or as dew point temperature in Celsius) and air pressure (in hectopascal), each at 2
m height above the sea surface, and the wind velocity vector at 10 m height in m s−1. Instead of
the observed SST, also the SST from the model may be used. For the calculation of these fluxes,
the bulk formulae of Kondo (1975) or Fairall et al. (1996) are used.

1Note, that Qtot has to be divided by the mean density and the specific heat capacity to be used as a boundary
condition in (27), since this equation is formulated in terms of the temperature, and the the internal energy

152



5.2 Module airsea — atmospheric fluxes

INTERFACE:

module airsea

DESCRIPTION:

This module calculates the heat, momentum and freshwater fluxes between the ocean and the
atmosphere as well as the incoming solar radiation. Fluxes and solar radiation may be prescribed.
Alternatively, they may be calculated by means of bulk formulae from observed or modelled mete-
orological parameters and the solar radiation may be calculated from longitude, latitude, time and
cloudiness. For the prescibed fluxes and solar radiation, values may be constant or read in from
files. All necessary setting have to be made in the namelist file airsea.inp.

USES:

use time, only: julian_day, time_diff, calendar_date
use observations, only: read_obs
IMPLICIT NONE

default: all is private.
private

PUBLIC MEMBER FUNCTIONS:

public :: init_air_sea
public :: air_sea_interaction
public :: set_sst
public :: integrated_fluxes

PUBLIC DATA MEMBERS:

logical, public :: calc_fluxes=.false.

surface stress components (Pa)
REALTYPE, public :: tx,ty

surface short-wave radiation
and surface heat flux (W/m^2)
REALTYPE, public :: I_0,heat

precipitation minus evaporation
(m/s)
REALTYPE, public :: p_e

sea surface temperature (degC) and
sea surface salinity (psu)
REALTYPE, public :: sst,sss

integrated short-wave radiation,

153



surface heat flux (J/m^2)
REALTYPE, public :: int_swr=_ZERO_,int_heat=_ZERO_

sum of short wave radiation
and surface heat flux (J/m^2)
REALTYPE, public :: int_total=_ZERO_

DEFINED PARAMETERS:

integer, parameter :: meteo_unit=20
integer, parameter :: heat_unit=21
integer, parameter :: momentum_unit=22
integer, parameter :: p_e_unit=23
integer, parameter :: sst_unit=24
integer, parameter :: sss_unit=25

REALTYPE, parameter :: cpa=1008.
REALTYPE, parameter :: cp=3985.
REALTYPE, parameter :: emiss=0.97
REALTYPE, parameter :: bolz=5.67e-8
REALTYPE, parameter :: Kelvin=273.16
REALTYPE, parameter :: const06=0.62198
REALTYPE, parameter :: pi=3.14159265358979323846
REALTYPE, parameter :: deg2rad=pi/180.
REALTYPE, parameter :: rad2deg=180./pi

integer, parameter :: CONSTVAL=1
integer, parameter :: FROMFILE=2

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard
$Log: airsea.F90,v $
Revision 1.11 2005/07/06 13:58:07 kbk
added fresh water, updated documentation
Revision 1.10 2004/07/30 09:19:03 hb
wet_mode now red from namelist
Revision 1.9 2004/06/25 07:50:29 hb
Preliminary wet mode choices improved
Revision 1.8 2004/05/28 13:14:14 hb
airsea.F90 extended for dew point temperature
Revision 1.7 2003/06/13 09:27:16 hb
Implemented freshwater fluxes
Revision 1.6 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1.5 2003/03/28 08:13:47 kbk
removed tabs
Revision 1.4 2003/03/10 08:37:56 gotm
HB fixed the Kondo calculations
Revision 1.3 2001/11/18 11:43:48 gotm
Cleaned

154



Revision 1.2 2001/06/13 07:40:39 gotm
Lon, lat was hardcoded in meteo.F90 - now passed via init_meteo()
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

5.2.1 Initialise the air–sea interaction module

INTERFACE:

subroutine init_air_sea(namlst,lat,lon)

DESCRIPTION:

This routine initialises the air-sea module by reading various variables from the namelist airsea.inp
and opens relevant files. These parameters are:

155



calc_fluxes .true.: Surface fluxes are calculated by means of bulk formulae.
Solar radiation is calculated from time, latitude,
longitude and clouds. In this case, meteo_file must be given
and wet_mode must be specified.
.false.: Surface fluxes and solar radiation are prescribed.

meteo_file file with meteo data (for calc_fluxes=.true.) with
date: yyyy-mm-dd hh:mm:ss

x-component of wind (10 m) in m s−1

y-component of wind (10 m) in m s−1

air pressure (2 m) in hectopascal
dry air temperature (2 m) in Celsius
rel. hum. in % or wet bulb temp. in C or dew point temp. in C
cloud cover in 1/10
Example:
1998-01-01 00:00:00 6.87 10.95 1013.0 6.80 73.2 0.91

wet_mode 1: relative humidity given as 7. column in meteo_file

2: wet bulb temperature given as 7. column in meteo_file

3: dew point temperature given as 7. column in meteo_file

heat_method 0: heat flux not prescribed
1: constant value for short wave radiation (const_swr) and surface heat flux (const_qh)
2: swr, heat are read from heatflux_file

const_swr constant value for short wave radiation in W m−2

(always positive)
const_heat constant value for surface heat flux in W m−2

(negative for heat loss)
heatflux_file file with date and swr and heat in W m−2

momentum_method 0: momentum flux not prescribed
1: constant momentum fluxes const_tx, const_tx given
2: surface momentum fluxes given from file momentumflux_file

const_tx x-component of constant surface momentum flux in N m−2

const_ty y-component of constant surface momentum flux in N m−2

momentumflux_file File with date, tx and ty given
p_e_method 0: surface freshwater fluxes not applied

1: constant value for P-E used (P-E = precipitation-evaporation)
2: values for P-E read from file p_e_flux_file

const_p_e value for P-E in m s−1

p_e_flux_file file with date and P-E in m s−1

sst_method 0: no independent SST observation is read from file
2: independent SST observation is read from file, only for output

sst_file file with date and SST (sea surface temperature) in Celsius
sss_method 0: no independent SSS observation is read from file

2: independent SSS observation is read from file, only for output
sss_file file with date and SSS (sea surface salinity) in psu

USES:

IMPLICIT NONE

156



INPUT PARAMETERS:

integer, intent(in) :: namlst
REALTYPE, intent(in) :: lat,lon

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.2 Obtain the air–sea fluxes

INTERFACE:

subroutine air_sea_interaction(jul,secs)

DESCRIPTION:

Depending on the value of the boolean variable calc_fluxes, the subroutines for the calculation
of the fluxes and the short wave radiation are called or the fluxes are directly read in from the
namelist airsea.inp as constants or read in from files. Furthermore, the surface freshwater flux
is set to a constant value or is read in from a file.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.3 Finish the air–sea interactions

INTERFACE:

subroutine finish_air_sea_interaction

DESCRIPTION:

All files related to air-sea interaction which have been opened are now closed by this routine.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

157



5.2.4 Compute the exchange coefficients

INTERFACE:

subroutine exchange_coefficients()

DESCRIPTION:

Based on the model sea surface temperature, the wind vector at 10 m height, the air pressure at 2
m, the dry air temperature and the air pressure at 2 m, and the relative humidity (either directly
given or recalculated from the wet bulb or the dew point temperature), this routine computes the
coefficients for the surface momentum flux (cdd) and the latent (ced) and the sensible (chd) heat
flux according to the Kondo (1975) bulk formulae. The setting for wet_mode but be in agreement
with the type of air humidity measure given in the meteo_file as 7. column, i.e. 1 for relative
humidity, 2 for wet bulb temperature and 3 for dew point temperature.

USES:

IMPLICIT NONE

DEFINED PARAMETERS:

REALTYPE, parameter :: a1=6.107799961
REALTYPE, parameter :: a2=4.436518521e-1
REALTYPE, parameter :: a3=1.428945805e-2
REALTYPE, parameter :: a4=2.650648471e-4
REALTYPE, parameter :: a5=3.031240396e-6
REALTYPE, parameter :: a6=2.034080948e-8
REALTYPE, parameter :: a7=6.136820929e-11
REALTYPE, parameter :: eps=1.0e-12

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for the airsea module

5.2.5 Calculate the heat fluxes

INTERFACE:

subroutine do_calc_fluxes(heatf,taux,tauy)

DESCRIPTION:

The latent and the sensible heat flux, the long-wave back radiation (and thus the total net surface
heat flux) and the surface momentum flux are calculated here, based on the exchange coefficients
cdd, ced and chd, calculated in the subroutine exchange_coefficients:

158



τsx = cddρaWxW

τsy = cddρaWyW

Qe = cedLρaW (qs − qa)

Qh = chdCpaρaW (Tw − Ta)

(229)

with the air density ρa, the wind speed at 10 m, W , the x- and the y-component of the wind
velocity vector, Wx and Wy, respectively, the specific evaporation heat of sea water, L, the specific
saturation humidity, qs, the actual specific humidity qa, the specific heat capacity of air at constant
pressure, Cpa, the sea surface temperature, Tw and the dry air temperature, Ta. For the long-
wave back radiation, the formulae of Clark et al. (1974) and Hastenrath and Lamb (1978) may
be used as alternatives, the setting for has to be made directly in the code, see the variable
back_radiation_method.

USES:

IMPLICIT NONE

OUTPUT PARAMETERS:

REALTYPE, optional, intent(out) :: heatf,taux,tauy

DEFINED PARAMETERS:

integer, parameter :: clark=1
integer, parameter :: hastenrath=2

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.6 Calculate the short–wave radiation

INTERFACE:

subroutine short_wave_radiation(jul,secs,lon,lat,swr)

DESCRIPTION:

This subroutine calculates the short–wave net radiation based on latitude, longitude, time, frac-
tional cloud cover and albedo. The albedo monthly values from Payne (1972) are given here as
means of the values between at 30◦ N and 40◦ N for the Atlantic Ocean (hence the same latitudinal
band of the Mediterranean Sea). The basic formula for the short-wave radiation at the surface,
Qs, has been taken from Rosati and Miyakoda (1988), who adapted the work of Reed (1977) and
Simpson and Paulson (1999):

159



Qs = Qtot(1 − 0.62C + 0.0019β)(1− α), (230)

with the total radiation reaching the surface under clear skies, Qtot, the fractional cloud cover,
C, the solar noon altitude, β, and the albedo, α. This piece of code has been taken the MOM-I
(Modular Ocean Model) version at the INGV (Istituto Nazionale di Geofisica e Vulcanologia, see
http://www.bo.ingv.it/.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs
REALTYPE, intent(in) :: lon,lat

OUTPUT PARAMETERS:

REALTYPE, optional, intent(out) :: swr

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.7 Read meteo data, interpolate in time

INTERFACE:

subroutine flux_from_meteo(jul,secs)

DESCRIPTION:

For calc_fluxes=.true., this routine reads meteo data from meteo_file and calculates the fluxes
of heat and momentum, and the short-wave radiation by calling the routines exchange_coefficients,
do_calc_fluxes and short_wave_radiation, see section 5.2.4, section 5.2.5, and section 5.2.6.
Then, the results are interpolated in time to the actual time step.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

160



5.2.8 Read heat flux data, interpolate in time

INTERFACE:

subroutine read_heat_flux(jul,secs,I_0,heat)

DESCRIPTION:

For calc_fluxes=.false., this routine reads solar radiation and the surface heat flux in W m−2

from heatflux_file and interpolates them in time.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: I_0,heat

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.9 Read momentum flux data, interpolate in time

INTERFACE:

subroutine read_momentum_flux(jul,secs,tx,ty)

DESCRIPTION:

For calc_fluxes=.false., this routine reads momentum fluxes in N m−2 from momentumflux_file
and interpolates them in time.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer,intent(in) :: jul,secs

OUTPUT PARAMETERS:

REALTYPE,intent(out) :: tx,ty

REVISION HISTORY:

161



Original author(s): Karsten Bolding
See log for airsea module

LOCAL VARIABLES:

integer :: yy,mm,dd,hh,min,ss
REALTYPE :: t,alpha
REALTYPE, save :: dt
integer, save :: mom_jul1,mom_secs1
integer, save :: mom_jul2=0,mom_secs2=0
REALTYPE, save :: obs1(2),obs2(2)=0.
integer :: rc

5.2.10 Read P-E, interpolate in time

INTERFACE:

subroutine read_p_e_flux(jul,secs,p_e)

DESCRIPTION:

This routine reads the surface freshwater flux (in m s−1) from p_e_flux_file and interpolates in
time.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs

OUTPUT PARAMETERS:

REALTYPE,intent(out) :: p_e

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.11 Read SST, interpolate in time

INTERFACE:

subroutine read_sst(jul,secs,sst)

162



DESCRIPTION:

For calc_fluxes=.false., this routine reads sea surface temperature (SST) from sst_file and
interpolates in time.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs

OUTPUT PARAMETERS:

REALTYPE,intent(out) :: sst

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.12 Read SSS, interpolate in time

INTERFACE:

subroutine read_sss(jul,secs,sss)

DESCRIPTION:

For calc_fluxes=.false., this routine reads sea surface salinity (SSS) from sss_file and inter-
polates in time.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs

OUTPUT PARAMETERS:

REALTYPE,intent(out) :: sss

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

163



5.2.13 Integrate short–wave and sea surface fluxes

INTERFACE:

subroutine integrated_fluxes(dt)

DESCRIPTION:

This utility routine integrates the short–wave radiation and heat–fluxes over time.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: dt

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

5.2.14 Set the SST to be used from model.

INTERFACE:

subroutine set_sst(temp)

DESCRIPTION:

This routine sets the simulated sea surface temperature (SST) to be used for the surface flux
calculations.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: temp

REVISION HISTORY:

Original author(s): Karsten Bolding
See log for airsea module

164



6 Working with observed data in GOTM

In the context of GOTM, the term ‘observations’ should be understood in a broad sense: it may
refer to data either measured in nature or generated artificially. The inclusion of such data into
GOTM can serve different purposes. Examples are time-series of external pressure-gradients, which
can be used to drive the model, or observed profiles of the temperature to which model results can
be relaxed.
Two different types of ‘observations’ are considered so far in GOTM: time series of scalar data and
time series of profile data. The first type is used to introduce, for example, sea surface elevations
into the model. The latter is used to include, for example, temperature or velocity fields.
All specifications concerning the ‘observations’ are done via the namelist file obs.inp. Each of type
of variable has its own namelist in obs.inp. Common for all namelists is a member with the suffix
_method, used to specify the action performed to generate or acquire the variable, respectively.
Observations can be, for example, read-in from files or computed according to an analytical ex-
pression. Some types of observations (e.g. turbulent dissipation rates) are not used directly during
the calculations in GOTM. but can be conveniently interpolated to the numerical grid to allow for
an easy comparison of measured data and model results.
For all types of observations, one _method is always ‘from file’. All input-files are in ASCII with
a very straight-forward format. The necessary interpolation in space is performed as an integral
part of the general reading routines. Temporal interpolation is performed as part of the specific
reading routines, e.g. get_s_profile.F90.

165



6.1 Module observations — the ’real’ world

INTERFACE:

module observations

DESCRIPTION:

This module provides the necessary subroutines for communicating ‘observations’ to GOTM. The
module operates according to the general philosophy used in GOTM, i.e. it provides init_observ-
ations() to be called in the overall initialisation routine and get_all_obs() to be called in the
time loop to actually obtain the ‘observations’. In addition to these subroutines the module also
provides two routines for reading scalar-type observations and profile-type observations. Each
observation has a date stamp with the format yyyy-mm-dd hh:dd:mm. The module uses the time
module (see section 8.10) to convert the time string to the internal time representation of GOTM.
Profiles are interpolated to the actual GOTM model grid. Free format is used for reading-in the
actual data.

