#include "cppdefs.h" MODULE def_hessian_mod #if defined I4DVAR || \ (defined WEAK_CONSTRAINT && \ (defined POSTERIOR_EOFS || defined POSTERIOR_ERROR_I || \ defined POSTERIOR_ERROR_F)) || defined LCZ_FINAL ! !git $Id$ !svn $Id: def_hessian.F 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This module creates the Hessian eigenvectors file using either ! ! the standard NetCDF library or the Parallel-IO (PIO) library. ! ! It defines its dimensions, attributes, and variables. ! ! ! ! This file used for the pre-conditioning of the 4D-Var conjugate ! ! gradient algorithm ! ! ! !======================================================================= ! USE mod_param USE mod_parallel # ifdef BIOLOGY USE mod_biology # endif # ifdef FOUR_DVAR USE mod_fourdvar # endif USE mod_iounits USE mod_ncparam USE mod_scalars # ifdef SEDIMENT USE mod_sediment # endif ! USE def_dim_mod, ONLY : def_dim USE def_info_mod, ONLY : def_info USE def_var_mod, ONLY : def_var USE strings_mod, ONLY : FoundError USE wrt_info_mod, ONLY : wrt_info ! implicit none ! PUBLIC :: def_hessian PRIVATE :: def_hessian_nf90 # if defined PIO_LIB && defined DISTRIBUTE PRIVATE :: def_hessian_pio # endif ! CONTAINS ! !*********************************************************************** SUBROUTINE def_hessian (ng) !*********************************************************************** ! ! Imported variable declarations. ! integer, intent(in) :: ng ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! !----------------------------------------------------------------------- ! Create a new history file according to IO type. !----------------------------------------------------------------------- ! SELECT CASE (HSS(ng)%IOtype) CASE (io_nf90) CALL def_hessian_nf90 (ng) # if defined PIO_LIB && defined DISTRIBUTE CASE (io_pio) CALL def_hessian_pio (ng) # endif CASE DEFAULT IF (Master) WRITE (stdout,10) HSS(ng)%IOtype exit_flag=3 END SELECT IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! 10 FORMAT (' DEF_HESSIAN - Illegal output file type, io_type = ',i0, & & /,15x,'Check KeyWord ''OUT_LIB'' in ''roms.in''.') ! RETURN END SUBROUTINE def_hessian ! !********************************************************************** SUBROUTINE def_hessian_nf90 (ng) !********************************************************************** ! USE mod_netcdf ! ! Imported variable declarations. ! integer, intent(in) :: ng ! ! Local variable declarations. ! logical :: got_var(NV) ! integer, parameter :: Natt = 25 integer :: i, j, ifield, itrc, nrec, nvd, nvd3, nvd4 integer :: recdim, status, varid # ifdef ADJUST_BOUNDARY integer :: IorJdim, brecdim # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS integer :: frecdim # endif # if defined POSTERIOR_EOFS && defined WEAK_CONSTRAINT integer :: NpostDim # endif integer :: DimIDs(nDimID) integer :: t2dgrd(3), u2dgrd(3), v2dgrd(3) # ifdef ADJUST_BOUNDARY integer :: t2dobc(4) # endif # ifdef EVOLVED_LCZ integer :: MinnerDim, NinnerDim, NouterDim integer :: vardim(2) # endif # ifdef SOLVE3D integer :: t3dgrd(4), u3dgrd(4), v3dgrd(4), w3dgrd(4) # ifdef ADJUST_BOUNDARY integer :: t3dobc(5) # endif # ifdef ADJUST_STFLUX integer :: t3dfrc(4) # endif # endif # ifdef ADJUST_WSTRESS integer :: u3dfrc(4), v3dfrc(4) # endif ! real(r8) :: Aval(6) ! character (len=256) :: ncname character (len=MaxLen) :: Vinfo(Natt) character (len=*), parameter :: MyFile = & & __FILE__//", def_hessian_nf90" ! SourceFile=MyFile ! !----------------------------------------------------------------------- ! Set and report file name. !----------------------------------------------------------------------- ! IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ncname=HSS(ng)%name ! IF (Master) THEN IF (LdefHSS(ng)) THEN WRITE (stdout,10) ng, TRIM(ncname) ELSE WRITE (stdout,20) ng, TRIM(ncname) END IF END IF ! !======================================================================= ! Create a new Hessian eigenvectors file. !======================================================================= ! DEFINE : IF (LdefHSS(ng)) THEN CALL netcdf_create (ng, iADM, TRIM(ncname), HSS(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) THEN IF (Master) WRITE (stdout,30) TRIM(ncname) RETURN END IF ! !----------------------------------------------------------------------- ! Define file dimensions. !----------------------------------------------------------------------- ! DimIDs=0 ! status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xi_rho', & & IOBOUNDS(ng)%xi_rho, DimIDs( 1)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xi_u', & & IOBOUNDS(ng)%xi_u, DimIDs( 2)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xi_v', & & IOBOUNDS(ng)%xi_v, DimIDs( 3)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xi_psi', & & IOBOUNDS(ng)%xi_psi, DimIDs( 4)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'eta_rho', & & IOBOUNDS(ng)%eta_rho, DimIDs( 5)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'eta_u', & & IOBOUNDS(ng)%eta_u, DimIDs( 6)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'eta_v', & & IOBOUNDS(ng)%eta_v, DimIDs( 7)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'eta_psi', & & IOBOUNDS(ng)%eta_psi, DimIDs( 8)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'IorJ', & & IOBOUNDS(ng)%IorJ, IorJdim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xy_rho', & & IOBOUNDS(ng)%xy_rho, DimIDs(17)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xy_u', & & IOBOUNDS(ng)%xy_u, DimIDs(18)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xy_v', & & IOBOUNDS(ng)%xy_v, DimIDs(19)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # ifdef EVOLVED_LCZ status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Ninner', & & Ninner, NinnerDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Minner', & & Ninner+1, MinnerDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Nouter', & & Nouter, NouterDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # ifdef SOLVE3D # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xyz_rho', & & IOBOUNDS(ng)%xy_rho*N(ng), DimIDs(20)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xyz_u', & & IOBOUNDS(ng)%xy_u*N(ng), DimIDs(21)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xyz_v', & & IOBOUNDS(ng)%xy_v*N(ng), DimIDs(22)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xyz_w', & & IOBOUNDS(ng)%xy_rho*(N(ng)+1), DimIDs(23)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'N', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 