#include "cppdefs.h" MODULE tl_diag_mod #ifdef TANGENT ! !git $Id$ !svn $Id: tl_diag.F 1180 2023-07-13 02:42:10Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routine computes various tangent linear diagnostic fields. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: tl_diag ! CONTAINS ! !*********************************************************************** SUBROUTINE tl_diag (ng, tile) !*********************************************************************** ! USE mod_param USE mod_grid USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! # include "tile.h" ! # ifdef PROFILE CALL wclock_on (ng, iTLM, 7, __LINE__, MyFile) # endif CALL tl_diag_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nstp(ng), kstp(ng), & & GRID(ng) % h, & & GRID(ng) % omn, & # ifdef SOLVE3D & GRID(ng) % tl_Hz, & & GRID(ng) % tl_z_r, & & GRID(ng) % tl_z_w, & & OCEAN(ng) % tl_rho, & & OCEAN(ng) % tl_u, & & OCEAN(ng) % tl_v, & # endif & OCEAN(ng) % tl_ubar, & & OCEAN(ng) % tl_vbar, & & OCEAN(ng) % tl_zeta) # ifdef PROFILE CALL wclock_off (ng, iTLM, 7, __LINE__, MyFile) # endif ! RETURN END SUBROUTINE tl_diag ! !*********************************************************************** SUBROUTINE tl_diag_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nstp, kstp, & & h, omn, & # ifdef SOLVE3D & tl_Hz, tl_z_r, tl_z_w, & & tl_rho, tl_u, tl_v, & # endif & tl_ubar, tl_vbar, tl_zeta) !*********************************************************************** ! USE mod_param USE mod_parallel USE mod_iounits USE mod_scalars # ifdef DISTRIBUTE ! USE distribute_mod, ONLY : mp_reduce # endif ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nstp, kstp ! # ifdef ASSUMED_SHAPE real(r8), intent(in) :: h(LBi:,LBj:) real(r8), intent(in) :: omn(LBi:,LBj:) # ifdef SOLVE3D real(r8), intent(in) :: tl_Hz(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_r(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_w(LBi:,LBj:,0:) real(r8), intent(in) :: tl_rho(LBi:,LBj:,:) real(r8), intent(in) :: tl_u(LBi:,LBj:,:,:) real(r8), intent(in) :: tl_v(LBi:,LBj:,:,:) # endif real(r8), intent(in) :: tl_ubar(LBi:,LBj:,:) real(r8), intent(in) :: tl_vbar(LBi:,LBj:,:) real(r8), intent(in) :: tl_zeta(LBi:,LBj:,:) # else real(r8), intent(in) :: h(LBi:UBi,LBj:UBj) real(r8), intent(in) :: omn(LBi:UBi,LBj:UBj) # ifdef SOLVE3D real(r8), intent(in) :: tl_Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: tl_rho(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_u(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(in) :: tl_v(LBi:UBi,LBj:UBj,N(ng),2) # endif real(r8), intent(in) :: tl_ubar(LBi:UBi,LBj:UBj,:) real(r8), intent(in) :: tl_vbar(LBi:UBi,LBj:UBj,:) real(r8), intent(in) :: tl_zeta(LBi:UBi,LBj:UBj,:) # endif ! ! Local variable declarations. ! integer :: NSUB, i, j, k, trd integer :: idia, istep # ifdef DISTRIBUTE real(r8), dimension(3) :: rbuffer character (len=3), dimension(3) :: op_handle # else integer :: my_threadnum # endif ! real(r8) :: cff, my_avgke, my_avgpe, my_volume real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ke2d real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: pe2d ! character (len=8 ) :: kechar, pechar character (len=22) :: DateTime # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Compute and report out volume averaged kinetic, potential total ! energy, and volume of tangent linear fields. Notice that the ! proper adjoint of these quantities are not coded. !