USES:

IMPLICIT NONE

default: all is private.
private

PUBLIC MEMBER FUNCTIONS:

public init_observations,get_all_obs,read_obs,read_profiles

PUBLIC DATA MEMBERS:

’observed’ salinity profile
REALTYPE, public, dimension(:), allocatable :: sprof

’observed’ temperature profile
REALTYPE, public, dimension(:), allocatable :: tprof

’observed’ horizontal salinity gradients
REALTYPE, public, dimension(:), allocatable :: dsdx,dsdy

’observed’ horizontal temperarure gradients
REALTYPE, public, dimension(:), allocatable :: dtdx,dtdy

internal horizontal pressure gradients
REALTYPE, public, dimension(:), allocatable :: idpdx,idpdy

horizontal velocity profiles
REALTYPE, public, dimension(:), allocatable :: uprof,vprof

observed profile of turbulent dissipation rates
REALTYPE, public, dimension(:), allocatable :: epsprof

166



ralaxation times for salinity and temperature
REALTYPE, public, dimension(:), allocatable :: SRelaxTau,TRelaxTau

sea surface elevation, sea surface gradients and height of velocity obs.
REALTYPE, public :: zeta=0.,dpdx=0.,dpdy=0.,h_press=0

vertical advection velocity
REALTYPE, public :: w_adv=0.,w_height

Parameters for water classification - default Jerlov type I
REALTYPE, public :: A=0.58,g1=0.35,g2=23.0

------------------------------------------------------------------------------
the following data are not all public,
but have been included for clarity here
------------------------------------------------------------------------------

Salinity profile(s)
integer, public :: s_prof_method=0
integer, public :: s_analyt_method=1
character(LEN=PATH_MAX) :: s_prof_file=’sprof.dat’
REALTYPE :: z_s1,s_1,z_s2,s_2
REALTYPE :: s_obs_NN
REALTYPE :: SRelaxTauM=0.
REALTYPE :: SRelaxTauS=0.
REALTYPE :: SRelaxTauB=0.
REALTYPE :: SRelaxSurf=0.
REALTYPE :: SRelaxBott=0.

Temperature profile(s)
integer, public :: t_prof_method=0
integer, public :: t_analyt_method=1
character(LEN=PATH_MAX) :: t_prof_file=’tprof.dat’
REALTYPE :: z_t1,t_1,z_t2,t_2
REALTYPE :: t_obs_NN
REALTYPE :: TRelaxTauM=0.
REALTYPE :: TRelaxTauS=0.
REALTYPE :: TRelaxTauB=0.
REALTYPE :: TRelaxSurf=0.
REALTYPE :: TRelaxBott=0.

External pressure - ’press’ namelist
integer, public :: ext_press_method=0,PressMethod=0
character(LEN=PATH_MAX) :: ext_press_file=’’
REALTYPE, public :: PressConstU=0.
REALTYPE, public :: PressConstV=0.
REALTYPE, public :: PressHeight=0.
REALTYPE, public :: PeriodM=44714.
REALTYPE, public :: AmpMu=0.

167



REALTYPE, public :: AmpMv=0.
REALTYPE, public :: PhaseMu=0.
REALTYPE, public :: PhaseMv=0.
REALTYPE, public :: PeriodS=43200.
REALTYPE, public :: AmpSu=0.
REALTYPE, public :: AmpSv=0.
REALTYPE, public :: PhaseSu=0.
REALTYPE, public :: PhaseSv=0.

Internal pressure - ’internal_pressure’ namelist
integer, public :: int_press_method=0
character(LEN=PATH_MAX) :: int_press_file=’’
REALTYPE, public :: const_dsdx=0.
REALTYPE, public :: const_dsdy=0.
REALTYPE, public :: const_dtdx=0.
REALTYPE, public :: const_dtdy=0.
logical, public :: s_adv=.false.
logical, public :: t_adv=.false.

Light extinction - the ’extinct’ namelist
integer :: extinct_method=1
character(LEN=PATH_MAX) :: extinct_file=’extinction.dat’

Vertical advection velocity - ’w_advspec’ namelist
integer, public :: w_adv_method=0
REALTYPE, public :: w_adv0=0.
character(LEN=PATH_MAX) :: w_adv_file=’w_adv.dat’
integer, public :: w_adv_discr=1

Sea surface elevations - ’zetaspec’ namelist
integer,public :: zeta_method=0
character(LEN=PATH_MAX) :: zeta_file=’zeta.dat’
REALTYPE, public :: zeta_0=0.
REALTYPE, public :: period_1=44714.
REALTYPE, public :: amp_1=0.
REALTYPE, public :: phase_1=0.
REALTYPE, public :: period_2=43200.
REALTYPE, public :: amp_2=0.
REALTYPE, public :: phase_2=0.

Observed velocity profile profiles - typically from ADCP
integer :: vel_prof_method=0
CHARACTER(LEN=PATH_MAX) :: vel_prof_file=’velprof.dat’
REALTYPE, public :: vel_relax_tau=3600.
REALTYPE, public :: vel_relax_ramp=86400.

Observed dissipation profiles
integer :: e_prof_method=0
REALTYPE :: e_obs_const=1.e-12
CHARACTER(LEN=PATH_MAX) :: e_prof_file=’eprof.dat’

168



Buoyancy - ’bprofile’ namelist
REALTYPE, public :: b_obs_surf=0.,b_obs_NN=0.
REALTYPE, public :: b_obs_sbf=0.

REALTYPE,public, parameter:: pi=3.141592654

DEFINED PARAMETERS:

Unit numbers for reading observations/data.
integer, parameter :: s_prof_unit=30
integer, parameter :: t_prof_unit=31
integer, parameter :: ext_press_unit=32
integer, parameter :: int_press_unit=33
integer, parameter :: extinct_unit=34
integer, parameter :: w_adv_unit=35
integer, parameter :: zeta_unit=36
integer, parameter :: vel_prof_unit=37
integer, parameter :: e_prof_unit=38

pre-defined parameters
integer, parameter :: READ_SUCCESS=1
integer, parameter :: END_OF_FILE=-1
integer, parameter :: READ_ERROR=-2
integer, parameter :: NOTHING=0
integer, parameter :: ANALYTICAL=1
integer, parameter :: CONSTANT=1
integer, parameter :: FROMFILE=2
integer, parameter :: CONST_PROF=1
integer, parameter :: TWO_LAYERS=2
integer, parameter :: CONST_NN=3

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: observations.F90,v $
Revision 1.9 2005/07/06 16:20:14 kbk
updated documentation - added const_NNT and const_NNS
Revision 1.8 2004/07/30 09:26:01 hb
Simple exponential light absorption added --> Wilfried Kuehn
Revision 1.7 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.6 2003/03/28 08:08:21 kbk
removed tabs
Revision 1.5 2003/03/10 13:51:08 lars
changed intent(out) to intent(inout) for lines in read_profiles()
Revision 1.4 2003/03/10 08:51:58 gotm
Improved documentation and cleaned up code
Revision 1.3 2001/11/27 15:35:55 gotm
zeta_method now public - used by updategrid()

169



Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.1 Initialise the observation module

INTERFACE:

subroutine init_observations(namlst,fn,julday,secs, &
depth,nlev,z,h,gravity,rho_0)

DESCRIPTION:

The init_observations() subroutine basically reads the obs.inp file with a number of different
namelists and takes actions according to the specifications in the different namelists. In this
routine also memory is allocated to hold the ’observations’. Finally, all variables are initialised
to sane values, either by reading from files, by prescribing constant values, or by using analytical
expressions.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: namlst
character(len=*), intent(in) :: fn
integer, intent(in) :: julday,secs
REALTYPE, intent(in) :: depth
integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev),h(0:nlev)
REALTYPE, intent(in) :: gravity,rho_0

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

6.1.2 get all obs

INTERFACE:

subroutine get_all_obs(julday,secs,nlev,z)

DESCRIPTION:

During the time integration this subroutine is called each time step to update all ’observation’.
The routine is basically a wrapper routine which calls the variable specific routines. The only input
to this routine is the time (in internal GOTM representation) and the vertical grid. It is up to
each of the individual routines to use this information and to provide updated ’observations’.

USES:

170



IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: julday,secs
integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(:)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See observation module

6.1.3 read obs

INTERFACE:

subroutine read_obs(unit,yy,mm,dd,hh,min,ss,N,obs,ierr)

DESCRIPTION:

This routine will read all non-profile observations. The routine allows for reading more than one
scalar variable at a time. The number of data to be read is specified by N. Data read-in are returned
in the ’obs’ array. It is up to the calling routine to assign meaning full variables to the individual
elements in obs.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: unit
integer, intent(in) :: N

OUTPUT PARAMETERS:

integer, intent(out) :: yy,mm,dd,hh,min,ss
REALTYPE,intent(out) :: obs(:)
integer, intent(out) :: ierr

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See observation module

171



6.1.4 read profiles

INTERFACE:

subroutine read_profiles(unit,nlev,cols,yy,mm,dd,hh,min,ss,z, &
profiles,lines,ierr)

DESCRIPTION:

Similar to read_obs() but used for reading profiles instead of scalar data. The data will be
interpolated on the grid specified by nlev and z. The data can be read ’from the top’ or ’from the
bottom’ depending on a flag in the actual file.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: unit
integer, intent(in) :: nlev,cols
REALTYPE, intent(in) :: z(:)

INPUT/OUTPUT PARAMETERS:

integer, intent(inout) :: lines

OUTPUT PARAMETERS:

integer, intent(out) :: yy,mm,dd,hh,min,ss
REALTYPE, intent(out) :: profiles(:,:)
integer, intent(out) :: ierr

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See observation module

6.1.5 get s profile

INTERFACE:

subroutine get_s_profile(unit,jul,secs,nlev,z)

DESCRIPTION:

This routine is responsible for providing sane values to an ‘observed’ salinity profile. The subrou-
tine is called in the get_all_obs() subroutine as part of the main integration loop. In case of
observations from file the temporal interpolation is done in this routine.

USES:

172



use time
use observations, only: read_profiles,sprof
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: unit
integer, intent(in) :: jul,secs
integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: get_s_profile.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.6 get t profile

INTERFACE:

subroutine get_t_profile(unit,jul,secs,nlev,z)

DESCRIPTION:

This routine is responsible for providing sane values to an ‘observed’ temperature profile. The
subroutine is called in the get_all_obs() subroutine as part of the main integration loop. In case
of observations from file the temporal interpolation is done in this routine.

USES:

use time
use observations, only: read_profiles,tprof
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: unit
integer, intent(in) :: jul,secs
integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev)

REVISION HISTORY:

173



Original author(s): Karsten Bolding
$Log: get_t_profile.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.7 get ext pressure

INTERFACE:

subroutine get_ext_pressure(method,unit,jul,secs)

DESCRIPTION:

This routine will provide the external pressure-gradient, either from analytical expressions or read-
in from a file. The subroutine is called in get_all_obs() as part of the main integration loop. In
case of observations from file the temporal interpolation is done in this routine.

USES:

use time, only: time_diff,julian_day,fsecs
use observations, only: read_obs
use observations, only: pi,h_press,dpdx,dpdy
use observations, only: AmpMu,AmpMv,PhaseMu,PhaseMv,PeriodM
use observations, only: AmpSu,AmpSv,PhaseSu,PhaseSv,PeriodS
use observations, only: PressConstU,PressConstV
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: method,unit,jul,secs

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: get_ext_pressure.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.3 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code

174



Revision 1.2 2001/05/31 12:00:52 gotm
Correction in the calculation of the shear squared calculation - now according
to Burchard 1995 (Ph.D. thesis).
Also some cosmetics and cleaning of Makefiles.
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.8 get int pressure

INTERFACE:

subroutine get_int_pressure(method,unit,jul,secs,nlev,z)

DESCRIPTION:

This routine will provide the internal pressure-gradients, either analytically prescribed or read from
a file. The subroutine is called in the get_all_obs() subroutine as part of the main integration
loop. The spatial interpolation is done via the reading routine and the temporal interpolation is
done in this routine.

USES:

use time, only: time_diff,julian_day
use observations, only: read_profiles
use observations, only: dsdx,dsdy,dtdx,dtdy
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: method
integer, intent(in) :: unit
integer, intent(in) :: jul,secs
integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: get_int_pressure.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

175



6.1.9 read extinction

INTERFACE:

subroutine read_extinction(unit,jul,secs)

DESCRIPTION:

This routine will provide the light extinction coefficients. It is only called if no Jerlov class has
been specified in obs.inp.

USES:

use time
use observations, only : read_obs
use observations, only : A,g1,g2
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: unit,jul,secs

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: read_extinction.F90,v $
Revision 1.5 2005/07/06 16:20:14 kbk
updated documentation - added const_NNT and const_NNS
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.2 2003/03/10 08:51:58 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.10 get w adv

INTERFACE:

subroutine get_w_adv(method,unit,jul,secs)

DESCRIPTION:

This routine is responsible for providing sane values to ‘observed’ vertical velocity. The subroutine is
called in the get_all_obs() subroutine as part of the main integration loop. In case of observations
from file the temporal interpolation is done in this routine.

USES:

176



use time, only: time_diff,julian_day
use observations, only: read_obs
use observations, only: w_adv,w_adv0,w_height
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: method,unit,jul,secs

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: get_w_adv.F90,v $
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.11 get zeta

INTERFACE:

subroutine get_zeta(method,unit,jul,secs)

DESCRIPTION:

This routine will provide sea surface elevation - either by an analytical expression or read from file.
The subroutine is called in the get_all_obs() subroutine as part of the main integration loop.
The spatial interpolation is done via the reading routine and the temporal interpolation is done in
this routine.

USES:

use time, only: time_diff,julian_day,fsecs
use observations, only: pi,read_obs
use observations, only: period_1,amp_1,phase_1,period_2,amp_2,phase_2
use observations, only: zeta,zeta_0
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: method,unit,jul,secs

REVISION HISTORY:

177



Original author(s): Karsten Bolding
$Log: get_zeta.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.3 2003/03/10 08:51:58 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 16:06:31 gotm
Avoid namelist member clashes by changing names in zetaspec
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.12 get vel profile

INTERFACE:

subroutine get_vel_profile(unit,jul,secs,nlev,z)

DESCRIPTION:

This routine is responsible for providing sane values to ‘observed’ velocity profiles. The subroutine
is called in the get_all_obs subroutine as part of the main integration loop. In case of observations
from file the temporal interpolation is done in this routine.

USES:

use time
use observations, only: read_profiles,uprof,vprof
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in):: unit
integer, intent(in):: jul,secs
integer, intent(in):: nlev
REALTYPE, intent(in):: z(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: get_vel_profile.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

178



6.1.13 get eps profile

INTERFACE:

subroutine get_eps_profile(unit,jul,secs,nlev,z)

DESCRIPTION:

This routine will get the observed dissipation profiles. The subroutine is called in the get_all_obs
subroutine as part of the main integration loop. The spatial interpolation is done via the reading
routine and the temporal interpolation is done in this routine.