's_rho', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 's_w', & & N(ng)+1, DimIDs(10)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'tracer', & & NT(ng), DimIDs(11)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef SEDIMENT status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'NST', & & NST, DimIDs(32)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Nbed', & & Nbed, DimIDs(16)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'xybed', & & IOBOUNDS(ng)%xy_rho*Nbed, DimIDs(24)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # endif # ifdef ECOSIM status=def_dim(ng, iNLM, HSS(ng)%ncid, ncname, 'Nbands', & & NBands, DimIDs(33)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Nphy', & & Nphy, DimIDs(25)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Nbac', & & Nbac, DimIDs(26)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Ndom', & & Ndom, DimIDs(27)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Nfec', & & Nfec, DimIDs(28)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # endif status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'boundary', & & 4, DimIDs(14)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef FOUR_DVAR status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Nstate', & & NstateVar(ng), DimIDs(29)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # if defined POSTERIOR_EOFS && defined WEAK_CONSTRAINT status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'Nposterior', & & NpostI+1, NpostDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'frc_adjust', & & Nfrec(ng), DimIDs(30)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # ifdef ADJUST_BOUNDARY status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, 'obc_adjust', & & Nbrec(ng), DimIDs(31)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif status=def_dim(ng, iADM, HSS(ng)%ncid, ncname, & & TRIM(ADJUSTL(Vname(5,idtime))), & & nf90_unlimited, DimIDs(12)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN recdim=DimIDs(12) # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS frecdim=DimIDs(30) # endif # ifdef ADJUST_BOUNDARY brecdim=DimIDs(31) # endif ! ! Set number of dimensions for output variables. ! # if defined WRITE_WATER && defined MASKING nvd3=2 nvd4=2 # else nvd3=3 nvd4=4 # endif ! ! Define dimension vectors for staggered tracer type variables. ! # if defined WRITE_WATER && defined MASKING t2dgrd(1)=DimIDs(17) t2dgrd(2)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs(20) t3dgrd(2)=DimIDs(12) # endif # else t2dgrd(1)=DimIDs( 1) t2dgrd(2)=DimIDs( 5) t2dgrd(3)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs( 1) t3dgrd(2)=DimIDs( 5) t3dgrd(3)=DimIDs( 9) t3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_STFLUX t3dfrc(1)=DimIDs( 1) t3dfrc(2)=DimIDs( 5) t3dfrc(3)=frecdim t3dfrc(4)=DimIDs(12) # endif # endif # ifdef ADJUST_BOUNDARY t2dobc(1)=IorJdim t2dobc(2)=DimIDs(14) t2dobc(3)=brecdim t2dobc(4)=DimIDs(12) # ifdef SOLVE3D t3dobc(1)=IorJdim t3dobc(2)=DimIDs( 9) t3dobc(3)=DimIDs(14) t3dobc(4)=brecdim t3dobc(5)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered u-momentum type variables. ! # if defined WRITE_WATER && defined MASKING u2dgrd(1)=DimIDs(18) u2dgrd(2)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs(21) u3dgrd(2)=DimIDs(12) # endif # else u2dgrd(1)=DimIDs( 2) u2dgrd(2)=DimIDs( 6) u2dgrd(3)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs( 2) u3dgrd(2)=DimIDs( 6) u3dgrd(3)=DimIDs( 9) u3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS u3dfrc(1)=DimIDs( 2) u3dfrc(2)=DimIDs( 6) u3dfrc(3)=frecdim u3dfrc(4)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered v-momentum type variables. ! # if defined WRITE_WATER && defined MASKING v2dgrd(1)=DimIDs(19) v2dgrd(2)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs(22) v3dgrd(2)=DimIDs(12) # endif # else v2dgrd(1)=DimIDs( 3) v2dgrd(2)=DimIDs( 7) v2dgrd(3)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs( 3) v3dgrd(2)=DimIDs( 7) v3dgrd(3)=DimIDs( 9) v3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS v3dfrc(1)=DimIDs( 3) v3dfrc(2)=DimIDs( 7) v3dfrc(3)=frecdim v3dfrc(4)=DimIDs(12) # endif # endif # ifdef SOLVE3D ! ! Define dimension vector for staggered w-momentum type variables. ! # if defined WRITE_WATER && defined MASKING w3dgrd(1)=DimIDs(23) w3dgrd(2)=DimIDs(12) # else w3dgrd(1)=DimIDs( 1) w3dgrd(2)=DimIDs( 5) w3dgrd(3)=DimIDs(10) w3dgrd(4)=DimIDs(12) # endif # endif ! ! Initialize unlimited time record dimension. ! HSS(ng)%Rindex=0 ! ! Initialize local information variable arrays. ! DO i=1,Natt DO j=1,LEN(Vinfo(1)) Vinfo(i)(j:j)=' ' END DO END DO DO i=1,6 Aval(i)=0.0_r8 END DO ! !----------------------------------------------------------------------- ! Define time-recordless information variables. !----------------------------------------------------------------------- ! CALL def_info (ng, iADM, HSS(ng)%ncid, ncname, DimIDs) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! !----------------------------------------------------------------------- ! Define time-varying variables. !----------------------------------------------------------------------- ! ! Define number of converged Ritz eigenvalues. ! Vinfo( 1)='nConvRitz' Vinfo( 2)='number of converged Ritz eigenvalues' status=def_var(ng, iADM, HSS(ng)%ncid, varid, nf90_int, & & 1, (/0/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define Ritz eigenvalues. ! Vinfo( 1)='Ritz' Vinfo( 2)='Ritz eigenvalues' status=def_var(ng, iADM, HSS(ng)%ncid, varid, NF_TYPE, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define accuracy of Ritz eigenvalues . ! Vinfo( 1)='Ritz_error' Vinfo( 2)='accuracy of Ritz eigenvalues' status=def_var(ng, iADM, HSS(ng)%ncid, varid, NF_TYPE, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef POSTERIOR_EOFS ! ! Define posterior analysis error covariance matrix trace. ! Vinfo( 1)='ae_trace' Vinfo( 2)='posterior analysis error covariance matrix trace' status=def_var(ng, iADM, HSS(ng)%ncid, varid, NF_TYPE, & & 1, (/NpostDim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif ! ! Define model time. ! Vinfo( 1)=Vname(1,idtime) Vinfo( 2)=Vname(2,idtime) WRITE (Vinfo( 3),'(a,a)') 'seconds since ', TRIM(Rclock%string) Vinfo( 4)=TRIM(Rclock%calendar) Vinfo(14)=Vname(4,idtime) Vinfo(21)=Vname(6,idtime) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idtime), & & NF_TOUT, 1, (/recdim/), Aval, Vinfo,ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define