----------------------------------------------------------------------- ! ! Set time timestep counter and time level indices to process. Restart ! counter after 10 billion steps. ! istep=INT(MOD(REAL(iic(ng)-1,r8),1.0E+10_r8)) # ifdef SOLVE3D idia=nstp # else idia=kstp # endif DateTime=time_code(ng) ! ! Compute kinetic and potential energy. ! IF (MOD(istep,ninfo(ng)).eq.0) THEN DO j=Jstr,Jend # ifdef SOLVE3D DO i=Istr,Iend ke2d(i,j)=0.0_r8 pe2d(i,j)=0.5_r8*g*tl_z_w(i,j,N(ng))*tl_z_w(i,j,N(ng)) END DO cff=g/rho0 DO k=N(ng),1,-1 DO i=Istr,Iend ke2d(i,j)=ke2d(i,j)+ & & tl_Hz(i,j,k)* & & 0.25_r8*(tl_u(i ,j,k,idia)*tl_u(i ,j,k,idia)+ & & tl_u(i+1,j,k,idia)*tl_u(i+1,j,k,idia)+ & & tl_v(i,j ,k,idia)*tl_v(i,j ,k,idia)+ & & tl_v(i,j+1,k,idia)*tl_v(i,j+1,k,idia)) pe2d(i,j)=pe2d(i,j)+ & & cff*tl_Hz(i,j,k)*(tl_rho(i,j,k)+1000.0_r8)* & & (tl_z_r(i,j,k)-tl_z_w(i,j,0)) END DO END DO # else cff=0.5_r8*g DO i=Istr,Iend ke2d(i,j)=(tl_zeta(i,j,idia)+h(i,j))* & & 0.25_r8*(tl_ubar(i ,j,idia)*tl_ubar(i ,j,idia)+ & & tl_ubar(i+1,j,idia)*tl_ubar(i+1,j,idia)+ & & tl_vbar(i,j ,idia)*tl_vbar(i,j ,idia)+ & & tl_vbar(i,j+1,idia)*tl_vbar(i,j+1,idia)) pe2d(i,j)=cff*tl_zeta(i,j,idia)*tl_zeta(i,j,idia) END DO # endif END DO ! ! Integrate horizontally within one tile. In order to reduce the ! round-off errors, the summation is performed in two stages. First, ! the index j is collapsed and then the accumulation is carried out ! along index i. In this order, the partial sums consist on much ! fewer number of terms than in a straightforward two-dimensional ! summation. Thus, adding numbers which are orders of magnitude ! apart is avoided. ! DO i=Istr,Iend pe2d(i,Jend+1)=0.0_r8 pe2d(i,Jstr-1)=0.0_r8 ke2d(i,Jstr-1)=0.0_r8 END DO DO j=Jstr,Jend DO i=Istr,Iend # ifdef SOLVE3D !! pe2d(i,Jend+1)=pe2d(i,Jend+1)+ & !! & omn(i,j)*(z_w(i,j,N(ng))-z_w(i,j,0)) # else !! pe2d(i,Jend+1)=pe2d(i,Jend+1)+ & !! & omn(i,j)*(zeta(i,j,idia)+h(i,j)) # endif pe2d(i,Jend+1)=pe2d(i,Jend+1)+omn(i,j)*h(i,j) pe2d(i,Jstr-1)=pe2d(i,Jstr-1)+omn(i,j)*pe2d(i,j) ke2d(i,Jstr-1)=ke2d(i,Jstr-1)+omn(i,j)*ke2d(i,j) END DO END DO my_volume=0.0_r8 my_avgpe=0.0_r8 my_avgke=0.0_r8 DO i=Istr,Iend my_volume=my_volume+pe2d(i,Jend+1) my_avgpe =my_avgpe +pe2d(i,Jstr-1) my_avgke =my_avgke +ke2d(i,Jstr-1) END DO ! ! Perform global summation: whoever gets first to the critical region ! resets global sums before global summation starts; after the global ! summation is completed, thread, which is the last one to enter the ! critical region, finalizes the computation of diagnostics and prints ! them out. ! # ifdef DISTRIBUTE NSUB=1 ! distributed-memory # else IF (DOMAIN(ng)%SouthWest_Corner(tile).and. & & DOMAIN(ng)%NorthEast_Corner(tile)) THEN NSUB=1 ! non-tiled application ELSE NSUB=NtileX(ng)*NtileE(ng) ! tiled application END IF # endif !$OMP CRITICAL (TL_DIAGNOSTICS) IF (tile_count.eq.0) THEN volume=0.0_r8 avgke=0.0_r8 avgpe=0.0_r8 END IF volume=volume+my_volume avgke=avgke+my_avgke avgpe=avgpe+my_avgpe tile_count=tile_count+1 IF (tile_count.eq.NSUB) THEN tile_count=0 # ifdef DISTRIBUTE rbuffer(1)=volume rbuffer(2)=avgke rbuffer(3)=avgpe op_handle(1)='SUM' op_handle(2)='SUM' op_handle(3)='SUM' CALL mp_reduce (ng, iTLM, 3, rbuffer, op_handle) volume=rbuffer(1) avgke=rbuffer(2) avgpe=rbuffer(3) trd=MyMaster # else trd=my_threadnum() # endif avgke=avgke/volume avgpe=avgpe/volume avgkp=avgke+avgpe ! ! Report global run diagnotics values for the tangent linear kernel. ! IF (first_time(ng).eq.0) THEN first_time(ng)=1 IF (Master.and.(ng.eq.1)) THEN WRITE (stdout,10) 'TIME-STEP', 'YYYY-MM-DD hh:mm:ss.ss', & & 'KINETIC_ENRG', 'POTEN_ENRG', & # ifdef NESTING & 'TOTAL_ENRG', 'NET_VOLUME', 'Grid' # else & 'TOTAL_ENRG', 'NET_VOLUME' # endif # ifdef NESTING 10 FORMAT (/,1x,a,1x,a,2x,a,3x,a,4x,a,4x,a,2x,a) # else 10 FORMAT (/,1x,a,1x,a,2x,a,3x,a,4x,a,4x,a) # endif END IF END IF ! IF (Master) THEN WRITE (stdout,20) istep, DateTime, & # ifdef NESTING & avgke, avgpe, avgkp, volume, ng # else & avgke, avgpe, avgkp, volume # endif # ifdef NESTING 20 FORMAT (i10,1x,a,4(1pe14.6),2x,i2.2) # else 20 FORMAT (i10,1x,a,4(1pe14.6)) # endif CALL my_flush (stdout) END IF ! ! If blowing-up, set exit_flag to stop computations. ! WRITE (kechar,'(1pe8.1)') avgke WRITE (pechar,'(1pe8.1)') avgpe DO i=1,8 IF ((kechar(i:i).eq.'N').or.(pechar(i:i).eq.'N').or. & & (kechar(i:i).eq.'n').or.(pechar(i:i).eq.'n').or. & & (kechar(i:i).eq.'*').or.(pechar(i:i).eq.'*')) THEN exit_flag=1 END IF END DO END IF !$OMP END CRITICAL (TL_DIAGNOSTICS) END IF ! RETURN END SUBROUTINE tl_diag_tile #endif END MODULE tl_diag_mod