USES:

use time
use observations, only: read_profiles,epsprof
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: unit
integer, intent(in) :: jul,secs
integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: get_eps_profile.F90,v $
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/28 09:02:09 kbk
removed tabs
Revision 1.2 2003/03/10 08:51:57 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

6.1.14 analytical profile

INTERFACE:

subroutine analytical_profile(nlev,z,z1,v1,z2,v2,prof)

179



DESCRIPTION:

This routine creates a vertical profile prof with value v1 in a surface layer down to depth z1 and
a bottom layer of value v2 reaching from depth z2 down to the bottom. Both layers are connected
by an intermediate layer reaching from z1 to z2 with values linearly varying from v1 to v2.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev)
REALTYPE, intent(in) :: z1,v1,z2,v2

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: prof(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding
$Log: analytical_profile.F90,v $
Revision 1.5 2005/07/06 15:50:46 kbk
added description - umlauf

6.1.15 const NNT

INTERFACE:

subroutine const_NNT(nlev,z,T_top,S_const,NN,gravity,rho_0,T)

DESCRIPTION:

This routine creates a vertical profile prof with value v1

USES:

use eqstate
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev)
REALTYPE, intent(in) :: T_top,S_const,NN
REALTYPE, intent(in) :: gravity,rho_0

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: T(0:nlev)

180



REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: const_NNT.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

6.1.16 const NNS

INTERFACE:

subroutine const_NNS(nlev,z,S_top,T_const,NN,gravity,rho_0,S)

DESCRIPTION:

This routine creates a vertical profile prof with value v1

USES:

use eqstate
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: z(0:nlev)
REALTYPE, intent(in) :: S_top,T_const,NN
REALTYPE, intent(in) :: gravity,rho_0

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: S(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: const_NNS.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

181



182



7 Saving the results

GOTM provides an easily extendible interface for storing calculated results. The main specifications
are given via the output namelist in gotmrun.inp. The most important member in this namelist
is the integer out_fmt. Changing this variable will select the output format — presently ASCII
and NetCDF are supported.
In GOTM output is triggered by do_output() called inside the main integration loop (see section
2.3). Completely separated from the core of GOTM, a format specific subroutine is called to do
the actual output. We strongly recommend to use the NetCDF format — mainly because it is
well established and save — but also because a large number of graphical programmes can read
NetCDF. Another reason is the powerful package ‘nco’ which provides some nice programs for
manipulating NetCDF files. Information about how to install and use NetCDF and nco can be
found at

• http://www.unidata.ucar.edu/packages/netcdf and

• http://nco.sourceforge.net.

183



7.1 Module output — saving the results

INTERFACE:

module output

DESCRIPTION:

This module acts as an interface between GOTM and modules/routines doing the actual output.
In order to add a new output format it is only necessary to add hooks in this module and write
the actual output routines. It is not necessary to change anything in GOTM itself.

USES:

use time, ONLY: write_time_string,julianday,secondsofday,timestep
use asciiout

ifdef NETCDF_FMT
use ncdfout, ONLY: init_ncdf,do_ncdf_out,close_ncdf

endif

IMPLICIT NONE

PUBLIC DATA MEMBERS:

logical :: write_results
character(len=19) :: ts
integer :: out_fmt=ASCII
character(len=PATH_MAX) :: out_dir=’.’
character(len=PATH_MAX) :: out_fn=’gotm’
integer :: nsave=1
logical :: diagnostics=.false.
integer :: mld_method=1
REALTYPE :: diff_k=1.e-5
REALTYPE :: Ri_crit=0.5
logical :: rad_corr=.true.

REVISION HISTORY:

Original author(s): Karsten Bolding, Hans Burchard
$Log: output.F90,v $
Revision 1.8 2005/07/19 17:09:37 hb
removed code commented out
Revision 1.7 2005/07/06 14:22:40 kbk
updated documentation - saves KPP related variables
Revision 1.6 2003/10/14 08:04:32 kbk
time is now stored as real
Revision 1.5 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:24:19 kbk
removed tabs

184



Revision 1.3 2003/03/10 08:53:05 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 11:51:52 gotm
Fixed a typo
Revision 1.1.1.1 2001/02/12 15:55:59 gotm
initial import into CVS

7.1.1 Initialize the output module

INTERFACE:

subroutine init_output(title,nlev,latitude,longitude)

DESCRIPTION:

Calls the initialization routine based on output format selected by the user.

USES:

IMPLICIT NONE

INPUT/OUTPUT PARAMETERS:

character(len=*), intent(in) :: title
integer, intent(in) :: nlev
REALTYPE, intent(in) :: latitude,longitude

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See output module

7.1.2 Set some variables related to output

INTERFACE:

subroutine prepare_output(n)

DESCRIPTION:

This routine check whether output should be written at the current time step. If this is the case,
the model time is written to a string for display on the screen.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

185



integer, intent(in) :: n

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See output module

7.1.3 Save the model results in file

INTERFACE:

subroutine do_output(n,nlev)

DESCRIPTION:

Calls the routine, which will do the actual storing of results, depending on the output format.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n,nlev

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

LOCAL VARIABLES:

REALTYPE :: secs

7.1.4 Close files used for saving model results

INTERFACE:

subroutine close_output()

DESCRIPTION:

Call routines for closing any open output files.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See output module

186



7.1.5 Compute various diagnostic/integrated variables

INTERFACE:

subroutine do_diagnostics(n,nlev,BuoyMeth,dt,u_taus,u_taub,I_0,heat)

DESCRIPTION:

This subroutine calculates the following diagnostic/integrated variables.

USES:

use airsea, only: sst
use meanflow, only: gravity,rho_0,cp
use meanflow, only: h,u,v,s,t,NN,SS,buoy,rad
use turbulence, only: kappa
use turbulence, only: tke
use observations, only: tprof,b_obs_sbf
use eqstate, only: eqstate1
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n,nlev,BuoyMeth
REALTYPE, intent(in) :: dt
REALTYPE, intent(in) :: u_taus,u_taub
REALTYPE, intent(in) :: I_0,heat

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See output module

187



7.2 Module asciiout — saving the results in ASCII

INTERFACE:

MODULE asciiout

DESCRIPTION:

This module contains three subroutines for writing model output in ASCII format. The authors
do not encourage using ASCII for output — instead we recommend NetCDF.

USES:

IMPLICIT NONE
Default all is private.
private

PUBLIC MEMBER FUNCTIONS:

public init_ascii, do_ascii_out, close_ascii

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: asciiout.F90,v $
Revision 1.5 2005/07/06 14:19:50 kbk
added writing of obs. velocities
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 08:53:05 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/18 11:51:16 gotm
Now format statements
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

7.2.1 Open the file unit for writing

INTERFACE:

subroutine init_ascii(fn,title,unit)
IMPLICIT NONE

DESCRIPTION:

Opens a file giving in the output namelist and connects it with a unit number.

INPUT PARAMETERS:

character(len=*), intent(in) :: fn,title

188



INPUT/OUTPUT PARAMETERS:

integer, intent(in) :: unit

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See asciiout module

7.2.2 Save the model results to file

INTERFACE:

subroutine do_ascii_out(nlev,timestr,unit)

DESCRIPTION:

Writes all calculated data to an ASCII file.

USES:

use meanflow, only: depth0,h,u,v,z,S,T,NN,buoy
use turbulence, only: num,nuh,tke,eps,L
use turbulence, only: kb,epsb
use observations, only: tprof,sprof,uprof,vprof,epsprof

#ifdef SEDIMENT
use sediment, only: ascii_sediment

#endif
#ifdef SEDIMENT

use seagrass, only: ascii_seagrass
#endif

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
CHARACTER(len=*), intent(in) :: timestr
integer, intent(in) :: unit

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See asciiout module

189



7.2.3 Close files used for saving model results

INTERFACE:

subroutine close_ascii(unit)
IMPLICIT NONE

DESCRIPTION:

Close the open ASCII file.

INPUT PARAMETERS:

integer, intent(in) :: unit

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See asciiout module

190



7.3 Module ncdfout — saving the results in NetCDF

INTERFACE:

module ncdfout

DESCRIPTION:

This module provides routines for saving the GOTM results using NetCDF format. A hack has been
provided for saving in a way that can be used by the GrADS graphics software. The sdfopen()
interface to GrADS does not allow for smaller time units than 1 hour, so if GrADS output is
selected the units for time are set to hours and not secs.
In both cases, the type and number of variables appearing in the output file depends on the
turbulence model and the output flags set by the user. If you use, for example, the KPP turbulence
module no information for the TKE, the dissipation rate, the turbulence production terms are
saved, because the KPP model does not provide information about these quantities.
Note that if you #define EXTRA_OUTPUT in cppdef.h, then you will find the a number of dummy
fields called mean1, mean2, ... and turb1, turb2, ... in the netCDF output file after re-
compiling and runnign GOTM. These extra variables are public members of the meanflow and
turbulence modules and are convenient for testing and debuging.

USES:

use turbulence, only: turb_method

IMPLICIT NONE

include ’netcdf.inc’

PUBLIC MEMBER FUNCTIONS:

public init_ncdf, do_ncdf_out, close_ncdf
public define_mode, new_nc_variable, set_attributes, store_data

PUBLIC DATA MEMBERS:

netCDF file id
integer, public :: ncid

dimension ids
integer :: lon_dim,lat_dim,z_dim,z1_dim
integer :: time_dim
integer, parameter :: dim1=1,dim4=4
integer :: dims(dim4)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: ncdfout.F90,v $
Revision 1.10 2005/08/11 14:15:33 kbk
when storing time changed variable time to temp_time - Portland compiler
Revision 1.9 2005/07/06 14:22:40 kbk

191



updated documentation - saves KPP related variables
Revision 1.8 2004/01/09 10:14:01 kbk
consistency between stored surface stress and units (now N/m^2)
Revision 1.7 2003/12/11 09:58:22 kbk
now compiles with FORTRAN_COMPILER=IFORT - removed TABS
Revision 1.6 2003/10/14 08:04:32 kbk
time is now stored as real
Revision 1.5 2003/06/13 09:27:16 hb
Implemented freshwater fluxes
Revision 1.4 2003/03/28 09:20:35 kbk
added new copyright to files
Revision 1.3 2003/03/10 08:53:05 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

7.3.1 Create the NetCDF file

INTERFACE:

subroutine init_ncdf(fn,title,lat,lon,nlev,start_time,time_unit)
IMPLICIT NONE

DESCRIPTION:

Opens and creates the NetCDF file, and initialises all dimensions and variables for the core GOTM
model.

INPUT PARAMETERS:

character(len=*), intent(in) :: fn,title,start_time
REALTYPE, intent(in) :: lat,lon
integer, intent(in) :: nlev,time_unit

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

7.3.2 Save model results to file

INTERFACE:

subroutine do_ncdf_out(nlev,secs)

192



DESCRIPTION:

Write the GOTM core variables to the NetCDF file.

USES:

use airsea, only: tx,ty,I_0,heat,p_e,sst,sss
use airsea, only: int_swr,int_heat,int_total
use meanflow, only: depth0,u_taub,u_taus,rho_0,gravity
use meanflow, only: h,u,v,z,S,T,buoy,SS,NN
use turbulence, only: P,B,Pb
use turbulence, only: num,nuh,nus
use turbulence, only: gamu,gamv,gamh,gams
use turbulence, only: tke,kb,eps,epsb,L,uu,vv,ww
use kpp, only: zsbl,zbbl
use observations, only: zeta,uprof,vprof,tprof,sprof,epsprof
use eqstate, only: eqstate1

ifdef EXTRA_OUTPUT
use meanflow, only: mean1,mean2,mean3,mean4,mean5
use turbulence, only: turb1,turb2,turb3,turb4,turb5

endif
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: secs

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

7.3.3 Close files used for saving model results

INTERFACE:

subroutine close_ncdf()
IMPLICIT NONE

DESCRIPTION:

Closes the NetCDF file.

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

193



7.3.4 Begin or end define mode

INTERFACE:

integer function define_mode(ncid,action)

DESCRIPTION:

Depending on the value of the argument action, this routine put NetCDF in the ‘define’ mode or
not.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: ncid
logical, intent(in) :: action

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

7.3.5 Define a new NetCDF variable

INTERFACE:

integer function new_nc_variable(ncid,name,data_type,n,dims,id)

DESCRIPTION:

This routine is used to define a new variable to store in a NetCDF file.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: ncid
character(len=*), intent(in) :: name
integer, intent(in) :: data_type,n
integer, intent(in) :: dims(:)

OUTPUT PARAMETERS:

integer, intent(out) :: id

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

194



7.3.6 Set attributes for a NetCDF variable.

INTERFACE:

integer function set_attributes(ncid,id, &
units,long_name, &
valid_min,valid_max,valid_range, &
scale_factor,add_offset, &
FillValue,missing_value, &
C_format,FORTRAN_format)

DESCRIPTION:

This routine is used to set a number of attributes for variables. The routine makes heavy use of
the optional keyword. The list of recognized keywords is very easy to extend. We have included
a sub-set of the COARDS conventions.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: ncid,id
character(len=*), optional :: units,long_name
REALTYPE, optional :: valid_min,valid_max
REALTYPE, optional :: valid_range(2)
REALTYPE, optional :: scale_factor,add_offset
REALTYPE, optional :: FillValue,missing_value
character(len=*), optional :: C_format,FORTRAN_format

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

LOCAL VARIABLES:

integer :: len,iret
REAL_4B :: vals(2)

7.3.7 Store values in a NetCDF file

INTERFACE:

integer function store_data(ncid,id,var_shape,nlev, &
iscalar,iarray,scalar,array)

195



DESCRIPTION:

This routine is used to store a variable in the NetCDF file. The subroutine uses optional param-
eters to find out which data type to save.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: ncid,id,var_shape,nlev
integer, optional :: iscalar
integer, optional :: iarray(0:nlev)
REALTYPE, optional :: scalar
REALTYPE, optional :: array(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
See ncdfout module

196



8 Utilities

8.1 Introduction

In this section, different utility modules and routines are assembled, such as the time module
(see time.F90), keeping track of all time calculations, the mtridiagonal module with a Gaussian
solver for systems of equations with tri-diagonal matrices (see tridiagonal.F90), and the eqstate
module (see eqstate.F90) with different versions of the equation of state.
Also discussed are advection and diffusion routines, such as diff_center() and adv_center() for
variables located at the centers of the grid cells, i.e. in general mean flow variables.

197



8.2 Module util — parameters and interfaces for utilities

INTERFACE:

MODULE util

DESCRIPTION:

This module is an encapsulation of a number of parameters used by different routines found in the
util directory. It should make it easier to read the code, since finding a line like

if (method.eq.UPSTREAM) then ...

in a subroutine for advection methods tells you more than reading only

if (method.eq.1) then ...

USES:

IMPLICIT NONE

DEFINED PARAMETERS:

type of advection scheme
integer,parameter :: UPSTREAM = 1
integer,parameter :: P1 = 2
integer,parameter :: P2 = 3
integer,parameter :: Superbee = 4
integer,parameter :: MUSCL = 5
integer,parameter :: P2_PDM = 6

boundary condition type
for diffusion scheme
integer,parameter :: Dirichlet = 0
integer,parameter :: Neumann = 1

boundary condition type
for advection schemes
integer,parameter :: flux = 1
integer,parameter :: value = 2
integer,parameter :: oneSided = 3
integer,parameter :: zeroDivergence = 4

REVISION HISTORY:

Original author(s): Lars Umlauf

198



$Log: util.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

199



8.3 Diffusion schemes — grid centers

INTERFACE:

subroutine diff_center(N,dt,cnpar,h,Bcup,Bcdw, &
Yup,Ydw,nuY,Lsour,Qsour,Taur,Yobs,Y)

DESCRIPTION:

This subroutine solves the one-dimensional diffusion equation including source terms,

∂Y

∂t
=

∂

∂z

(

νY
∂Y

∂z

)

− 1

τR
(Y − Yobs) + Y Lsour +Qsour , (231)

for al variables defined at the centers of the grid cells, and a diffusion coefficient νY defined at the
faces. Relaxation with time scale τR towards observed values Yobs is possible. Lsour specifies a
linear source term, and Qsour a constant source term. Central differences are used to discretize the
problem as discussed in section 3.1.2. The diffusion term, the linear source term, and the linear
part arising from the relaxation term are treated with an implicit method, whereas the constant
source term is treated fully explicit.
The input parameters Bcup and Bcdw specify the type of the upper and lower boundary conditions,
which can be either Dirichlet or Neumann-type. Bcup and Bcdw must have integer values corre-
sponding to the parameters Dirichlet and Neumann defined in the module util, see section 8.2.
Yup and Ydw are the values of the boundary conditions at the surface and the bottom. Depending
on the values of Bcup and Bcdw, they represent either fluxes or prescribed values.
Note that fluxes entering a boundary cell are counted positive by convention. The lower and upper
position for prescribing these fluxes are located at the lowest und uppermost grid faces with index
”0” and index ”N”, respectively. If values are prescribed, they are located at the centers with index
”1” and index ”N”, respectivly.