free-surface. ! Vinfo( 1)=Vname(1,idFsur) WRITE (Vinfo( 2),40) TRIM(Vname(2,idFsur)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idFsur) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(21)=Vname(6,idFsur) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idFsur), & & NF_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define free-surface open boundaries. ! IF (ANY(Lobc(:,isFsur,ng))) THEN ifield=idSbry(isFsur) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(ifield), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define 2D U-momentum component. ! Vinfo( 1)=Vname(1,idUbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUbar)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idUbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(21)=Vname(6,idUbar) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbar,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idUbar), & & NF_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 2D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUbar,ng))) THEN ifield=idSbry(isUbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(ifield), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define 2D V-momentum component. ! Vinfo( 1)=Vname(1,idVbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVbar)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idVbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(21)=Vname(6,idVbar) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbar,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idVbar), & & NF_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 2D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVbar,ng))) THEN ifield=idSbry(isVbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(ifield), & & NF_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif # ifdef SOLVE3D ! ! Define 3D U-momentum component. ! Vinfo( 1)=Vname(1,idUvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUvel)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idUvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(21)=Vname(6,idUvel) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUvel,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idUvel), & & NF_FOUT, nvd4, u3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 3D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUvel,ng))) THEN ifield=idSbry(isUvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(ifield), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define 3D V-momentum component. ! Vinfo( 1)=Vname(1,idVvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVvel)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idVvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(21)=Vname(6,idVvel) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvel,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idVvel), & & NF_FOUT, nvd4, v3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 3D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVvel,ng))) THEN ifield=idSbry(isVvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(ifield), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define tracer type variables. ! DO itrc=1,NT(ng) Vinfo( 1)=Vname(1,idTvar(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTvar(itrc))) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idTvar(itrc)) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(21)=Vname(6,idTvar(itrc)) Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Tid(itrc), & & NF_FOUT, nvd4, t3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END DO # ifdef ADJUST_BOUNDARY ! ! Define tracer type variables open boundaries. ! DO itrc=1,NT(ng) IF (ANY(Lobc(:,isTvar(itrc),ng))) THEN ifield=idSbry(isTvar(itrc)) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(ifield), & & NF_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF END DO # endif # ifdef ADJUST_STFLUX ! ! Define surface tracer fluxes. ! DO itrc=1,NT(ng) IF (Lstflux(itrc,ng)) THEN Vinfo( 1)=Vname(1,idTsur(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTsur(itrc))) Vinfo( 3)='nondimensional' IF (itrc.eq.itemp) THEN Vinfo(11)='upward flux, cooling' Vinfo(12)='downward flux, heating' ELSE IF (itrc.eq.isalt) THEN Vinfo(11)='upward flux, freshening (net precipitation)' Vinfo(12)='downward flux, salting (net evaporation)' END IF Vinfo(14)=Vname(4,idTsur(itrc)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(21)=Vname(6,idTsur(itrc)) Vinfo(22)='coordinates' Aval(5)=REAL(r2dvar,r8) status=def_var(ng, iADM, HSS(ng)%ncid, & & HSS(ng)%Vid(idTsur(itrc)), & & NF_FOUT, nvd4, t3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF END DO # endif # endif # ifdef ADJUST_WSTRESS ! ! Define surface U-momentum stress. ! Vinfo( 1)=Vname(1,idUsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUsms)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idUsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(21)=Vname(6,idUsms) Vinfo(22)='coordinates' Aval(5)=REAL(u2dvar,r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idUsms), & & NF_FOUT, nvd4, u3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define surface V-momentum stress. ! Vinfo( 1)=Vname(1,idVsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVsms)) Vinfo( 2)=Vname(2,idVsms) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idVsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(21)=Vname(6,idVsms) Vinfo(22)='coordinates' Aval(5)=REAL(v2dvar,r8) status=def_var(ng, iADM, HSS(ng)%ncid, HSS(ng)%Vid(idVsms), & & NF_FOUT, nvd4, v3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif ! !----------------------------------------------------------------------- ! Leave definition mode. !----------------------------------------------------------------------- ! CALL netcdf_enddef (ng, iADM, ncname, HSS(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! !----------------------------------------------------------------------- ! Write out time-recordless, information variables. !----------------------------------------------------------------------- ! CALL wrt_info (ng, iADM, HSS(ng)%ncid, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF DEFINE ! !======================================================================= ! Open an existing Hessian eigenvectors file, check its contents, and ! prepare for appending data. !