USES:

use util, only : Dirichlet, Neumann
use mtridiagonal

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: N

time step (s)
REALTYPE, intent(in) :: dt

"implicitness" parameter
REALTYPE, intent(in) :: cnpar

layer thickness (m)
REALTYPE, intent(in) :: h(0:N)

type of upper BC
integer, intent(in) :: Bcup

200



type of lower BC
integer, intent(in) :: Bcdw

value of upper BC
REALTYPE, intent(in) :: Yup

value of lower BC
REALTYPE, intent(in) :: Ydw

diffusivity of Y
REALTYPE, intent(in) :: nuY(0:N)

linear source term
(treated implicitly)
REALTYPE, intent(in) :: Lsour(0:N)

constant source term
(treated explicitly)
REALTYPE, intent(in) :: Qsour(0:N)

relaxation time (s)
REALTYPE, intent(in) :: Taur(0:N)

observed value of Y
REALTYPE, intent(in) :: Yobs(0:N)

INPUT/OUTPUT PARAMETERS:

REALTYPE :: Y(0:N)

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: diff_center.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

201



8.4 Diffusion schemes — grid faces

INTERFACE:

subroutine diff_face(N,dt,cnpar,h,Bcup,Bcdw,Yup,Ydw,nuY,Lsour,Qsour,Y)

DESCRIPTION:

This subroutine solves the one-dimensional diffusion equation including source terms,

∂Y

∂t
=

∂

∂z

(

νY
∂Y

∂z

)

+ Y Lsour +Qsour , (232)

with all variables including the diffusion coefficient, νY , defined at the faces. Lsour specifies a
linear source term, and Qsour a constant source term. Central differences are used to discretize
the problem. The diffusion term and the linear source term are treated with an implicit method,
whereas the constant source term is treated fully explicit.
The input parameters Bcup and Bcdw specify the type of the upper and lower boundary conditions,
which can be either Dirichlet or Neumann-type. Bcup and Bcdw must have integer values corre-
sponding to the parameters Dirichlet and Neumann defined in the module util, see section 8.2.
Yup and Ydw are the values of the boundary conditions at the surface and the bottom. Depending
on the values of Bcup and Bcdw, they represent either fluxes or prescribed values.
Note that fluxes entering a boundary cell are counted positive by convention. The lower and upper
position for prescribing these fluxes are located at the lowest and uppermost grid centers with index
”1” and index ”N”, respectively. If values are prescribed, they are located at the faces with index
”1” and index ”N-1”, respectivly.

USES:

use util, only : Dirichlet, Neumann
use mtridiagonal

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: N

time step (s)
REALTYPE, intent(in) :: dt

"implicitness" parameter
REALTYPE, intent(in) :: cnpar

layer thickness (m)
REALTYPE, intent(in) :: h(0:N)

type of upper BC
integer, intent(in) :: Bcup

type of lower BC
integer, intent(in) :: Bcdw

202



value of upper BC
REALTYPE, intent(in) :: Yup

value of lower BC
REALTYPE, intent(in) :: Ydw

diffusivity of Y
REALTYPE, intent(in) :: nuY(0:N)

linear source term
(treated implicitly)
REALTYPE, intent(in) :: Lsour(0:N)

constant source term
(treated explicitly)
REALTYPE, intent(in) :: Qsour(0:N)

INPUT/OUTPUT PARAMETERS:

REALTYPE :: Y(0:N)

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: diff_face.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

203



8.5 Advection schemes — grid centers

INTERFACE:

subroutine adv_center(N,dt,h,ho,ww,Bcup,Bcdw,Yup,Ydw,method,Y)

DESCRIPTION:

This subroutine solves a one-dimensional advection equation of the form

∂Y

∂t
= −w∂Y

∂z
= −

(

∂F

∂z
− Y

∂w

∂z

)

, (233)

where F = wY is the flux caused by the advective velocity, w.
The discretized form of (233) is

Y n+1
i = Y ni − ∆t

hi

(

Fni − Fni−1 − Y ni (wk − wk−1)
)

, (234)

where the integers n and i correspond to the present time and space level, respectively. Fluxes are
defined at the grid faces, the variable Yi is defined at the grid centers. The fluxes are computed in
an upstream-biased way,

Fni =
1

∆t

∫ zFace
i

zFace
i

−w∆t

Y (z′)dz′ . (235)

For a third-order polynomial approximation of Y (see Pietrzak (1998)), these fluxes can be written
the in so-called Lax-Wendroff form as

Fi = wi

(

Yi +
1

2
Φ+
i (1 − |ci|) (Yi+1 − Yi)

)

for wi > 0 ,

Fi = wi

(

Yi+1 +
1

2
Φ−

i (1 − |ci|) (Yi − Yi+1)

)

for wi < 0 ,

(236)

where ci = 2wi∆t/(hi + hi+1) is the Courant number. The factors appearing in (236) are defined
as

Φ+
i = αi + βir

+
i , Φ−

i = αi + βir
−

i , (237)

where

αi =
1

2
+

1

6
(1 − 2|ci|) , βi =

1

2
− 1

6
(1 − 2|ci|) . (238)

The upstream and downstream slope parameters are

r+i =
Yi − Yi−1

Yi+1 − Yi
, r−i =

Yi+2 − Yi+1

Yi+1 − Yi
. (239)

To obtain monotonic and positive schemes also in the presence of strong gradients, so-called slope
limiters are aplied for the factors Φ+

i and Φ−

i . The two most obvious cases are the first-order
upstream discretisation with Φ+

i = Φ−

i = 0 and the Lax-Wendroff scheme with Φ+
i = Φ−

i = 1. The
subroutine adv_center.F90 provides six different slope-limiters, all discussed in detail by Pietrzak
(1998):

204



• first-order upstream (method=UPSTREAM)

• second-order upstream-biased polynomial scheme (method=P1, not yet implemented)

• third-order upstream-biased polynomial scheme (method=P2)

• third-order scheme (TVD) with Superbee limiter (method=Superbee)

• third-order scheme (TVD) with MUSCL limiter (method=MUSCL)

• third-order scheme (TVD) with ULTIMATE QUICKEST limiter (method=P2_PDM)

If during a certain time step the maximum Courant number is larger than one, a split iteration
will be carried out which guarantees that the split step Courant numbers are just smaller than 1.
Several kinds of boundary conditions are implemented for the upper and lower boundaries. They
are set by the integer values Bcup and Bcdw, that have to correspond to the parameters defined in
the module util, see section 8.2. The following choices exist at the moment:
For the value flux, the boundary values Yup and Ydw are interpreted as specified fluxes at the
uppermost and lowest interface. Fluxes into the boundary cells are counted positive by convention.
For the value value, Yup and Ydw specify the value of Y at the interfaces, and the flux is computed
by multiplying with the (known) speed at the interface. For the value oneSided, Yup and Ydw
are ignored and the flux is computed from a one-sided first-order upstream discretisation using
the speed at the interface and the value of Y at the center of the boundary cell. For the value
zeroDivergence, the fluxes into and out of the respective boundary cell are set equal. This
corresponds to a zero-gradient formulation, or to zero flux divergence in the boundary cells.
Be careful that your boundary conditions are mathematically well defined. For example, specifying
an inflow into the boundary cell with the speed at the boundary being directed outward does not
make sense.

USES:

use util
IMPLICIT NONE

INPUT PARAMETERS:

number of vertical layers
integer, intent(in) :: N

time step (s)
REALTYPE, intent(in) :: dt

layer thickness (m)
REALTYPE, intent(in) :: h(0:N)

old layer thickness (m)
REALTYPE, intent(in) :: ho(0:N)

vertical advection speed
REALTYPE, intent(in) :: ww(0:N)

type of upper BC

205



integer, intent(in) :: Bcup

type of lower BC
integer, intent(in) :: Bcdw

value of upper BC
REALTYPE, intent(in) :: Yup

value of lower BC
REALTYPE, intent(in) :: Ydw

type of advection scheme
integer, intent(in) :: method

INPUT/OUTPUT PARAMETERS:

REALTYPE :: Y(0:N)

DEFINED PARAMETERS:

REALTYPE, parameter :: one6th=1.0d0/6.0d0
integer, parameter :: itmax=100

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: adv_center.F90,v $
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

206



8.6 Module mtridiagonal — solving the system

INTERFACE:

MODULE mtridiagonal

DESCRIPTION:

Solves a linear system of equations with a tridiagonal matrix using Gaussian elimination.

PUBLIC MEMBER FUNCTIONS:

public init_tridiagonal,tridiagonal

PUBLIC DATA MEMBERS:

REALTYPE, dimension(:), allocatable :: au,bu,cu,du

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: tridiagonal.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/17 15:33:47 lars
removed tabs
Revision 1.4 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:06:33 kbk
removed tabs
Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

8.6.1 Allocate memory

INTERFACE:

subroutine init_tridiagonal(N)

DESCRIPTION:

This routines allocates memory necessary to perform the Gaussian elimination.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

207



integer, intent(in) :: N

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

8.6.2 Simplified Gaussian elimination

INTERFACE:

subroutine tridiagonal(N,fi,lt,value)

DESCRIPTION:

A linear equation with tridiagonal matrix structure is solved here. The main diagonal is stored on
bu, the upper diagonal on au, and the lower diagonal on cu, the right hand side is stored on du.
The method used here is the simplified Gauss elimination, also called Thomas algorithm.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: N,fi,lt

OUTPUT PARAMETERS:

REALTYPE :: value(0:N)

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: tridiagonal.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2004/08/17 15:33:47 lars
removed tabs
Revision 1.4 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:06:33 kbk
removed tabs
Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

208



8.7 Module eqstate — the equation of state

INTERFACE:

MODULE eqstate

DESCRIPTION:

Computes in-situ density, ρis, and buoyancy from the salinity, s, the potential temperature, θ, and
thermodynamic pressure, p, according to a specified equation of state,

ρis = ρ̂(s, θ, p) . (240)

At present, two different modes and four different methods are implemented. Modes:

1. The UNESCO equation of state according to Fofonoff and Millard (1983)

2. The Jackett et al. (2005) equation of state

Methods:

1. the full equation of state — including pressure effects

2. the full equation of state — without pressure effects

3. the linearised equation of state

4. a general linear form of the equation of state

USES:

IMPLICIT NONE

default: all is private.
private

PUBLIC MEMBER FUNCTIONS:

public init_eqstate,eqstate1,eos_alpha,eos_beta,unesco,rho_feistel

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: eqstate.F90,v $
Revision 1.6 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.5 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.4 2003/03/28 08:06:33 kbk
removed tabs
Revision 1.3 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.2 2001/11/27 19:44:32 gotm
Fixed an initialisation bug
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

209



8.7.1 Read the namelist eqstate

INTERFACE:

subroutine init_eqstate(namlst)

DESCRIPTION:

Here, the namelist eqstate in the namelist file gotmrun.inp is read.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, optional, intent(in) :: namlst

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

8.7.2 Select an equation of state

INTERFACE:

REALTYPE function eqstate1(S,T,p,g,rho_0)

DESCRIPTION:

Calculates the in-situ buoyancy according to the selected method. S is salinity S in psu, T is
potential temperature θ in ◦C (ITS-90), p is gauge pressure (absolute pressure - 10.1325 bar), g
is the gravitational acceleration in m s−2 and rho_0 the reference density in kgm−3. eqstate1 is
the in-situ-density in kgm−3. For eq_state_method=1, the UNESCO equation of state is used,
for eq_state_method=2, the Jackett et al. (2005) equation of state is used. Here, some care is
needed, since the UNESCO equation used bar for pressure and the Jackett et al. (2005) uses dbar
for pressure. For values of eq_state_method ranging from 1 to 4, one of the following methods
will be used.

1. the full equation of state for sea water including pressure dependence.

2. the equation of state for sea water with the pressure evaluated at the sea surface as reference
level. This is the choice for computations based on potential temperature and density.

3. a linearised equation of state. The parameters T0, S0 and p0 have to be specified in the
namelist.

4. a linear equation of state with prescribed rho0, T0, S0, dtr0, dsr0 according to

ρ = ρ0 + dtr0(T − T0) + dsr0(S − S0) . (241)

210



USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: S,T,p
REALTYPE,optional,intent(in) :: g,rho_0

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

8.7.3 Compute thermal expansion coefficient

INTERFACE:

REALTYPE function eos_alpha(S,T,p,g,rho_0)

DESCRIPTION:

Computes the thermal expansion coefficient defined by

α = − 1

ρ0

(

∂ρis
∂T

)

S

=
1

g

(

∂Bis
∂T

)

S

, (242)

where Bis denotes the in-situ buoyancy. The computation is carried out by a finite difference
approximation of (242), requiring two evaluations of the equation of state. Note, that comparing
(242) with (241) it follows that α = −dtr0/ρ0.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: S,T,p
REALTYPE,optional,intent(in) :: g,rho_0

REVISION HISTORY:

Original author(s): Lars Umlauf

8.7.4 Compute saline contraction coefficient

INTERFACE:

REALTYPE function eos_beta(S,T,p,g,rho_0)

211



DESCRIPTION:

Computes the saline contractioncoefficient defined by

β =
1

ρ0

(

∂ρis
∂S

)

T

= −1

g

(

∂Bis
∂S

)

T

, (243)

where Bis denotes the in-situ buoyancy. The computation is carried out by a finite difference
approximation of (243), requiring two evaluations of the equation of state. Note, that comparing
(243) with (241) it follows that β = dsr0/ρ0.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE,intent(in) :: S,T,p
REALTYPE,optional,intent(in) :: g,rho_0

REVISION HISTORY:

Original author(s): Lars Umlauf

8.7.5 The UNESCO equation of state

INTERFACE:

REALTYPE function unesco(S,T,p,UNPress)

DESCRIPTION:

Computes the in-situ density in (240) according to the UNESCO equation of state for sea water
(see Fofonoff and Millard (1983)). The pressure dependence can be switched on (UNPress=.true.)
or off (UNPress=.false.). S is salinity S in psu, T is potential temperature θ in ◦C (ITS-90), p is
gauge pressure (absolute pressure - 10.1325 bar) and unesco is the in-situ density in kgm−3. The
check value is unesco(35,25,1000) = 1062.53817 .

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: S,T,p
LOGICAL, intent(in) :: UNPress

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

212



8.7.6 The Jackett et al. (2005) equation of state

INTERFACE:

REALTYPE function rho_feistel(s,th,p,UNPress)

DESCRIPTION:

Computes the in-situ density in (240) according to the Jackett et al. (2005) equation of state
for sea water, which is based on the Gibbs potential developed by Feistel (2003). The pressure
dependence can be switched on (UNPress=.true.) or off (UNPress=.false.). s is salinity S in psu,
th is potential temperature θ in ◦C (ITS-90), p is gauge pressure (absolute pressure - 10.1325 dbar)
and rho_feistel is the in-situ density in kgm−3. The check value is rho_feistel(20,20,1000)
= 1017.728868019642 .

USES:

IMPLICIT NONE

INPUT PARAMETERS:

REALTYPE, intent(in) :: s,th,p
LOGICAL, intent(in) :: UNPress

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding

213



8.8 Interpolate from observation space to model grid

INTERFACE:

subroutine gridinterpol(N,cols,obs_z,obs_prof,nlev,model_z,model_prof)

DESCRIPTION:

This is a utility subroutine in which observational data, which might be given on an arbitrary, but
structured grid, are linearly interpolated and extrapolated to the actual (moving) model grid.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: N,cols
REALTYPE, intent(in) :: obs_z(0:N),obs_prof(0:N,cols)
integer, intent(in) :: nlev
REALTYPE, intent(in) :: model_z(0:nlev)

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: model_prof(0:nlev,cols)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: gridinterpol.F90,v $
Revision 1.4 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.3 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:58 gotm
initial import into CVS

214



8.9 Convert between buoyancy fluxes and others

INTERFACE:

subroutine convert_fluxes(nlev,g,cp,rho_0,heat,p_e,rad,T,S, &
tFlux,sFlux,btFlux,bsFlux,tRad,bRad)

DESCRIPTION:

This subroutine computes the buoyancy fluxes that are due to

1. the surface heat flux,

2. the surface salinity flux caused by the value of P-E (precipitation-evaporation),

3. and the short wave radiative flux.

Additionally, it outputs the temperature flux (tFlux) corresponding to the surface heat flux, the
salinity flux (sFlux) corresponding to the value P-E, and the profile of the temperature flux (tRad)
corresponding to the profile of the radiative heat flux.
This function is only called when the KPP turbulence model is used. When you call the KPP
routines from another model outside GOTM, you are on your own in computing the fluxes required
by the KPP model, because they have to be consistent with the equation of state used in your
model.

USES:

use eqstate
IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: g,cp,rho_0
REALTYPE, intent(in) :: heat,p_e
REALTYPE, intent(in) :: rad(0:nlev)
REALTYPE, intent(in) :: T(0:nlev)
REALTYPE, intent(in) :: S(0:nlev)

OUTPUT PARAMETERS:

REALTYPE, intent(out) :: tFlux,sFlux
REALTYPE, intent(out) :: btFlux,bsFlux
REALTYPE, intent(out) :: tRad(0:nlev)
REALTYPE, intent(out) :: bRad(0:nlev)

REVISION HISTORY:

Original author(s): Lars Umlauf
$Log: convert_fluxes.F90,v $
Revision 1.2 2005/08/11 12:34:32 lars
corrected indentation for Protex
Revision 1.1 2005/06/27 10:54:33 kbk
new files needed

215



8.10 Module time — keep control of time

INTERFACE:

MODULE time

DESCRIPTION:

This module provides a number of routines/functions and variables related to the mode time in
GOTM. The basic concept used in this module is that time is expressed as two integers — one
is the true Julian day and the other is seconds since midnight. All calculations with time then
become very simple operations on integers.

USES:

IMPLICIT NONE
default: all is private.
private

PUBLIC MEMBER FUNCTIONS:

public :: init_time, calendar_date
public :: julian_day, update_time
public :: write_time_string
public :: time_diff

PUBLIC DATA MEMBERS:

character(len=19), public :: timestr
character(len=19), public :: start=’2000-01-01 00:00:00’
character(len=19), public :: stop
REALTYPE, public :: timestep
REALTYPE, public :: fsecs,simtime
integer, public :: julianday,secondsofday
integer, public :: timefmt
integer, public :: MinN,MaxN

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
$Log: time.F90,v $
Revision 1.8 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.7 2004/08/17 15:45:16 lars
corrected typos in docu
Revision 1.6 2003/03/28 09:38:54 kbk
removed tabs
Revision 1.5 2003/03/28 09:20:36 kbk
added new copyright to files
Revision 1.4 2003/03/28 07:56:05 kbk
removed tabs
Revision 1.3 2003/03/10 13:48:15 lars

216



changed intent(out) to intent(inout) for MaxN in init_time
Revision 1.2 2003/03/10 08:54:16 gotm
Improved documentation and cleaned up code
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

8.10.1 Initialise the time system

INTERFACE:

subroutine init_time(MinN,MaxN)

DESCRIPTION:

The subroutine init_time() initialises the time module by reading a namelist and take actions
according to the specifications. On exit from this subroutine the two variables MinN and MaxN
have well defined values and can be used in the time loop.

USES:

IMPLICIT NONE

INPUT/OUTPUT PARAMETERS:

integer, intent(inout) :: MinN,MaxN

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

8.10.2 Convert true Julian day to calendar date

INTERFACE:

subroutine calendar_date(julian,yyyy,mm,dd)

DESCRIPTION:

Converts a Julian day to a calendar date — year, month and day. Based on a similar routine in
Numerical Recipes.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer :: julian

217



OUTPUT PARAMETERS:

integer :: yyyy,mm,dd

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

8.10.3 Convert a calendar date to true Julian day

INTERFACE:

subroutine julian_day(yyyy,mm,dd,julian)

DESCRIPTION:

Converts a calendar date to a Julian day. Based on a similar routine in Numerical Recipes.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer :: yyyy,mm,dd

OUTPUT PARAMETERS:

integer :: julian

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

8.10.4 Keep track of time (Julian days and seconds)

INTERFACE:

subroutine update_time(n)

DESCRIPTION:

Based on a starting time this routine calculates the actual time in a model integration using the
number of time steps, n, and the size of the time step, timestep. More public variables can be
updated here if necessary.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: n

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

218



8.10.5 Convert a time string to Julian day and seconds

INTERFACE:

subroutine read_time_string(timestr,jul,secs)

DESCRIPTION:

Converts a time string to the true Julian day and seconds of that day. The format of the time
string must be: yyyy-mm-dd hh:hh:ss .

USES:

IMPLICIT NONE

INPUT PARAMETERS:

character(len=19) :: timestr

OUTPUT PARAMETERS:

integer, intent(out) :: jul,secs

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

8.10.6 Convert Julian day and seconds into a time string

INTERFACE:

subroutine write_time_string(jul,secs,timestr)

DESCRIPTION:

Formats Julian day and seconds of that day to a nice looking character string.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul,secs

OUTPUT PARAMETERS:

character(len=19) :: timestr

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

219



8.10.7 Return the time difference in seconds

INTERFACE:

integer FUNCTION time_diff(jul1,secs1,jul2,secs2)

DESCRIPTION:

This functions returns the time difference between two dates in seconds. The dates are given as
Julian day and seconds of that day.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: jul1,secs1,jul2,secs2

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

220



9 Extra features

Here, some extra features are stored which are up to now

• the seagrass module.

The seagrass scenario in section 9.1 investigates the Verduin and Backhaus (2000) seagrass-current
simulations.

221



9.1 Module seagrass — sea grass dynamics

INTERFACE:

module seagrass

DESCRIPTION:

In this module, seagrass canopies are treated as Lagrangian tracers, which either advect passively
with the horizontal current speed or rest at their excursion limits and thus exert friction on the
mean flow, see Verduin and Backhaus (2000). Turbulence generation due to seagrass friction is
possible, see namelist file seagrass.inp. The extra production term in the balance of TKE, (150),
is included as described in section 4.8.

USES:

use meanflow, only: u,v,h,drag,xP
use output, only: out_fmt,write_results,ts

default: all is private.
private

PUBLIC MEMBER FUNCTIONS:

public init_seagrass, calc_seagrass, end_seagrass

REVISION HISTORY:

Original author(s): Hans Burchard & Karsten Bolding
$Log: seagrass.F90,v $
Revision 1.5 2005/06/27 13:44:07 kbk
modified + removed traling blanks
Revision 1.4 2003/03/28 09:20:34 kbk
added new copyright to files
Revision 1.3 2003/03/28 08:28:36 kbk
removed tabs
Revision 1.2 2003/03/10 09:13:09 gotm
Improved documentation
Revision 1.1.1.1 2001/02/12 15:55:57 gotm
initial import into CVS

9.1.1 Initialise the sea grass module

INTERFACE:

subroutine init_seagrass(namlst,fname,unit,nlev,h)

222



DESCRIPTION:

Here, the seagrass namelist seagrass.inp is read and memory is allocated for some relevant
vectors. Afterwards, excursion limits and friction coefficients are read from a file. The uppermost
grid related index for the seagrass canopy is then calculated.

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: namlst
character(len=*), intent(in) :: fname
integer, intent(in) :: unit
integer, intent(in) :: nlev
REALTYPE, intent(in) :: h(0:nlev)

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

9.1.2 Update the sea grass model

INTERFACE:

subroutine calc_seagrass(nlev,dt)

DESCRIPTION:

Here the time depending seagrass equation suggested by Verduin and Backhaus (2000) is calculated.
In order to explain the basic principle, an idealised example is examined here with a simplified
momentum equation,

∂tu− ∂z(νt∂zu) = −g∂xζ − Cfu|u| , (244)

and the Lagrangian tracer equation for seagrass,

∂tX =

{

u for |X | < Xmax or X · u < 0,
0 else ,

(245)

where X is the Langrangian horizontal excursion of the seagrass. The seagrass friction coefficient,
Cf , is only non–zero at heights where seagrass tracers are at their excursion limits:

Cf =

{

Cmax
f for |X | = Xmax ,

0 else .
(246)

The maximum excursion limits Xmax and the friction coefficients Cmax
f are read from a file.

223



The production of turbulence is calculated here as the sum of shear production and friction loss at
the seagrass leaves,

XP = αsgCf |u|3 , (247)

which is added to the usual shear–production term as illustrated in (146). The efficiency coefficient
of turbulence production by sea–grass friction, αsg , is denoted as xP_rat in the code. It has to be
read–in from the canopy namelist. For details and example calculations, see Burchard and Bolding
(2000).

USES:

IMPLICIT NONE

INPUT PARAMETERS:

integer, intent(in) :: nlev
REALTYPE, intent(in) :: dt

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard
BOC

LOCAL VARIABLES:

integer :: i
REALTYPE :: dist
REALTYPE :: grassfric(0:nlev)
REALTYPE :: excur(0:nlev)
REALTYPE :: z(0:nlev)
REALTYPE :: xxP(0:nlev)

9.1.3 Finish the sea grass calculations

INTERFACE:

subroutine end_seagrass

DESCRIPTION:

Nothing done yet — supplied for completeness.

USES:

IMPLICIT NONE

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

224



9.1.4 Storing the results

INTERFACE:

subroutine save_seagrass

DESCRIPTION:

Here, storing of the sediment profiles to an ascii or a netCDF file is managed.

USES:

use output, only: out_fmt
ifdef NETCDF_FMT
use ncdfout, only: ncid
use ncdfout, only: lon_dim,lat_dim,z_dim,time_dim,dims
use ncdfout, only: define_mode,new_nc_variable,set_attributes,store_data

endif

IMPLICIT NONE

ifdef NETCDF_FMT
include "netcdf.inc"
endif

REVISION HISTORY:

Original author(s): Karsten Bolding & Hans Burchard

225



226



10 GOTM scenarios

In this section, all scenarios included in the GOTM homepage for download are briefly discussed
here. An overview is given in table 10. Information about how to install and run the scenarios can
be found on the GOTM homepage, www.gotm.net.

Section Title Scenario name

10.1.1 Couette-flow couette

10.1.2 Pressure-gradient driven channel flow channel

10.1.3 Breaking surface-waves wave_breaking

10.1.4 Some entrainment scenarios entrainment

10.1.5 Estarine dynamics estuary

10.2.1 Fladenground Experiment flex

10.2.2 Annual North Sea simulation nns_annual

10.2.3 Seasonal North Sea simulation nns_seasonal

10.2.4 Liverpool Bay liverpool_bay

10.2.5 Gotland Deep in Baltic Sea gotland_deep

10.2.6 Middelbank in Baltic Sea reynolds

10.3.1 Ocean Weather Ship Papa ows_papa

10.4.1 Lago Maggiore lago_maggiore

Table 10: List of GOTM scenarios described in this section

10.1 Idealised scenarios

In this subsection, the performance of GOTM in some idealised turbulent flows is discussed. In
these flows there are regions, where certain analytical solutions, like the law of the wall or the
Rouse profile, apply. These solutions can be used to test the correctness of the implementation
and the accuracy of the numerical schemes. The theoretical background is discussed in section 4
and in the review article of Umlauf and Burchard (2005).
The first few of these idealised flows serve also as a short tutorial for new GOTM users. We
supplied several input files for these scenarios to illustrate the performance of different turbulence
models for the same flow. It is recommended to start with the Couette-flow described next.

10.1.1 Couette-flow

This is the simplest example designed for new users. It will tell you about how to run a simple
unstratified flow with the most frequently used turbulence models. The term Couette-flow flow
traditionally denotes an uni-directional, unstratified, non-rotating flow confined between two plates,
of which one is moving with constant velocity. No pressure-gradient is applied. It is clear that this
flow can also serve as a very simple model of the steady-state flow in a horizontally infinite ocean
of finite depth, driven solely by a shear-stress at the surface.
A set of GOTM input files (containing all specifications needed for the runs) has been pro-
vided for 3 different turbulence models in the sub-directories kepsilon_inp/, komega_inp/ and

227



MellorYamada_inp/. Copy all files from the subdirectory kepsilon_inp/ to the directory with
the GOTM executable. We will call this directory the current directory in the following. How to
install GOTM and create the executable is described on the GOTM web page at www.gotm.net.
Take some time to have a look at the contents of these files.
In our example, the prescribed surface stress is τx = 1.027 Pa, a quantity that can be set in the
input file airsea.inp. This file contains many other variables that are related to the air-sea fluxes
driving the model.
Parameters concerning the run are set in the input file gotmrun.inp. There, you will find for
example the specification of the water depth (10 m in this case) and the date and time of this run
(24 hours until a steady-state is reached). The input file gotmrun.inp contains mainly parameters
concerning the model run, the time step, the model time, the output format, etc.
All information about the turbulence models is read-in from the file gotmturb.inp. Having a
look in this file, you see that we selected tke_method = 2 and length_scale_method = 8, which
corresponds exactly to the k-ε model described in section 4.15. The model parameters are given in
the keps namelist. In this simple example, no Explicit Algebraic Stress Model (see section 4.2) is
solved in addition to the transport equations for k and ε. If you compare this gotmturb.inp with
those found in the other sub-directories (e.g. for the Mellor-Yamada model) it is easy to see how
different turbulence models can be activated by changing e.g. the value for length_scale_method.
If you run this scenario, GOTM will write information about the run and the turbulence model to
your screen: What are the parameters of the run, like time step, date, layers, etc? What are the
model parameters of the turbulence model? What value has the von Kármán constant, κ? What
value has the decay rate in homogeneous turbulence, d? And so on. All other output is written
to files called couette.out or couette.nc, depending on whether you selected ASCII or NetCDF
output in gotmrun.inp.
If you analyse the results, you will find that the turbulent kinetic energy is constant over the whole
depth, whereas the profiles of the turbulent diffusivity and the length scale are approximately
parabolic. The length scale approaches the constant slope κ ≈ 0.433 near the boundaries. If
you want to change this value, you can set compute_kappa = .false. in gotmturb.inp. Then,
GOTM will automatically change the model constants of the k-ε model to compute the value of κ
prescribed in gotmturb.inp (see section 4.7.4).
There are other models you can use to calculate the Couette-flow. If you copy all files from the
directory MellorYamada_inp/ to the current directory, GOTM will use the Mellor-Yamada model
described in section 4.14 with parameters set in gotmturb.inp. A special role plays the so-called
‘generic model’ described in section 4.16. Other model like the k-ε model or the k-ω model by
Umlauf et al. (2003) can be considered as special cases of the generic model. If you copy e.g. the
files from komega_inp/ to the current directory, the k-ω model is run for the couette case. For this
simple flow, however, model results will be quite similiar in all cases.

10.1.2 Pressure-gradient driven channel flow

A pressure-gradient driven open channel flow is investigated here with a prescribed surface slope
∂xζ = −10−5 at a fixed water depth of 10 m. No surface stress is applied, and rotation and
stratification are neglected. The simulation is run for 24 h until a steady-state is reached. The
specification of all these parameters and those related to the turbulence models by use of the
inp-files is analogous to section 10.1.1.
The surface slope is set in the namelist ext_pressure in the input file obs.inp. How the pa-
rameters given in this file are interpreted by GOTM is described in section 3.7 and briefly also
in obs.inp. This file typically contains information about “observed” quantities that are used to
either force the model (like internal and external pressure gradients) or for comparision with com-
puted results. In the latter case, “observed” quantities are displayed in the output file next to the

228



computed quantities.
If you want to try out the different turbulence models mentioned in the couette-case (see section
10.1.1), simply copy the corresponding files from the respective subdirectories to the current di-
rectory with the GOTM executable. Note that in gotmturb.inp we now set turb_method = 3.
This implies that the turbulent fluxes are computed from a second-order turbulence model. A new
thing in GOTM 3.2 is that parameters for the second-order model can now be directly specified
via the “scnd”namelist in gotmturb.inp. For the theoretical background of this, please see section
4.2
In the following publications some of the results in comparison to laboratory data are shown: Bur-
chard et al. (1998), Burchard et al. (1999), Burchard (2002b). The simulation has been motivated
by the work of Baumert and Radach (1992).