======================================================================= ! QUERY: IF (.not.LdefHSS(ng)) THEN ncname=HSS(ng)%name ! ! Open Hessian eigenvectors file for read/write. ! CALL netcdf_open (ng, iADM, ncname, 1, HSS(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) THEN WRITE (stdout,60) TRIM(ncname) RETURN END IF ! ! Inquire about the dimensions and check for consistency. ! CALL netcdf_check_dim (ng, iADM, ncname, & & ncid = HSS(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Inquire about the variables. ! CALL netcdf_inq_var (ng, iADM, ncname, & & ncid = HSS(ng)%ncid) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Initialize logical switches. ! DO i=1,NV got_var(i)=.FALSE. END DO ! ! Scan variable list from input NetCDF and activate switches for ! Hessian eigenvectors variables. Get variable IDs. ! DO i=1,n_var IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idtime))) THEN got_var(idtime)=.TRUE. HSS(ng)%Vid(idtime)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idFsur))) THEN got_var(idFsur)=.TRUE. HSS(ng)%Vid(idFsur)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUbar))) THEN got_var(idUbar)=.TRUE. HSS(ng)%Vid(idUbar)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVbar))) THEN got_var(idVbar)=.TRUE. HSS(ng)%Vid(idVbar)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isFsur)))) THEN got_var(idSbry(isFsur))=.TRUE. HSS(ng)%Vid(idSbry(isFsur))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUbar)))) THEN got_var(idSbry(isUbar))=.TRUE. HSS(ng)%Vid(idSbry(isUbar))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVbar)))) THEN got_var(idSbry(isVbar))=.TRUE. HSS(ng)%Vid(idSbry(isVbar))=var_id(i) # endif # ifdef ADJUST_WSTRESS ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUsms))) THEN got_var(idUsms)=.TRUE. HSS(ng)%Vid(idUsms)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVsms))) THEN got_var(idVsms)=.TRUE. HSS(ng)%Vid(idVsms)=var_id(i) # endif # ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUvel))) THEN got_var(idUvel)=.TRUE. HSS(ng)%Vid(idUvel)=var_id(i) ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvel))) THEN got_var(idVvel)=.TRUE. HSS(ng)%Vid(idVvel)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUvel)))) THEN got_var(idSbry(isUvel))=.TRUE. HSS(ng)%Vid(idSbry(isUvel))=var_id(i) ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVvel)))) THEN got_var(idSbry(isVvel))=.TRUE. HSS(ng)%Vid(idSbry(isVvel))=var_id(i) # endif # endif END IF # ifdef SOLVE3D DO itrc=1,NT(ng) IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTvar(itrc)))) THEN got_var(idTvar(itrc))=.TRUE. HSS(ng)%Tid(itrc)=var_id(i) # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isTvar(itrc))))) THEN got_var(idSbry(isTvar(itrc)))=.TRUE. HSS(ng)%Vid(idSbry(isTvar(itrc)))=var_id(i) # endif # ifdef ADJUST_STFLUX ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idTsur(itrc)))) THEN got_var(idTsur(itrc))=.TRUE. HSS(ng)%Vid(idTsur(itrc))=var_id(i) # endif END IF END DO # endif END DO ! ! Check if Hessian eigenvectors variables are available in input ! NetCDF file. ! IF (.not.got_var(idtime)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idtime)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idFsur)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idFsur)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUbar)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVbar)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isFsur))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isFsur))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isUbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef ADJUST_WSTRESS IF (.not.got_var(idUsms)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVsms)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef SOLVE3D IF (.not.got_var(idUvel)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVvel)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isUvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # endif # ifdef SOLVE3D DO itrc=1,NT(ng) IF (.not.got_var(idTvar(itrc))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTvar(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isTvar(itrc)))) THEN IF (Master) WRITE (stdout,70) & & TRIM(Vname(1,idSbry(isTvar(itrc)))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef ADJUST_STFLUX IF (.not.got_var(idTsur(itrc)).and.Lstflux(itrc,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTsur(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif END DO # endif ! ! Set unlimited time record dimension to the appropriate value. ! HSS(ng)%Rindex=rec_size END IF QUERY ! 10 FORMAT (2x,'DEF_HESSIAN_NF90 - creating Hessian file,',t56, & & 'Grid ',i2.2,': ',a) 20 FORMAT (2x,'DEF_HESSIAN_NF90 - inquiring Hessian file,',t56, & & 'Grid ',i2.2,': ',a) 30 FORMAT (/,' DEF_HESSIAN_NF90 - unable to create Hessian NetCDF', & & ' file:',1x,a) 40 FORMAT (a,', Hessian eigenvectors') 50 FORMAT (1pe11.4,1x,'millimeter') 60 FORMAT (/,' DEF_HESSIAN_NF90 - unable to open Hessian NetCDF', & & ' file: ',a) 70 FORMAT (/,' DEF_HESSIAN_NF90 - unable to find variable: ',a,2x, & & ' in Hessian NetCDF file: ',a) ! RETURN END SUBROUTINE def_hessian_nf90 # if defined PIO_LIB && defined DISTRIBUTE ! !********************************************************************** SUBROUTINE def_hessian_pio (ng) !********************************************************************** ! USE mod_pio_netcdf ! ! Imported variable declarations. ! integer, intent(in) :: ng ! ! Local variable declarations. ! logical :: got_var(NV) ! integer, parameter :: Natt = 25 integer :: i, j, ifield, itrc, nrec, nvd, nvd3, nvd4 integer :: recdim, status # ifdef ADJUST_BOUNDARY integer :: IorJdim, brecdim # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS integer :: frecdim # endif # if defined POSTERIOR_EOFS && defined WEAK_CONSTRAINT integer :: NpostDim # endif integer :: DimIDs(nDimID) integer :: t2dgrd(3), u2dgrd(3), v2dgrd(3) # ifdef ADJUST_BOUNDARY integer :: t2dobc(4) # endif # ifdef EVOLVED_LCZ integer :: MinnerDim, NinnerDim, NouterDim integer :: vardim(2) # endif # ifdef SOLVE3D integer :: t3dgrd(4), u3dgrd(4), v3dgrd(4), w3dgrd(4) # ifdef ADJUST_BOUNDARY integer :: t3dobc(5) # endif # ifdef ADJUST_STFLUX integer :: t3dfrc(4) # endif # endif # ifdef ADJUST_WSTRESS integer :: u3dfrc(4), v3dfrc(4) # endif ! real(r8) :: Aval(6) ! character (len=256) :: ncname character (len=MaxLen) :: Vinfo(Natt) character (len=*), parameter :: MyFile = & & __FILE__//", def_hessian_pio" ! TYPE (Var_desc_t) :: varDesc ! SourceFile=MyFile ! !----------------------------------------------------------------------- ! Set and report file name. !----------------------------------------------------------------------- ! IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ncname=HSS(ng)%name ! IF (Master) THEN IF (LdefHSS(ng)) THEN WRITE (stdout,10) ng, TRIM(ncname) ELSE WRITE (stdout,20) ng, TRIM(ncname) END IF END IF ! !======================================================================= ! Create a new Hessian eigenvectors file. !======================================================================= ! DEFINE : IF (LdefHSS(ng)) THEN CALL pio_netcdf_create (ng, iADM, TRIM(ncname), HSS(ng)%pioFile) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) THEN IF (Master) WRITE (stdout,30) TRIM(ncname) RETURN END IF ! !----------------------------------------------------------------------- ! Define file dimensions. !----------------------------------------------------------------------- ! DimIDs=0 ! status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xi_rho', & & IOBOUNDS(ng)%xi_rho, DimIDs( 1)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xi_u', & & IOBOUNDS(ng)%xi_u, DimIDs( 2)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xi_v', & & IOBOUNDS(ng)%xi_v, DimIDs( 3)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xi_psi', & & IOBOUNDS(ng)%xi_psi, DimIDs( 4)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'eta_rho', & & IOBOUNDS(ng)%eta_rho, DimIDs( 5)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'eta_u', & & IOBOUNDS(ng)%eta_u, DimIDs( 6)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'eta_v', & & IOBOUNDS(ng)%eta_v, DimIDs( 7)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'eta_psi', & & IOBOUNDS(ng)%eta_psi, DimIDs( 8)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'IorJ', & & IOBOUNDS(ng)%IorJ, IorJdim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xy_rho', & & IOBOUNDS(ng)%xy_rho, DimIDs(17)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xy_u', & & IOBOUNDS(ng)%xy_u, DimIDs(18)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xy_v', & & IOBOUNDS(ng)%xy_v, DimIDs(19)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # ifdef EVOLVED_LCZ status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Ninner', & & Ninner, NinnerDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Minner', & & Ninner+1, MinnerDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Nouter', & & Nouter, NouterDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # ifdef SOLVE3D # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xyz_rho', & & IOBOUNDS(ng)%xy_rho*N(ng), DimIDs(20)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xyz_u', & & IOBOUNDS(ng)%xy_u*N(ng), DimIDs(21)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xyz_v', & & IOBOUNDS(ng)%xy_v*N(ng), DimIDs(22)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xyz_w', & & IOBOUNDS(ng)%xy_rho*(N(ng)+1), DimIDs(23)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'N', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 's_rho', & & N(ng), DimIDs( 9)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 's_w', & & N(ng)+1, DimIDs(10)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'tracer', & & NT(ng), DimIDs(11)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef SEDIMENT status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'NST', & & NST, DimIDs(32)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Nbed', & & Nbed, DimIDs(16)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # if defined WRITE_WATER && defined MASKING status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'xybed', & & IOBOUNDS(ng)%xy_rho*Nbed, DimIDs(24)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # endif # ifdef ECOSIM status=def_dim(ng, iNLM, HSS(ng)%pioFile, ncname, 'Nbands', & & NBands, DimIDs(33)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Nphy', & & Nphy, DimIDs(25)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Nbac', & & Nbac, DimIDs(26)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Ndom', & & Ndom, DimIDs(27)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Nfec', & & Nfec, DimIDs(28)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # endif status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'boundary', & & 4, DimIDs(14)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef FOUR_DVAR status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Nstate', & & NstateVar(ng), DimIDs(29)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # if defined POSTERIOR_EOFS && defined WEAK_CONSTRAINT status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'Nposterior', & & NpostI+1, NpostDim) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'frc_adjust', & & Nfrec(ng), DimIDs(30)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif # ifdef ADJUST_BOUNDARY status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, 'obc_adjust', & & Nbrec(ng), DimIDs(31)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif status=def_dim(ng, iADM, HSS(ng)%pioFile, ncname, & & TRIM(ADJUSTL(Vname(5,idtime))), & & PIO_unlimited, DimIDs(12)) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN recdim=DimIDs(12) # if defined ADJUST_STFLUX || defined ADJUST_WSTRESS frecdim=DimIDs(30) # endif # ifdef ADJUST_BOUNDARY brecdim=DimIDs(31) # endif ! ! Set number of dimensions for output variables. ! # if defined WRITE_WATER && defined MASKING nvd3=2 nvd4=2 # else nvd3=3 nvd4=4 # endif ! ! Define dimension vectors for staggered tracer type variables. ! # if defined WRITE_WATER && defined MASKING t2dgrd(1)=DimIDs(17) t2dgrd(2)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs(20) t3dgrd(2)=DimIDs(12) # endif # else t2dgrd(1)=DimIDs( 1) t2dgrd(2)=DimIDs( 5) t2dgrd(3)=DimIDs(12) # ifdef SOLVE3D t3dgrd(1)=DimIDs( 1) t3dgrd(2)=DimIDs( 5) t3dgrd(3)=DimIDs( 9) t3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_STFLUX t3dfrc(1)=DimIDs( 1) t3dfrc(2)=DimIDs( 5) t3dfrc(3)=frecdim t3dfrc(4)=DimIDs(12) # endif # endif # ifdef ADJUST_BOUNDARY t2dobc(1)=IorJdim t2dobc(2)=DimIDs(14) t2dobc(3)=brecdim t2dobc(4)=DimIDs(12) # ifdef SOLVE3D t3dobc(1)=IorJdim t3dobc(2)=DimIDs( 9) t3dobc(3)=DimIDs(14) t3dobc(4)=brecdim t3dobc(5)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered u-momentum type variables. ! # if defined WRITE_WATER && defined MASKING u2dgrd(1)=DimIDs(18) u2dgrd(2)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs(21) u3dgrd(2)=DimIDs(12) # endif # else