10.1.3 Turbulence under breaking surface waves

In this scenario, it is demonstrated how the effect of breaking surface waves is parameterised in
one- and two-equation models. This is usually done by injecting turbulent kinetic energy (TKE) at
the surface, see Craig and Banner (1994) and Craig (1996). The rate of TKE injected is propor-
tional to the surface friction velocity cubed, as defined in (209). Injection of TKE at the surface
leads to a thin surface boundary layer, in which the vertical transport of TKE and its dissipation
approximately balance. This layer is sometimes called the transport layer. Even though there can
be considerable shear in this layer, shear-production of turbulence is negligible by definition (also
see section 4.7.4).
Different types of models are available in GOTM for the wave-breaking scenario. The key change
in gotmturb.inp for runs with TKE injection is to set ubc_type = 2, telling GOTM to set the
type of the upper boundary to TKE injection. The decay rates of the TKE and the dissipation
rate in the wave-affected layer are then an natural outcome of the model. Note that with the KPP
model, this scenario cannot be run.

• For the one-equation models, as discussed in Craig and Banner (1994), a linearly increasing
macro length scale, l, is postulated with a slope of κ = 0.4. This is analogous to the law of the
wall, even though there is no physical evidence for the assumption that the length-scale under
breaking waves behaves identically as in wall-bounded shear-flows. As shown by Craig and
Banner (1994), an analytical solution for the one-equation model can be derived, but only
inside the transport layer, according to which the TKE (and all other turbulence quantities)
follows a power-law (see discussion in section 4.7.3 and section 4.7.4).

If you want to simulate wave breaking with a model of this type, simply copy all files
from prescribed_inp/ to the current directoy, and run GOTM. A dynamic equation for
k is used, but the length scale is fixed, and prescribed by a triangular shape with slope κ
(length_scale_method = 2 in gotmturb.inp, see section 4.19).

• For two-equation models, the slope of the length scale in the transport layer is not simply
prescribed and generally not equal to κ. Umlauf et al. (2003) generalized the solution of Craig
and Banner (1994) and derived analytical solutions for the non-linear system of equations
describing the behaviour of two-equation models for injection of TKE at the surface. They
showed that the TKE follows a power-law and that the length scale increases linearly, however,
with a slope L 6= κ. They also compared the spatial decay of turbulence in grid stirring
experiments (thought as an analogy to wave-breaking) to the results of several two-equation
models.

A numerical solution of the k-ε model can be obtained by copying the files in kepspilon_inp
to the current directory, and insuring that compute_kappa = .true. and sig_peps =

229



.false. in gotmturb.inp. Because the spatial decay rate of the TKE is very large for
this model, the wave-affected layer is very small, and of the order of only a few tens of cen-
timeters for this scenario. As discussed by Umlauf et al. (2003), this disadvantage can be
overcome by using the k-ω model with parameters given in gotmturb.inp in the directory
komega_inp/. The decay rates of this model nicely correspond to those measured in the
laboratory grid strirring experiments. The Mellor-Yamada model has also been investigated
by Umlauf et al. (2003), but for this model, again, decay was shown to be too strong. In
addition, the decay rate depends in an unphysical way on the wall-function required in this
model.

• As an alternative to the standard k-ε model, Burchard (2001a) suggested to make the tur-
bulent Schmidt number for the ε-equation, (163), a function of the production-to-dissipation
ratio, P/ε. As shown in detail in this paper, the variable Schmidt number can be used to
“force” the k-ε model to compute κ for the slope of the length scale, even under breaking
waves. Then, obviously, the solution of the k-ε model corresponds to the solution of the
simpler one-equation model investigated by Craig and Banner (1994). Note again, however,
that there is no physical evidence for l = κ(z + z0) in the wave-affected boundary layer.

If you want to simulate wave breaking with this model, simply copy the files from kepspilon_inp/
to the current directory, and make sure that you set compute_kappa = .false. and sig_peps
= .true. in gotmturb.inp. Results are quite similar to those with the prescribed length
scale.

• Umlauf and Burchard (2003) analysed the properties of a whole class of two-equation models
for the case of TKE injection at the surface. They suggested a ‘generic’ model which could
satisfy the power-laws under breaking waves for any desired decay rate, α, and length scale
slope, L. This model is activated with the input files from generic_inp/. Users can select
any reasonable values for α and L (and many others parameters like κ and d), and GOTM will
automatically generate a two-equation model with exactly the desired properties. Parameters
are computed according to the formulae described in section 4.7.3.

In all cases a surface-stress of τx = 1.027 N m−2 was applied. After a runtime of 2 days, a steady-
state with a constant stress over the whole water column of 20 m depth is reached. The wave
affected layer can be found in the uppermost meter or so, and because of the strong gradients in
this region we used a refined grid close to the surface. The parameters for such a ‘zoomed grid’
can be set in the input file gotmmean.inp according to the decription in section 3.3. If you want to
compare the computed profiles with the analytical solutions in (108), you’ll need a specification of
the parameter K. This parameter is computed in k_bc() to be foundăin turbulence.F90, where
you can add a few FORTRAN lines to write it out.

10.1.4 Some entrainment scenarios

This test case describes three idealised entrainment scenarios as discussed in the review paper of
Umlauf and Burchard (2005). These are: wind-driven entrainment into a linearly stratified fluid,
wind-driven entrainment into a two-layer fluid, and entrainment in free convection. As in the
cases before, the input files for different turbulence closure models are contained in a number of
sub-directories. The entrainment test cases is also the first test for the GOTM implementation
of the KPP turbulence model described in section 4.35.
For all input files, the default is a linear density stratification due to a not necessarly linear tem-
perature stratification (because the equation of state is not necessarily linear). The stratification
corresponds to N2 = 1 · 10−4 s−2. Salinity is constant. Have look into obs.inp to understand how

230



different types of initial stratifcations can be specified in GOTM. The water depth is H = 50 m,
deep enough for the surface induced mixing not to reach the bed within the 24 h of simulation.
Rotation is neglected. By default, a constant wind stress of τx = 0.1027 Pa is set in airsea.inp.
Note, that for all turbulence models, except the Mellor-Yamada model, we set compute_c3 =
.true. in gotmturb.inp, which means that the model constant cε3 in (163) (or its counterpart
in all other models) is computed from a prescribed steady-state Richardson-number, Rist (see
discussion in the context of (114)). Some more discussion is given in Burchard and Bolding (2001)
and Umlauf and Burchard (2005). As pointed out in these papers, it is the value of the steady-state
Richardson number (and thus the value of cε3) that determines the mixed layer depth in almost
all shear-driven entrainment scenarios.
To run the Mellor-Yamada model, use the input files in MellorYamada_inp/. Looking at the
results you will realize that this model is not at all in accordance with the experimental results of
Price (1979) for the entrainment in a linearly stratified fluid. The reason can be traced back to
the behaviour of the turbulent length scale in the strongly stratified thermocline. Galperin et al.
(1988) suggested to clip the length scale at a certain value to circumvent this problem. Their
solution can be activated by setting length_lim = .true. in gotmturb.inp. A second solution
has been suggested by Burchard (2001b), who computed the model constant E3 in (160) from the
steady-state Richardson-number as described above. To activate this method, select compute_c3
= .true. (and length_lim = .false. because clipping is not needed any more).
This scenario has been used by us in several publications as a test for vertical mixing schemes,
see Burchard et al. (1998), Burchard et al. (1999), Burchard and Petersen (1999), Burchard and
Bolding (2001) Burchard and Deleersnijder (2001), Deleersnijder and Burchard (2003), and Umlauf
et al. (2003).
The second entrainment scenario discussed in Umlauf and Burchard (2005) is essentially identical
to the one just described, however, it starts from a two layer stratification. To use this kind of
initial condition, first set analyt_method=2 in obs.inp, and specify the desired temperatures, t_1
and t_2 for the upper and lower layer, respectively. The thickness of the upper layer is z_t1. For
a pure two-layer stratification, set z_t2=z_t1, otherwise you will get a linear transition between
the upper and the lower layer.
For convective entrainment, you simply need to set the momentum flux, const_tx, to zero and
specify an appropriate negative heat flux, const_heat, in airsea.inp, see Umlauf and Burchard
(2005).
If you run the KPP-model, some model parameters can be set in the extra input file kpp.inp
found in kpp inp/. With this model, the depth of the mixing layer depends mostly on the value
of the critical bulk Richardson number that can also be set in this file. When you work with the
KPP-model in free convection, don’t forget to check if the pre-processor macro NONLOCAL is defined
cppdefs.h (after changes in this file, don’t forget to re-compile the whole code!). If NONLOCAL is
defined, the KPP model also computes the non-local fluxes of heat (and salinity, if the salinity
equation is active). In any case, the z-coordinate of the edges of the upper and lower mixing layers
are given as zsbl and zbbl, respectively, in the netCDF output file.

10.1.5 Estuarine dynamics

In this idealised experiment, an estuarine circulation is simulated, mainly in order to demonstrate
how to use tracer advection and internal pressure gradients in GOTM.
The average water depth is H = 15 m, the model is run for 10 days. The forcing is a M2 tide (of
period 44714 s) which prescribes sinusoidal time series for the vertically averaged momentum in
west-east direction with an amplitude of 1.5 m s−1 and an offset of 0.05 m s−1 directed to the west
in order to simulate river run-off. The surface elevation is sinusoidal as well with an amplitude of 1
m and a phase shift of 1.5 hours compared to the velocity. A constant in time and space horizontal

231



west-east salinity gradient of -0.0005 ppt m−1 is prescribed, advection of salinity is turned on. In
order not to obtain negative salinities, relaxation to the initial salinity profile of 15 ppt is made.
In order to avoid strong stratification near the surface, a small wind stress of 0.01027 N/m2 is
applied.
It is recommended to go through the description in the routines computing the external and internal
pressure gradients, see section 3.7 and section 3.8, to understand the corresponding settings in the
input file obs.inp. The relaxation scheme for salinity is described in section 3.11. Essential for
this case is also the parametrisation of horizontal advection, which is set in obs.inp and described
in section 3.11. Note that horizontal advection is calculated from the same horizontal salinity
gradient that causes the internal pressure gradient.
The result is that estuarine circulation is set on and near bed residual velocity is directed up-
stream. It is interesting to have a look into the resulting buoyancy production or Brunt-Väisälä
frequency. The effect of lateral advection on stratification leads to either production or supression
of turbulence, and thus to an unsymmetric time series of the turbulent diffusivity.
For two-dimensional simulations of estuarine circulation, see e.g. Burchard and Baumert (1998)
and Burchard et al. (2003).

10.2 Shelf sea scenarios

All shelf sea scenarios briefly discussed here are from the Irish Sea and the North Sea. A Baltic
Sea mixed layer scenario is in preparation.

10.2.1 Fladenground Experiment

A data set which has been used throughout the last 20 years as a calibration for mixing param-
eterisations has been collected during the measurements of the Fladenground Experiment 1976
(FLEX’76) campaign. These measurements of meteorological forcing and potential temperature
profiles were carried out in spring 1976 in the northern North Sea at a water depth of about 145
m and a geographical position at 58◦55’N and 0◦32’E. The simulation is run from April 6 to June
7, 1976. The Kondo (1975) bulk formulae have been used for calculating the surface fluxes. For
further details concerning the measurements, see Soetje and Huber (1980) and Brockmann et al.
(1984). This FLEX’76 data set has been used by several authors in order to test different mixing
schemes (see e.g. Friedrich (1983), Frey (1991), Burchard and Baumert (1995), Pohlmann (1997),
Burchard and Petersen (1999), Mellor (2001)).

Data files:
momentumflux.dat surface stress components, τx and τy in N m−2

heatflux.dat solar radiation and outgoing heat flux, Qin and Qout in W m−2

sst.dat observed SST in ◦C
pressure.dat time series of surface slopes fitted to the nip-spring cycle for that region
tprof.dat profiles of measured potential temperature for initial conditions and

validation, data are reanalysed and low pass filtered
sprof.dat profiles of idealised salinity for initial conditions and relaxation
tprof_ctd CTD-profiles of potential temperature, with some gaps
sprof_ctd CTD-profiles of salinity, with some gaps
extinction.dat extinction coefficients fitted to measurements

232



10.2.2 Annual North Sea simulation

Here the annual simulation of the Northern Sea at 59◦20” N and 1◦17’ E during the year 1998 as
discussed by Bolding et al. (2002) is performed.
For this simulation, time series of surface slopes ∂xζ and ∂yζ were extrapolated from observa-
tions during autumn 1998 based on four partial tides by means of harmonic analysis (the program
for doing this was kindly provided by Frank Janssen, now at the Baltic Sea Research Institute
Warnemünde). All necessary meteorological data are from the UK Meteorological Office Model.
For calculating the resulting surface fluxes, the bulk formulae from Kondo (1975) are used here.
Since no observations for the sea surface temperature (SST) are available for the whole year 1998
at station NNS, the simulated SST is used as input into the bulk formulae. For the evolution
of the vertical salinity profile, which is known to stabilise stratification during summer months,
a relaxation to results obtained with a prognostic three-dimensional model of the North Sea by
Pohlmann (1996). By doing so, the horizontal advection, which is the dominant process for salinity
dynamics in the Northern North Sea, is parameterised.

Data files:
sprof.dat salinity in ppt from three-dimensional model of Pohlmann (1996)
tprof.dat potential temperature in ◦C from three-dimensional model of Pohlmann (1996)
pressure.dat sea surface slopes from tidal analysis of observations
meteonns.dat meteorological data from UK Met Office model
sst.dat sea surface temperature in ◦C from analysis by Bundesamt für

Seeschifffahrt und Hydrographie, Hamburg, Germany

10.2.3 Seasonal North Sea simulation

This Northern North Sea Experiment has been carried out in the framework of the PROVESS
(PROcesses of VErtical mixing in Shealf Seas) project (MAS3-CT97-0025, 1998-2001) which has
been funded by the European Communities MAST-III program.
The observations in the Northern North Sea were carried out in September and October 1998.
Here, a period of 20 days from October 7 - 27, 1998 is simulated. All forcing and validation data
have been carefully processes from observations during this PROVESS-NNS experiment.
Two different dissipation rate data sets are included:
eps_fly.dat data from a FLY profiler, processed by School of Ocean Sciences,

University of Bangor, Wales
eps_mst.dat data from an MST profiler, processed by the Joint Research Centre, Ispra, Italy.

These files can be read in into GOTM through the eobs namelist in obs.inp. It is the file specified
at last, which is actually read in. The dissipation rate has only been observed at short intervals,
periods without observations are set to minimum values in the files.
The data files are prepared such that the maximum simulation interval can be extended to Septem-
ber 7 at 10.00 h – November 2 at 13.00 h, 1998.
For details on dissipation rate data processing, see Prandke et al. (2000).
For discussions of various model simulations, see Burchard et al. (2002) and also the annual simu-
lation in section 10.2.2 and Bolding et al. (2002).

Other data files:

233



sprof.dat salinity in ppt from CTDs and microstructure
shear probes from several ships

tprof.dat potential temperature in ◦C from CTDs and microstructure
shear probes from several ships

pressure.dat sea surface elevation gradients analysed from a triangle of pressure gauges
w_adv.dat vertical velocities analysed from vertical displacement

of pycnocline
velprof.dat horizontal velocities from bottom mounted ADCP
meteo_dana.dat meteorological observations from R/V Dana, only used

for calc_fluxes=.true.

10.2.4 Liverpool Bay

The observations for this scenario have been carried out by Rippeth et al. (2001) in the Liverpool
Bay ROFI on July 5 and 6, 1999 at a position of 53◦28.4’N, 3◦39.2’W. This period is about three
days after spring tide, with calm weather and clear sky. The dissipation rate measurements were
carried out with a FLY shear probe mounted on a free-falling profiler. Sensors for temperature and
conductivity attached to the profiler give detailed information on the vertical density distribution
during each cast. Nearby, an ADCP was mounted on the bottom, giving information on the vertical
velocity structure. Some accompanying CTD casts were made in order to achieve estimates for the
horizontal gradients of temperature and salinity. For further details concerning the observations,
see Rippeth et al. (2001).
The surface fluxes are based on ship observations and from a nearby meteorological station at
Hawarden. From the ship, wind speed and direction at 10 m above the sea surface and air pres-
sure have been taken. From Hawarden station, observations of dry air, wet bulb and dew point
temperature are used. Since the surface fluxes are calculated externally by means of bulk formulae
of Kondo (1975), the sea surface temperature from measurements (FLY profiler) has been used.
The bed roughness has been estimated from near-bed ADCP measurements as zb0 ≈ 0.0025 m by
means of fits to the law of the wall. The external pressure gradient due to surface slopes is esti-
mated according to a method suggested by Burchard (1999) by means of adjustment to near bed
velocity observations. The CTD casts carried out during the campaign did only allow for rough
estimates of the horizontal density gradient. The horizontal salinity and temperature gradients for
a typical summer situation have been estimated by Sharples (1992) to ∂sS = 0.0425 ppt km−1 and
∂sT = −0.0575 K km−1, respectively. Here, s is the gradient into the direction α = 78◦ rotated
anti-clockwise from North.

Data files:
sprof.dat salinity in ppt from free-falling shear-probe
tprof.dat potential temperature in ◦ from free-falling shear-probe
pressure.dat near-bed velocity from ADCP for external pressure forcing
zeta.dat sea surface elevation from pressure gauge
velprof.dat horizontal velocities from bottom mounted ADCP
eprof.dat observed dissipation rates in W kg−1

heatflux.dat surface heat fluxes calculated by means of the Kondo (1975) bulk formulae
momentumflux.dat surface momentum fluxes calculated by means of the Kondo (1975)

bulk formulae

The numerical simulations of this scenario has been described in Simpson et al. (2002).

234



10.2.5 Gotland Deep

These simulations are made for the location of station 271 Central Eastern Gotland Sea of the
Baltic Sea at 20 E and 57.3 N with a water depth of about 250 m. Initial conditions for temper-
ature and salinity are derived from measurements. Meteorological forcing was available from the
ERA15 reanalysis data set (http://wms.ecmwf.int/research/era/Era-15.html). For the penetration
of solar radiation into the water column, fairly turbid water (Jerlov type IB) is assumed. Salinity
concentrations are nudged to observations with a time scale of τR = 2 days.
For the comparison of simulated temperature and salinity and observations we have used mainly
data from the COMBINE program. All environmental monitoring within HELCOM and the Baltic
marine environment is carried out under the COMBINE program. The COMBINE program runs
under the umbrella of HELCOM. HELCOM is the governing body of the Convention on the Protec-
tion of the Marine Environment of the Baltic Sea Area - more usually known as the Helsinki Com-
mission (www.helcom.fi). In a regular schedule data from stations in the Baltic Sea are collected.
Parts of these data are maintained inter alia at the Baltic Sea Research Institute Warnemünde and
can be used for scientific work.
Model results and observations are compared for the years 1994-1996. For the discretisation, the
water column has been divided into 100 vertical layers, with a strong zooming towards the surface,
resulting in a mean near-surface resolution of less than 0.5 m. The time step for these simulations
is set to ∆t = 1 hour.

Data files:
meteo.dat meteorological data extracted from the ERA15 reanalysis data set
sprof_271.dat deep salinity profiles at station 271
sprof_271_all.dat all salinity profiles at station 271
sprof_GB.dat all salinity profiles in Gotland basin,

within 57◦8.3’N - 57◦28.3’N and 19◦54.6’E - 20◦14.6’E
tprof_271.dat deep temperature profiles at station 271
tprof_271_all.dat all temperature profiles at station 271
tprof_GB.dat all temperature profiles in Gotland basin,

within 57◦8.3’N - 57◦28.3’N and 19◦54.6’E - 20◦14.6’E

The meteorological data have been compiled by Frank Janssen (IOW, Baltic Sea Research Institute
Warnemünde, Germany), and the temperature and salinity profiles have been collected from the
IOW data bank by Iris Theil (University of Hamburg, Germany).
These data have been used for simulating the Gotland Deep ecosystem dynamics for the years
1983-1991, see Burchard et al. (2005).

10.2.6 Middelbank

Here a campaign (REYNOLDS, funded by the German Federal Ministry for Education and Re-
search, chief-scientist Hans Ulrich Lass, IOW) in the Eastern Bornholm Basin (55◦ 35’ N, 16◦ 39’
E, mean water depth: 55 m) is simulated. The simulation period is August 30, 2001 at 17 h to
September 9, 2001 at 14 h. The water column is characterised by a thermocline at about 25 m
depth and a halocline at about 50 m depth. The simulation period is charaterised by storms up
to 0.2 N m−2. As forcing, surface stress, heat fluxes and solar radiation has been calculated on the
basis of meteorological observations by using the bulk formulae of Kondo (1975). The barotropic
pressure gradient has been recalculated from vertically averaged observed velocity profiles, see
section 3.1.1. As initial conditions, observed temperature, salinity and velocity profiles are used.
Additionally the vertical velocity at the thermocline has been diagnosed from temperature obser-

235



vations and is used for vertical advection, see section 3.1.1. The turbulent dissipation rate ε has
been observed during two sub-periods, such that turbulence model results may be compared with
observations.

Data files:
eprof.dat profiles of observed dissipation rate in W kg−1

heatflux.dat surface heat flux and solar radiation in W m−2

momentumflux.dat surface momentum flux in N m−2

pressure.dat vertically averaged velocity components in m s−1

sprof.dat profiles of observed salinity in psu
sss.dat time series of sea surface salinity in psu
sst.dat time series of sea surface temperature in ◦C
tprof.dat profiles of observed temperature in ◦C
velprof.dat profiles of observed velocity components in m s−1

vertvel.dat profiles of diagnosed vertical velocity at thermocline depth in m s−1

So far, these data have not yet been published.

10.3 Open ocean scenarios

The two open ocean scenarios introduced here are two classical test cases from the Northern Pacific
Ocean. For an overview, see Martin (1985).

10.3.1 Ocean Weather Ship Papa

This scenario is a classical scenario for the Northern Pacific, for which long term observations
of meteorological parameters and temperature profiles are available. The station Papa at 145◦W,
50◦N has the advantage that it is situated in a region where the horizontal advection of heat and salt
is assumed to be small. Various authors used these data for validating turbulence closure schemes
(Denman (1973), Martin (1985), Gaspar et al. (1990), Large et al. (1994), Kantha and Clayson
(1994), d’Alessio et al. (1998), Burchard et al. (1999), Villarreal (2000), Axell and Liungman
(2001), Burchard and Bolding (2001)).
The way how bulk formulae for the surface momentum and heat fluxes have been used here is
discussed in detail in Burchard et al. (1999).
For mixing below the thermocline, an internal wave and shear instability parameterisation as sug-
gested by Large et al. (1994) has been used. The maximum simulation time allowed by the included
surface forcing file and the temperature profile file is January 1 (17.00 h), 1960 - December 31 (12.00
h), 1968. In this scenario, the simulation time is run from March 25, 1961 (0.00 h) to March 25,
1962 (0.00 h).

Data files:
sprof.dat salinity profiles in ppt of monthly climatology from Levitus data set. First

profile interpolated to January, 1
tprof.dat profiles of measured potential temperature for initial conditions and

relaxation
heatflux.dat surface heat fluxes calculated by means of the Kondo (1975) bulk formulae
momentumflux.dat surface momentum fluxes calculated by means of the Kondo (1975)

bulk formulae

236



This scenario has been discussed in detail by Burchard et al. (1999). We are grateful to Paul
Martin for providing the meteorological data and the temperature profiles, see also Martin (1985).

10.4 Lake scenarios

So far, the Lago Maggiore scenario discussed in section 10.4.1 is the only lake scenario.

10.4.1 Lago Maggiore

The measurements for this Lago Maggiore scenario were made during three days in winter 1995
(December 18-21) at the shore of Ispra (45◦ 49,244’N, 8◦ 36,377’E). The measurements were carried
out with an uprising profiler located 150 m from the shore at a water depth of 42 m. Such the
sampled depth interval ranged from 30 m up to the surface. On the profiler, an MST shear probe, a
fast temperature sensor and temperature and conductivity probes were mounted such that profiles
of turbulent dissipation rate ε, temperature variance εθ, mean temperature θ and mean salinity S
could be derived. For a detailed description of the data analysis, see Stips et al. (2002).
Wind speed was measured from a small buoy about 30 m away from the probe location with an
anemometer at a height of 95 cm above the water surface. The accuracy is ±0.1 m s−1. Air tem-
perature and relative humidity were recorded at the measurement location on shore at a height of
10 m above lake surface. The cloud cover has been estimated every hour. Incident solar radiation
was measured at the meteorological station in Pallanza, in a distance of about 10 km from the
measuring site. An analysis of heat fluxes obtained by various bulk formulae showed however a
significant deviation between the heat content of the water column and accumulation of these heat
fluxes. This could be due to the fact that these bulk formulae are designed for oceanic conditions
such that they are not valid for a lake with weak wind conditions. Thus, instead of using the
calculated surface heat fluxes from bulk formulae, they were calculated from the heat gain of the
water column under consideration of the solar radiation.

Data files:
salz_lmd95.dat profiles of measured salinity in ppt for initial conditions and relaxation
temp_lmd95.dat profiles of measured potential temperature for initial conditions and

relaxation
eps_lmd95.dat profiles of measured dissipation rate for validation
hflu2_05lt.dat surface heat fluxes calculated by means of the Kondo (1975) bulk formulae
momentumflux.dat surface momentum fluxes calculated by means of the Kondo (1975)

bulk formulae

For a discussion of the simulation, see Stips et al. (2002).

237



238



References

Axell, L., and O. Liungman, A one-equation turbulence model for geophysical applications: Com-
parison with data and the k-epsilon model, Environmental Fluid Mechanics , 1 , 71–106, 2001.

Baumert, H., and H. Peters, Second-moment closures and length scales for weakly stratified tur-
bulent shear flows, J. Geophys. Res., 105 , 6453–6468, 2000.

Baumert, H., and G. Radach, Hysteresis of turbulent kinetic energy in nonrotational tidal flows,
J. Geophys. Res., 97 , 3669–3677, 1992.

Beckers, J.-M., La méditerranée occidentale: de la modélisation mathématique à la simulation
numérique, Ph.D. thesis, Université de Liège, Belgium, 1995, collection des publications de la
Faculté des Sciences Appliquées No. 136.

Blackadar, A. K., The vertical distribution of wind and turbulent exchange in a neutral atmosphere,
J. Geophys. Res., 67 , 3095–3102, 1962.

Bolding, K., H. Burchard, T. Pohlmann, and A. Stips, Turbulent mixing in the Northern North
Sea: a numerical model study, Cont. Shelf Res., 22 , 2707–2724, 2002.

Bradshaw, P., An Introduction to Turbulence and its Measurement , Pergamon, 1975.

Briggs, D. A., J. H. Ferziger, J. R. Koseff, and S. G. Monismith, Entrainment in a shear-free
turbulent mixing layer, J. Fluid Mech., 310 , 215–241, 1996.

Brockmann, U. H., K. Eberlein, K. Huber, H.-J. Neubert, G. Radach, and K. Schulze (Eds.),
JONSDAP ’76: FLEX/INOUT Atlas, Vol. 1 , no. 63 in ICES Oceanographic Data Lists and
Inventories, Conseil International pour l’Exploration de la Mer, Copenhagen, Denmark, 1984.

Burchard, H., Recalculation of surface slopes as forcing for numerical water column models of tidal
flow, App. Math. Modelling , 23 , 737–755, 1999.

Burchard, H., Simulating the wave-enhanced layer under breaking surface waves with two-equation
turbulence models, J. Phys. Oceanogr., 31 , 3133–3145, 2001a.

Burchard, H., Note on the q2l equation by Mellor and Yamada [1982], J. Phys. Oceanogr., 31 ,
1377–1387, 2001b.

Burchard, H., Energy-conserving discretisation of turbulent shear and buoyancy production, Ocean
Modelling , 4 , 347–361, 2002a.

Burchard, H., Applied Turbulence Modelling in Marine Waters , no. 100 in Lecture Notes in Earth
Sciences, Springer, 2002b.

Burchard, H., and H. Baumert, On the performace of a mixed-layer model based on the k-ε
turbulence closure, J. Geophys. Res. (C5), 100 , 8523–8540, 1995.

Burchard, H., and H. Baumert, The formation of estuarine turbidity maxima due to density effects
in the salt wedge. A hydrodynamic process study, J. Phys. Oceanogr., 28 , 309–321, 1998.

Burchard, H., and K. Bolding, Implementation of the Verduin and Backhaus seagrass-current
interaction into the General Ocean Turbulence Model (GOTM). A short feasability study, 2000,
unpublished manuscript.

239



Burchard, H., and K. Bolding, Comparative analysis of four second-moment turbulence closure
models for the oceanic mixed layer, J. Phys. Oceanogr., 31 , 1943–1968, 2001.

Burchard, H., and E. Deleersnijder, Stability of algebraic non-equilibrium second-order closure
models, Ocean Modelling , 3 , 33–50, 2001.

Burchard, H., and O. Petersen, Hybridisation between σ and z coordinates for improving the
internal pressure gradient calculation in marine models with steep bottom slopes, Int. J. Numer.
Meth. Fluids , 25 , 1003–1023, 1997.

Burchard, H., and O. Petersen, Models of turbulence in the marine enviroment - a comparative
study of two-equation turbulence models, J. Mar. Syst., 21 , 29–53, 1999.

Burchard, H., O. Petersen, and T. P. Rippeth, Comparing the performance of the Mellor-Yamada
and the k− ε two-equation turbulence models, J. Geophys. Res. (C5), 103 , 10,543–10,554, 1998.

Burchard, H., K. Bolding, and M. R. Villarreal, GOTM – a general ocean turbulence model.
Theory, applications and test cases, Tech. Rep. EUR 18745 EN , European Commission, 1999.

Burchard, H., K. Bolding, T. P. Rippeth, A. Stips, J. H. Simpson, and J. Sündermann, Microstruc-
ture of turbulence in the Northern North Sea: A comparative study of observations and model
simulations, Journal of Sea Research, 47 , 223–238, 2002.

Burchard, H., K. Bolding, and M. R. Villarreal, Three-dimensional modelling of estuarine turbidity
maxima in a tidal estuary, Ocean Dynamics , 2003, submitted.

Burchard, H., K. Bolding, W. Kühn, A. Meister, T. Neumann, and L. Umlauf, Description of
a flexible and extendable physical-biogeochemical model system for the water column, 2005,
accepted for publication.

Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, Ocean turbulence. Part I: One-point
closure model—momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31 , 1413–1426,
2001.

Charnok, H., Wind stress on a water surface, Q. J. R. Meteorol. Soc., 81 , 639–640, 1955.

Cheng, Y., V. M. Canuto, and A. M. Howard, An improved model for the turbulent PBL, J.
Atmos. Sci., 59 , 1550–1565, 2002.

Clark, N. E., L. Eber, R. M. Laurs, J. A. Renner, and J. F. T. Saur, Heat exchange between ocean
and atmoshere in the Eastern North Pacific for 1961-1971, Tech. Rep. NMFS SSRF-682 , NOAA,
U.S. Dept. of Commerce, Washington, D.C., 1974.