u2dgrd(1)=DimIDs( 2) u2dgrd(2)=DimIDs( 6) u2dgrd(3)=DimIDs(12) # ifdef SOLVE3D u3dgrd(1)=DimIDs( 2) u3dgrd(2)=DimIDs( 6) u3dgrd(3)=DimIDs( 9) u3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS u3dfrc(1)=DimIDs( 2) u3dfrc(2)=DimIDs( 6) u3dfrc(3)=frecdim u3dfrc(4)=DimIDs(12) # endif # endif ! ! Define dimension vectors for staggered v-momentum type variables. ! # if defined WRITE_WATER && defined MASKING v2dgrd(1)=DimIDs(19) v2dgrd(2)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs(22) v3dgrd(2)=DimIDs(12) # endif # else v2dgrd(1)=DimIDs( 3) v2dgrd(2)=DimIDs( 7) v2dgrd(3)=DimIDs(12) # ifdef SOLVE3D v3dgrd(1)=DimIDs( 3) v3dgrd(2)=DimIDs( 7) v3dgrd(3)=DimIDs( 9) v3dgrd(4)=DimIDs(12) # endif # ifdef ADJUST_WSTRESS v3dfrc(1)=DimIDs( 3) v3dfrc(2)=DimIDs( 7) v3dfrc(3)=frecdim v3dfrc(4)=DimIDs(12) # endif # endif # ifdef SOLVE3D ! ! Define dimension vector for staggered w-momentum type variables. ! # if defined WRITE_WATER && defined MASKING w3dgrd(1)=DimIDs(23) w3dgrd(2)=DimIDs(12) # else w3dgrd(1)=DimIDs( 1) w3dgrd(2)=DimIDs( 5) w3dgrd(3)=DimIDs(10) w3dgrd(4)=DimIDs(12) # endif # endif ! ! Initialize unlimited time record dimension. ! HSS(ng)%Rindex=0 ! ! Initialize local information variable arrays. ! DO i=1,Natt DO j=1,LEN(Vinfo(1)) Vinfo(i)(j:j)=' ' END DO END DO DO i=1,6 Aval(i)=0.0_r8 END DO ! !----------------------------------------------------------------------- ! Define time-recordless information variables. !----------------------------------------------------------------------- ! CALL def_info (ng, iADM, HSS(ng)%pioFile, ncname, DimIDs) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! !----------------------------------------------------------------------- ! Define time-varying variables. !----------------------------------------------------------------------- ! ! Define number of converged Ritz eigenvalues. ! Vinfo( 1)='nConvRitz' Vinfo( 2)='number of converged Ritz eigenvalues' status=def_var(ng, iADM, HSS(ng)%pioFile, varDesc, PIO_int, & & 1, (/0/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define Ritz eigenvalues. ! Vinfo( 1)='Ritz' Vinfo( 2)='Ritz eigenvalues' status=def_var(ng, iADM, HSS(ng)%pioFile, varDesc, PIO_TYPE, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define accuracy of Ritz eigenvalues . ! Vinfo( 1)='Ritz_error' Vinfo( 2)='accuracy of Ritz eigenvalues' status=def_var(ng, iADM, HSS(ng)%pioFile, varDesc, PIO_TYPE, & & 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef POSTERIOR_EOFS ! ! Define posterior analysis error covariance matrix trace. ! Vinfo( 1)='ae_trace' Vinfo( 2)='posterior analysis error covariance matrix trace' status=def_var(ng, iADM, HSS(ng)%pioFile, varDesc, PIO_TYPE, & & 1, (/NpostDim/), Aval, Vinfo, ncname, & & SetParAccess = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif ! ! Define model time. ! Vinfo( 1)=Vname(1,idtime) Vinfo( 2)=Vname(2,idtime) WRITE (Vinfo( 3),'(a,a)') 'seconds since ', TRIM(Rclock%string) Vinfo( 4)=TRIM(Rclock%calendar) Vinfo(14)=Vname(4,idtime) Vinfo(21)=Vname(6,idtime) HSS(ng)%pioVar(idtime)%dkind=PIO_TOUT HSS(ng)%pioVar(idtime)%gtype=0 ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idtime)%vd, & & PIO_TOUT, 1, (/recdim/), Aval, Vinfo, ncname, & & SetParAccess = .TRUE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define free-surface. ! Vinfo( 1)=Vname(1,idFsur) WRITE (Vinfo( 2),40) TRIM(Vname(2,idFsur)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idFsur) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(21)=Vname(6,idFsur) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idFsur,ng),r8) HSS(ng)%pioVar(idFsur)%dkind=PIO_FOUT HSS(ng)%pioVar(idFsur)%gtype=r2dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idFsur)%vd, & & PIO_FOUT, nvd3, t2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define free-surface open boundaries. ! IF (ANY(Lobc(:,isFsur,ng))) THEN ifield=idSbry(isFsur) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) HSS(ng)%pioVar(ifield)%dkind=PIO_FOUT HSS(ng)%pioVar(ifield)%gtype=r2dobc ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(ifield)%vd, & & PIO_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define 2D U-momentum component. ! Vinfo( 1)=Vname(1,idUbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUbar)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idUbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(21)=Vname(6,idUbar) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUbar,ng),r8) HSS(ng)%pioVar(idUbar)%dkind=PIO_FOUT HSS(ng)%pioVar(idUbar)%gtype=u2dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idUbar)%vd, & & PIO_FOUT, nvd3, u2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 2D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUbar,ng))) THEN ifield=idSbry(isUbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) HSS(ng)%pioVar(ifield)%dkind=PIO_FOUT HSS(ng)%pioVar(ifield)%gtype=u2dobc ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(ifield)%vd, & & PIO_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define 2D V-momentum component. ! Vinfo( 1)=Vname(1,idVbar) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVbar)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idVbar) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(21)=Vname(6,idVbar) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVbar,ng),r8) HSS(ng)%pioVar(idVbar)%dkind=PIO_FOUT HSS(ng)%pioVar(idVbar)%gtype=v2dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idVbar)%vd, & & PIO_FOUT, nvd3, v2dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 2D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVbar,ng))) THEN ifield=idSbry(isVbar) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) HSS(ng)%pioVar(ifield)%dkind=PIO_FOUT HSS(ng)%pioVar(ifield)%gtype=v2dobc ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(ifield)%vd, & & PIO_FOUT, 4, t2dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif # ifdef SOLVE3D ! ! Define 3D U-momentum component. ! Vinfo( 1)=Vname(1,idUvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUvel)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idUvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(21)=Vname(6,idUvel) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idUvel,ng),r8) HSS(ng)%pioVar(idUvel)%dkind=PIO_FOUT HSS(ng)%pioVar(idUvel)%gtype=u3dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idUvel)%vd, & & PIO_FOUT, nvd4, u3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 3D U-momentum component open boundaries. ! IF (ANY(Lobc(:,isUvel,ng))) THEN ifield=idSbry(isUvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) HSS(ng)%pioVar(ifield)%dkind=PIO_FOUT HSS(ng)%pioVar(ifield)%gtype=u3dobc ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(ifield)%vd, & & PIO_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define 3D V-momentum component. ! Vinfo( 1)=Vname(1,idVvel) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVvel)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idVvel) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(21)=Vname(6,idVvel) Vinfo(22)='coordinates' Aval(5)=REAL(Iinfo(1,idVvel,ng),r8) HSS(ng)%pioVar(idVvel)%dkind=PIO_FOUT HSS(ng)%pioVar(idVvel)%gtype=v3dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idVvel)%vd, & & PIO_FOUT, nvd4, v3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # ifdef ADJUST_BOUNDARY ! ! Define 3D V-momentum component open boundaries. ! IF (ANY(Lobc(:,isVvel,ng))) THEN ifield=idSbry(isVvel) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) HSS(ng)%pioVar(ifield)%dkind=PIO_FOUT HSS(ng)%pioVar(ifield)%gtype=v3dobc ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(ifield)%vd, & & PIO_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF # endif ! ! Define tracer type variables. ! DO itrc=1,NT(ng) Vinfo( 1)=Vname(1,idTvar(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTvar(itrc))) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idTvar(itrc)) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(21)=Vname(6,idTvar(itrc)) Vinfo(22)='coordinates' Aval(5)=REAL(r3dvar,r8) HSS(ng)%pioTrc(itrc)%dkind=PIO_FOUT HSS(ng)%pioTrc(itrc)%gtype=r3dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioTrc(itrc)%vd, & & PIO_FOUT, nvd4, t3dgrd, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END DO # ifdef ADJUST_BOUNDARY ! ! Define tracer type variables open boundaries. ! DO itrc=1,NT(ng) IF (ANY(Lobc(:,isTvar(itrc),ng))) THEN ifield=idSbry(isTvar(itrc)) Vinfo( 1)=Vname(1,ifield) WRITE (Vinfo( 2),40) TRIM(Vname(2,ifield)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,ifield) Vinfo(16)=Vname(1,idtime) # ifdef SEDIMENT DO i=1,NST IF (itrc.eq.idsed(i)) THEN WRITE (Vinfo(19),50) 1000.0_r8*Sd50(i,ng) END IF END DO # endif Vinfo(21)=Vname(6,ifield) Aval(5)=REAL(Iinfo(1,ifield,ng),r8) HSS(ng)%pioVar(ifield)%dkind=PIO_FOUT HSS(ng)%pioVar(ifield)%gtype=r3dobc ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(ifield)%vd, & & PIO_FOUT, 5, t3dobc, Aval, Vinfo, ncname, & & SetFillVal = .FALSE.) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF END DO # endif # ifdef ADJUST_STFLUX ! ! Define surface tracer fluxes. ! DO itrc=1,NT(ng) IF (Lstflux(itrc,ng)) THEN Vinfo( 1)=Vname(1,idTsur(itrc)) WRITE (Vinfo( 2),40) TRIM(Vname(2,idTsur(itrc))) Vinfo( 3)='nondimensional' IF (itrc.eq.itemp) THEN Vinfo(11)='upward flux, cooling' Vinfo(12)='downward flux, heating' ELSE IF (itrc.eq.isalt) THEN Vinfo(11)='upward flux, freshening (net precipitation)' Vinfo(12)='downward flux, salting (net evaporation)' END IF Vinfo(14)=Vname(4,idTsur(itrc)) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_rho' # endif Vinfo(21)=Vname(6,idTsur(itrc)) Vinfo(22)='coordinates' Aval(5)=REAL(r2dvar,r8) HSS(ng)%pioVar(idTsur(itrc))%dkind=PIO_FOUT HSS(ng)%pioVar(idTsur(itrc))%gtype=r2dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idTsur(itrc))%vd, & & PIO_FOUT, nvd4, t3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF END DO # endif # endif # ifdef ADJUST_WSTRESS ! ! Define surface U-momentum stress. ! Vinfo( 1)=Vname(1,idUsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idUsms)) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idUsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_u' # endif Vinfo(21)=Vname(6,idUsms) Vinfo(22)='coordinates' Aval(5)=REAL(u2dvar,r8) HSS(ng)%pioVar(idUsms)%dkind=PIO_FOUT HSS(ng)%pioVar(idUsms)%gtype=u2dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idUsms)%vd, & & PIO_FOUT, nvd4, u3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Define surface V-momentum stress. ! Vinfo( 1)=Vname(1,idVsms) WRITE (Vinfo( 2),40) TRIM(Vname(2,idVsms)) Vinfo( 2)=Vname(2,idVsms) Vinfo( 3)='nondimensional' Vinfo(14)=Vname(4,idVsms) Vinfo(16)=Vname(1,idtime) # if defined WRITE_WATER && defined MASKING Vinfo(20)='mask_v' # endif Vinfo(21)=Vname(6,idVsms) Vinfo(22)='coordinates' Aval(5)=REAL(v2dvar,r8) HSS(ng)%pioVar(idVsms)%dkind=PIO_FOUT HSS(ng)%pioVar(idVsms)%gtype=v2dvar ! status=def_var(ng, iADM, HSS(ng)%pioFile, & & HSS(ng)%pioVar(idVsms)%vd, & & PIO_FOUT, nvd4, v3dfrc, Aval, Vinfo, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN # endif ! !----------------------------------------------------------------------- ! Leave definition mode. !----------------------------------------------------------------------- ! CALL pio_netcdf_enddef (ng, iADM, ncname, HSS(ng)%pioFile) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! !----------------------------------------------------------------------- ! Write out time-recordless, information variables. !----------------------------------------------------------------------- ! CALL wrt_info (ng, iADM, HSS(ng)%pioFile, ncname) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN END IF DEFINE ! !======================================================================= ! Open an existing Hessian eigenvectors file, check its contents, and ! prepare for appending data. !======================================================================= ! QUERY: IF (.not.LdefHSS(ng)) THEN ncname=HSS(ng)%name ! ! Open Hessian eigenvectors file for read/write. ! CALL pio_netcdf_open (ng, iADM, ncname, 1, HSS(ng)%pioFile) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) THEN WRITE (stdout,60) TRIM(ncname) RETURN END IF ! ! Inquire about the dimensions and check for consistency. ! CALL pio_netcdf_check_dim (ng, iADM, ncname, & & pioFile = HSS(ng)%pioFile) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Inquire about the variables. ! CALL pio_netcdf_inq_var (ng, iADM, ncname, & & pioFile = HSS(ng)%pioFile) IF (FoundError(exit_flag, NoError, __LINE__, MyFile)) RETURN ! ! Initialize logical switches. ! DO i=1,NV got_var(i)=.FALSE. END DO ! ! Scan variable list from input NetCDF and activate switches for ! Hessian eigenvectors variables. Get variable IDs. ! DO i=1,n_var IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idtime))) THEN