Craft, T. J., N. Z. Ince, and B. E. Launder, Recent developments in second-moment closure for
buoyancy-affected flows, Dynamics of Atmospheres and Oceans , 23 , 99–114, 1996.

Craig, P. D., Velocity profiles and surface roughness under breaking waves, J. Geophys. Res., 101 ,
1265–1277, 1996.

Craig, P. D., and M. L. Banner, Modeling wave-enhanced turbulence in the ocean surface layer, J.
Phys. Oceanogr., 24 , 2546–2559, 1994.

Crank, J., and P. Nicolson, A practical method for numerical evaluation of solutions of partial
differential equations of the heat-conduction type, Proc. Cambridge Philos. Soc., 43 , 50–67,
1947, re-published in: John Crank 80th birthday special issue Adv. Comput. Math. 6 (1997)
207-226.

240



d’Alessio, S. J. D., K. Abdella, and N. A. McFarlane, A new second-order turbulence closure
scheme for modeling the oceanic mixed layer, J. Phys. Oceanogr., 28 , 1624–1641, 1998.

Deleersnijder, E., and H. Burchard, Reply to Mellor’s comments on stability of algebraic non-
equilibrium second-order closure models, Ocean Modelling , 5 , 291–293, 2003.

Demirov, E., W. Eifler, M. Ouberdous, and N. Hibma, Ispramix — a three–dimensional free surface
model for coastal ocean simulations and satellite data assimilation on parallel computers, Tech.
Rep. EUR 18129 EN , European CommissionJoint Reseach Center, Ispra, Italy, 1998.

Denman, K. L., A time-dependent model of the upper ocean, J. Phys. Oceanogr., 3 , 173–184, 1973.

Domaradzki, J. A., and G. L. Mellor, A simple turbulence closure hypothesis for the triple velocity
correlation functions in homogeneous isotropic turbulence, J. Fluid Mech., 140 , 45–61, 1984.

Durksi, S. M., S. M. Glenn, and D. Haidvogel, Vertical mixing schemes in the coastal ocean:
Comparision of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile
parameterization, J. Geophys. Res., 109 , 2004, doi:10.1029/2002JC001702.

Eifler, W., and W. Schrimpf, Ispramix, a hydrodynamic program for computing regional sea circu-
lation patterns and transfer processes, Tech. Rep. EUR 14856 EN , European Commission Joint
Reseach Center, Ispra, Italy, 1992.

Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, Bulk parameterization
of air-sea fluxes for TOGA-COARE, J. Geophys. Res., 101 , 3747–3764, 1996.

Feistel, R., A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr., 58 , 43–
115, 2003, http://authors.elsevier.com/sd/article/S0079661103000880 corrigendum 61 (2004) 99.

Fofonoff, N. P., and R. C. Millard, Algorithms for the computation of fundamental properties of
seawater, Unesco technical papers in marine sciences , 44 , 1–53, 1983.

Frey, H., A three-dimensional, baroclinic shelf sea circulation model — 1. The turbulence closure
scheme and the one-dimensional test model, Cont. Shelf Res., 11 , 365–395, 1991.

Friedrich, H., Simulation of the thermal stratification at the FLEX central station with a one-
dimensional integral model, in North Sea Dynamics , edited by J. Sündermann and W. Lenz, pp.
396–411, Springer, 1983.

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, A quasi-equilibrium turbulent energy model
for geophysical flows, J. Atmos. Sci., 45 , 55–62, 1988.

Gaspar, P., Y. Gregoris, and J. Lefevre, A simple eddy kinetic energy model for simulations of
the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site, J.
Geophys. Res., 95 , 16,179–16,193, 1990.

Gerz, T., U. Schumann, and S. E. Elghobashi, Direct numerical simulation of stratified homoge-
neous turbulent shear flows, J. Fluid Mech., 200 , 563–594, 1989.

Gibson, M. M., and B. E. Launder, On the calculation of horizontal, turbulent, free shear flows
under gravitational influence, J. Heat Transfer , 98C , 81–87, 1976.

Gibson, M. M., and B. E. Launder, Ground effects on pressure fluctuations in the atmospheric
boundary layer, J. Fluid Mech., 86 , 491–511, 1978.

241



Hastenrath, S., and P. J. Lamb, Heat budget atlas of the tropical Atlantic and Eastern Pacific
Oceans, Tech. rep., University of Wisconsin, Madison, 1978.

Holt, S. E., J. R. Koseff, and J. H. Ferziger, A numerical study of the evolution and structure of
homogeneous stably stratified sheared turbulence, J. Fluid Mech., 237 , 499–539, 1991.

Jackett, D. R., T. J. McDougall, R. Feistel, D. G. Wright, and S. M. Griffies, Updated algorithms for
density, potential temperature, conservative temperature and freezing temperature of seawater,
Journal of Atmospheric and Oceanic Technology , 2005, submitted.

Jacobitz, F. C., S. Sarkar, and C. W. van Atta, Direct numerical simulations of the turbulence
evolution in a uniformly sheared and stably stratifed flow, J. Fluid Mech., 342 , 231–261, 1997.

Jerlov, N. G., Optical oceanography , Elsevier, 1968.

Jin, L. H., R. M. C. So, and T. B. Gatski, Equilibrium states of turbulent homogeneous buoyant
flows, J. Fluid Mech., 482 , 207–233, 2003.

Kaltenbach, H.-J., T. Gerz, and U. Schumann, Large-Eddy simulation of homogeneous turbulence
and diffusion in stably stratified shear flow, J. Fluid Mech., 280 , 1–40, 1994.

Kantha, L. H., On an improved model for the turbulent pbl, J. Atmos. Sci., 60 , 2239–2246, 2003.

Kantha, L. H., and C. A. Clayson, An improved mixed layer model for geophysical applications,
J. Geophys. Res., 99 , 25,235–25,266, 1994.

Kato, H., and O. M. Phillips, On the penetration of a turbulent layer into stratified fluid, J. Fluid
Mech., 37 , 643–655, 1969.

Kondo, J., Air-sea bulk transfer coefficients in diabatic conditions, Bound. Layer Meteor., 9 , 91–
112, 1975.

Large, W. G., J. C. McWilliams, and S. C. Doney, Oceanic vertical mixing: a review and a model
with nonlocal boundary layer parameterisation, Rev. Geophys., 32 , 363–403, 1994.

Launder, B. E., G. J. Reece, and W. Rodi, Progress in the development of Reynolds stress turbulent
closure, J. Fluid Mech., 68 , 537–566, 1975.

Luyten, P. J., E. Deleersnijder, J. Ozer, and K. G. Ruddik, Presentation of a family of turbulence
closure models for stratified shallow water flows and preliminary application to the Rhine outflow
region, Cont. Shelf Res., 16 , 1996.

Martin, P. J., Simulation of the mixed layer at OWS November and Papa with several models, J.
Geophys. Res., 90 , 903–916, 1985.

Mellor, G. L., Retrospect on oceanic boundary layer modeling and second moment closure, in Pa-
rameterization of Small–Scale Processes; Proc. of the Aha Hulikoa Hawaiian Winter Workshop,
edited by P. Mueller and D. Henderson, pp. 251–271, University of Hawaii at Manoa, Honolulu,
1989.

Mellor, G. L., One-dimensional ocean surface layer modeling, a problem and a solution, J. Phys.
Oceanogr., 31 , 790–809, 2001.

Mellor, G. L., and T. Yamada, A hierarchy of turbulence closure models for planetary boundary
layers, J. Atmos. Sci., 31 , 1791–1806, 1974.

242



Mellor, G. L., and T. Yamada, Development of a tubulence closure model for geophysical fluid
problems, Reviews of Geophysics and Space Physics , 20 , 851–875, 1982.

Mohamed, M. S., and J. C. Larue, The decay power law in grid-generated turbulence, J. Fluid
Mech., 219 , 195–214, 1990.

Munk, W. H., and E. R. Anderson, Notes on the theory of the thermocline, J. Mar. Res., 3 ,
276–295, 1948.

Patankar, S. V., Numerical Heat Transfer and Fluid Flow , Taylor & Francis, 1980.

Paulson, C. A., and J. J. Simpson, Irradiance measurements in the upper ocean, J. Phys. Oceanogr.,
7 , 952–956, 1977.

Payne, R. E., Albedo of the sea surface, J. Atmos. Sci., 9 , 959–970, 1972.

Pietrzak, J., The use of TVD limiters for forward-in-time upstream-biased advection schemes in
ocean modeling, Monthly Weather Review , 126 , 812–830, 1998.

Pohlmann, T., Predicting the thermocline in a circulation model of the North Sea – Part I: Model
description, calibration and verification, Cont. Shelf Res., 16 , 131–146, 1996.

Pohlmann, T., Estimating the influence of advection during FLEX’76 by means of a three-
dimensional shelf sea circulation model, Dtsch. Hydrogr. Z., 49 , 215–226, 1997.

Prandke, H., K. Holtsch, and A. Stips, MITEC technology development: The microstruc-
ture/turbulence measuring system mss, Tech. Rep. EUR 19733 EN , European Commission,
Joint Research Centre, Ispra, Italy, 2000.

Price, J. F., On the scaling of stress driven entrainment experiments, J. Fluid Mech., 90 , 509–529,
1979.

Reed, R. K., On estimating insolation over the ocean, J. Phys. Oceanogr., 7 , 482–485, 1977.

Rippeth, T. P., E. W. Williams, and J. H. Simpson, Reynolds stress and turbulent energy produc-
tion in a tidal channel, J. Phys. Oceanogr., 2001, accepted for publication.

Robert, J. L., and Y. Ouellet, A three–dimensional finite element model for the study of steady
and non–steady natural flows, in Three–dimensional models of marine and estuarine dynamics ,
edited by J. C. Nihoul and B. M. Jamart, no. 45 in Elsevier Oceanography Series, Elsevier, 1987.

Rodi, W., A new algebraic relation for calculating the Reynolds stresses, Z. angew. Math. Mech.,
56 , T 219–T 221, 1976.

Rodi, W., Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys.
Res. (C5), 92 , 5305–5328, 1987.

Rohr, J. J., E. C. Itsweire, K. N. Helland, and C. W. van Atta, Growth and decay of turbulence
in a stably stratified shear flow, J. Fluid Mech., 195 , 77–111, 1988.

Rosati, A., and K. Miyakoda, A general circulation model for upper ocean simulation, J. Phys.
Oceanogr., 18 , 1601–1626, 1988.

Rotta, J., Statistische Theorie nichthomogener Turbulenz. 1. Mitteilung, Z. Phys., 129 , 547–572,
1951.

243



Sander, J., Dynamical equations and turbulent closures in geophysics, Continuum Mech. Thermo-
dyn., 10 , 1–28, 1998.

Schumann, U., and T. Gerz, Turbulent mixing in stably stratified shear flows, J. Appl. Meteorol.,
34 , 33–48, 1995.

Sharples, J., Time-dependent stratification in regions of large horizontal density gradient, Ph.D.
thesis, School of Ocean Sciences, University of Wales, Bangor, 1992.

Shih, L. H., J. R. Koseff, J. H. Ferziger, and C. R. Rehmann, Scaling and parameterization of
stratified homogeneous turbulent shear flow, J. Fluid Mech., 412 , 1–20, 2000.

Simpson, J. H., H. Burchard, N. R. Fisher, and T. P. Rippeth, The semi-diurnal cycle of dissipation
in a ROFI: model-measurement comparisons, Cont. Shelf Res., 22 , 1615–1628, 2002.

Simpson, J. J., and C. A. Paulson, Mid-ocean observations of atmosphere radiation, Quart. J. Roy.
Meteor. Soc., 105 , 487–502, 1999.

Smith, J. D., and S. R. McLean, Spatially averaged flow over a wavy surface, J. Geophys. Res.,
82 , 1735–1746, 1977.

So, R. M. C., P. Vimala, L. H. Jin, and C. Y. Zhao, Accounting for buoyancy effects in the explicit
algebraic stress model: homogeneous turbulent shear flows, Theoret. Comput. Fluid Dynamics ,
15 , 283–302, 2002.

So, R. M. C., L. H. Jin, and T. B. Gatski, An explicit algebraic model for turbulent buoyant
flows, in Proceedings of the FEDSM ’03: 4th ASME-JSME Joint Fluids Engineering Conference,
Honolulu, Hawaii, USA, 2003.

Soetje, K. C., and K. Huber, A compilation of data on the thermal stratification at the central
station in the northern North Sea during FLEX’76, ”Meteor”-Forsch.-Ergebnisse, Reihe A, 22 ,
69–77, 1980.

Speziale, C. G., S. Sarkar, and T. B. Gatski, Modeling the pressure-strain correlation of turbulence:
an invariant dynamical systems approach, J. Fluid Mech., 227 , 245–272, 1991.

Stips, A., H. Burchard, K. Bolding, and W. Eifler, Modelling of convective turbulence with a
two-equation k-ε turbulence closure scheme, Ocean Dynamics , 52 , 153–168, 2002.

Tavoularis, S., and S. Corrsin, Experiments in a nearly homogenous turbulent shear flow with a
uniform mean temperature gradient. Part 1, J. Fluid Mech., 104 , 311–348, 1981a.

Tavoularis, S., and S. Corrsin, Experiments in a nearly homogenous turbulent shear flow with a
uniform mean temperature gradient. Part 2. The fine structure, J. Fluid Mech., 104 , 349–367,
1981b.

Tavoularis, S., and U. Karnik, Further experiments on the evolution of turbulent stresses and scales
in uniformly sheared turbulence, J. Fluid Mech., 204 , 457–478, 1989.

Tennekes, H., The decay of turbulence in plane homogeneous shear flow, in Lecture Notes on
Turbulence, edited by J. R. Herring and J. C. McWilliams, pp. 32–35, World Scientific, 1989.

Tennekes, H., and J. L. Lumley, A First Course in Turbulence, MIT Press, 1972.

Townsend, A. A., The Structure of Turbulent Shear flow , Cambridge University Press, 1976.

244



Umlauf, L., and H. Burchard, A generic length-scale equation for geophysical turbulence models,
J. Mar. Res., 61 , 235–265, 2003.

Umlauf, L., and H. Burchard, Second-order turbulence closure models for geophysical boundary
layers. a review of recent work, Cont. Shelf. Res., 25 , 795–827, 2005.

Umlauf, L., H. Burchard, and K. Hutter, Extending the k-ω turbulence model towards oceanic
applications, Ocean Modelling , 5 , 195–218, 2003.

Verduin, J. J., and J. O. Backhaus, Dynamics of plant-flow interactions for the seagrass amphibolis
antarctica: Field observations and model simulations, Estuarine, Coastal and Shelf Science, 50 ,
185–204, 2000.

Villarreal, M. R., Parameterisation of turbulence in the ocean and application of a 3D baroclinic
model to the Ria de Pontevedra, Ph.D. thesis, Departamento de Fisica da Materia Condensada,
Grupo de Fisica Non-Lineal, Universidade de Santiago de Compostela, 2000.

Wilcox, D. C., Reassessment of the scale-determining equation for advanced turbulence models,
AIAA Journal , 26 , 1299–1310, 1988.

Wilcox, D. C., Turbulence Modeling for CFD , 2nd ed., DCW Industries, Inc., 1998.

Xing, J., and A. N. Davies, Application of three dimensional turbulence energy models to the
determination of tidal mixing and currents in a shallow sea, Prog. Oceanogr., 35 , 153–205, 1995.

Zeierman, S., and M. Wolfshtein, Turbulent time scale for turbulent-flow calculations, AIAA J.,
24 , 1606–1610, 1986.

Zhao, C. Y., R. M. C. So, and T. B. Gatski, Turbulence modeling effects on the prediction of
equilibrium states of buoyant shear flows, Theoret. Comput. Fluid Dynamics , 14 , 399–422, 2001.

245