got_var(idtime)=.TRUE. HSS(ng)%pioVar(idtime)%vd=var_desc(i) HSS(ng)%pioVar(idtime)%dkind=PIO_TOUT HSS(ng)%pioVar(idtime)%gtype=0 ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idFsur))) THEN got_var(idFsur)=.TRUE. HSS(ng)%pioVar(idFsur)%vd=var_desc(i) HSS(ng)%pioVar(idFsur)%dkind=PIO_FOUT HSS(ng)%pioVar(idFsur)%gtype=r2dvar ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUbar))) THEN got_var(idUbar)=.TRUE. HSS(ng)%pioVar(idUbar)%vd=var_desc(i) HSS(ng)%pioVar(idUbar)%dkind=PIO_FOUT HSS(ng)%pioVar(idUbar)%gtype=u2dvar ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVbar))) THEN got_var(idVbar)=.TRUE. HSS(ng)%pioVar(idVbar)%vd=var_desc(i) HSS(ng)%pioVar(idVbar)%dkind=PIO_FOUT HSS(ng)%pioVar(idVbar)%gtype=v2dvar # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isFsur)))) THEN got_var(idSbry(isFsur))=.TRUE. HSS(ng)%pioVar(idSbry(isFsur))%vd=var_desc(i) HSS(ng)%pioVar(idSbry(isFsur))%dkind=PIO_FOUT HSS(ng)%pioVar(idSbry(isFsur))%gtype=r2dobc ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUbar)))) THEN got_var(idSbry(isUbar))=.TRUE. HSS(ng)%pioVar(idSbry(isUbar))%vd=var_desc(i) HSS(ng)%pioVar(idSbry(isUbar))%dkind=PIO_FOUT HSS(ng)%pioVar(idSbry(isUbar))%gtype=u2dobc ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVbar)))) THEN got_var(idSbry(isVbar))=.TRUE. HSS(ng)%pioVar(idSbry(isVbar))%vd=var_desc(i) HSS(ng)%pioVar(idSbry(isVbar))%dkind=PIO_FOUT HSS(ng)%pioVar(idSbry(isVbar))%gtype=v2dobc # endif # ifdef ADJUST_WSTRESS ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUsms))) THEN got_var(idUsms)=.TRUE. HSS(ng)%pioVar(idUsms)%vd=var_desc(i) HSS(ng)%pioVar(idUsms)%dkind=PIO_FOUT HSS(ng)%pioVar(idUsms)%gtype=u2dvar ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVsms))) THEN got_var(idVsms)=.TRUE. HSS(ng)%pioVar(idVsms)%vd=var_desc(i) HSS(ng)%pioVar(idVsms)%dkind=PIO_FOUT HSS(ng)%pioVar(idVsms)%gtype=v2dvar # endif # ifdef SOLVE3D ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idUvel))) THEN got_var(idUvel)=.TRUE. HSS(ng)%pioVar(idUvel)%vd=var_desc(i) HSS(ng)%pioVar(idUvel)%dkind=PIO_FOUT HSS(ng)%pioVar(idUvel)%gtype=u3dvar ELSE IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idVvel))) THEN got_var(idVvel)=.TRUE. HSS(ng)%pioVar(idVvel)%vd=var_desc(i) HSS(ng)%pioVar(idVvel)%dkind=PIO_FOUT HSS(ng)%pioVar(idVvel)%gtype=v3dvar # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isUvel)))) THEN got_var(idSbry(isUvel))=.TRUE. HSS(ng)%pioVar(idSbry(isUvel))%vd=var_desc(i) HSS(ng)%pioVar(idSbry(isUvel))%dkind=PIO_FOUT HSS(ng)%pioVar(idSbry(isUvel))%gtype=u3dobc ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isVvel)))) THEN got_var(idSbry(isVvel))=.TRUE. HSS(ng)%pioVar(idSbry(isVvel))%vd=var_desc(i) HSS(ng)%pioVar(idSbry(isVvel))%dkind=PIO_FOUT HSS(ng)%pioVar(idSbry(isVvel))%gtype=v3dobc # endif # endif END IF # ifdef SOLVE3D DO itrc=1,NT(ng) IF (TRIM(var_name(i)).eq.TRIM(Vname(1,idTvar(itrc)))) THEN got_var(idTvar(itrc))=.TRUE. HSS(ng)%pioTrc(itrc)%vd=var_desc(i) HSS(ng)%pioTrc(itrc)%dkind=PIO_FOUT HSS(ng)%pioTrc(itrc)%gtype=r3dvar # ifdef ADJUST_BOUNDARY ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idSbry(isTvar(itrc))))) THEN got_var(idSbry(isTvar(itrc)))=.TRUE. HSS(ng)%pioVar(idSbry(isTvar(itrc)))%vd=var_desc(i) HSS(ng)%pioVar(idSbry(isTvar(itrc)))%dkind=PIO_FOUT HSS(ng)%pioVar(idSbry(isTvar(itrc)))%gtype=r3dobc # endif # ifdef ADJUST_STFLUX ELSE IF (TRIM(var_name(i)).eq. & & TRIM(Vname(1,idTsur(itrc)))) THEN got_var(idTsur(itrc))=.TRUE. HSS(ng)%pioVar(idTsur(itrc))%vd=var_desc(i) HSS(ng)%pioVar(idTsur(itrc))%dkind=PIO_FOUT HSS(ng)%pioVar(idTsur(itrc))%gtype=r2dvar # endif END IF END DO # endif END DO ! ! Check if Hessian eigenvectors variables are available in input ! NetCDF file. ! IF (.not.got_var(idtime)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idtime)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idFsur)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idFsur)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idUbar)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVbar)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVbar)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isFsur))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isFsur))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isUbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVbar))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVbar))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef ADJUST_WSTRESS IF (.not.got_var(idUsms)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVsms)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVsms)), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef SOLVE3D IF (.not.got_var(idUvel)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idUvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idVvel)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idVvel)), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isUvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isUvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF IF (.not.got_var(idSbry(isVvel))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idSbry(isVvel))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # endif # ifdef SOLVE3D DO itrc=1,NT(ng) IF (.not.got_var(idTvar(itrc))) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTvar(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF # ifdef ADJUST_BOUNDARY IF (.not.got_var(idSbry(isTvar(itrc)))) THEN IF (Master) WRITE (stdout,70) & & TRIM(Vname(1,idSbry(isTvar(itrc)))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif # ifdef ADJUST_STFLUX IF (.not.got_var(idTsur(itrc)).and.Lstflux(itrc,ng)) THEN IF (Master) WRITE (stdout,70) TRIM(Vname(1,idTsur(itrc))), & & TRIM(ncname) exit_flag=3 RETURN END IF # endif END DO # endif ! ! Set unlimited time record dimension to the appropriate value. ! HSS(ng)%Rindex=rec_size END IF QUERY ! 10 FORMAT (2x,'DEF_HESSIAN_PIO - creating Hessian file,',t56, & & 'Grid ',i2.2,': ',a) 20 FORMAT (2x,'DEF_HESSIAN_PIO - inquiring Hessian file,',t56, & & 'Grid ',i2.2,': ',a) 30 FORMAT (/,' DEF_HESSIAN_PIO - unable to create Hessian NetCDF', & & ' file:',1x,a) 40 FORMAT (a,', Hessian eigenvectors') 50 FORMAT (1pe11.4,1x,'millimeter') 60 FORMAT (/,' DEF_HESSIAN_PIO - unable to open Hessian NetCDF', & & ' file: ',a) 70 FORMAT (/,' DEF_HESSIAN_PIO - unable to find variable: ',a,2x, & & ' in Hessian NetCDF file: ',a) ! RETURN END SUBROUTINE def_hessian_pio # endif #endif END MODULE def_hessian_mod