MODULE rp_t3dmix2_mod ! !git $Id$ !svn $Id: rp_t3dmix2_iso.h 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This subroutine computes representers tangent linear horizontal ! ! harmonic mixing of tracers along isopycnic surfaces. ! ! ! ! BASIC STATE variables needed: diff2, Hz, rho, t, z_r ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC rp_t3dmix2 ! CONTAINS ! !*********************************************************************** SUBROUTINE rp_t3dmix2 (ng, tile) !*********************************************************************** ! USE mod_param #ifdef TS_MIX_CLIMA USE mod_clima #endif #ifdef DIAGNOSTICS_TS !! USE mod_diags #endif USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! #include "tile.h" ! #ifdef PROFILE CALL wclock_on (ng, iRPM, 26, __LINE__, MyFile) #endif CALL rp_t3dmix2_iso_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), nstp(ng), nnew(ng), & #ifdef MASKING & GRID(ng) % umask, & & GRID(ng) % vmask, & #endif #ifdef WET_DRY_NOT_YET & GRID(ng) % umask_wet, & & GRID(ng) % vmask_wet, & #endif & GRID(ng) % om_v, & & GRID(ng) % on_u, & & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % Hz, & & GRID(ng) % tl_Hz, & & GRID(ng) % z_r, & & GRID(ng) % tl_z_r, & #ifdef DIFF_3DCOEF & MIXING(ng) % diff3d_r, & #else & MIXING(ng) % diff2, & #endif & OCEAN(ng) % pden, & & OCEAN(ng) % tl_pden, & #ifdef TS_MIX_CLIMA & CLIMA(ng) % tclm, & #endif #ifdef DIAGNOSTICS_TS !! & DIAGS(ng) % DiaTwrk, & #endif & OCEAN(ng) % t, & & OCEAN(ng) % tl_t) #ifdef PROFILE CALL wclock_off (ng, iRPM, 26, __LINE__, MyFile) #endif ! RETURN END SUBROUTINE rp_t3dmix2 ! !*********************************************************************** SUBROUTINE rp_t3dmix2_iso_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, nstp, nnew, & #ifdef MASKING & umask, vmask, & #endif #ifdef WET_DRY_NOT_YET & umask_wet, vmask_wet, & #endif & om_v, on_u, pm, pn, & & Hz, tl_Hz, & & z_r, tl_z_r, & #ifdef DIFF_3DCOEF & diff3d_r, & #else & diff2, & #endif & pden, tl_pden, & #ifdef TS_MIX_CLIMA & tclm, & #endif #ifdef DIAGNOSTICS_TS !! & DiaTwrk, & #endif & t, tl_t) !*********************************************************************** ! USE mod_param USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs, nstp, nnew #ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(in) :: umask_wet(LBi:,LBj:) real(r8), intent(in) :: vmask_wet(LBi:,LBj:) # endif # ifdef DIFF_3DCOEF real(r8), intent(in) :: diff3d_r(LBi:,LBj:,:) # else real(r8), intent(in) :: diff2(LBi:,LBj:,:) # endif real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: rho(LBi:,LBj:,:) real(r8), intent(in) :: t(LBi:,LBj:,:,:,:) # ifdef TS_MIX_CLIMA real(r8), intent(in) :: tclm(LBi:,LBj:,:,:) # endif real(r8), intent(in) :: tl_Hz(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_r(LBi:,LBj:,:) real(r8), intent(in) :: tl_rho(LBi:,LBj:,:) # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:,LBj:,:,:,:) # endif real(r8), intent(inout) :: tl_t(LBi:,LBj:,:,:,:) #else # ifdef MASKING real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(in) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask_wet(LBi:UBi,LBj:UBj) # endif # ifdef DIFF_3DCOEF real(r8), intent(in) :: diff3d_r(LBi:UBi,LBj:UBj,N(ng)) # else real(r8), intent(in) :: diff2(LBi:UBi,LBj:UBj,NT(ng)) # endif real(r8), intent(in) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: pden(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # ifdef TS_MIX_CLIMA real(r8), intent(in) :: tclm(LBi:UBi,LBj:UBj,N(ng),NT(ng)) # endif real(r8), intent(in) :: tl_Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_pden(LBi:UBi,LBj:UBj,N(ng)) # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:UBi,LBj:UBj,N(ng),NT(ng), & !! & NDT) # endif real(r8), intent(inout) :: tl_t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) #endif ! ! Local variable declarations. ! integer :: i, itrc, j, k, k1, k2 real(r8), parameter :: eps = 0.5_r8 real(r8), parameter :: small = 1.0E-14_r8 real(r8), parameter :: slope_max = 0.0001_r8 real(r8), parameter :: strat_min = 0.1_r8 real(r8) :: cff, cff1, cff2, cff3, cff4 real(r8) :: tl_cff, tl_cff1, tl_cff2, tl_cff3, tl_cff4 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: FS real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dRde real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dRdx real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dTde real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dTdr real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dTdx real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: tl_FS real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: tl_dRde real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: tl_dRdx real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: tl_dTde real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: tl_dTdr real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: tl_dTdx #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Compute horizontal harmonic diffusion along isopycnic surfaces. !----------------------------------------------------------------------- ! ! Compute horizontal and density gradients. Notice the recursive ! blocking sequence. The vertical placement of the gradients is: ! ! dTdx,dTde(:,:,k1) k rho-points ! dTdx,dTde(:,:,k2) k+1 rho-points ! FS,dTdr(:,:,k1) k-1/2 W-points ! FS,dTdr(:,:,k2) k+1/2 W-points ! T_LOOP : DO itrc=1,NT(ng) k2=1 K_LOOP : DO k=0,N(ng) k1=k2 k2=3-k1 IF (k.lt.N(ng)) THEN DO j=Jstr,Jend DO i=Istr,Iend+1 cff=0.5_r8*(pm(i,j)+pm(i-1,j)) #ifdef MASKING cff=cff*umask(i,j) #endif #ifdef WET_DRY_NOT_YET cff=cff*umask_wet(i,j) #endif dRdx(i,j,k2)=cff*(pden(i ,j,k+1)- & & pden(i-1,j,k+1)) tl_dRdx(i,j,k2)=cff*(tl_pden(i ,j,k+1)- & & tl_pden(i-1,j,k+1)) #if defined TS_MIX_STABILITY dTdx(i,j,k2)=cff*(0.75_r8*(t(i ,j,k+1,nrhs,itrc)- & & t(i-1,j,k+1,nrhs,itrc))+ & & 0.25_r8*(t(i ,j,k+1,nstp,itrc)- & & t(i-1,j,k+1,nstp,itrc))) tl_dTdx(i,j,k2)=cff* & & (0.75_r8*(tl_t(i ,j,k+1,nrhs,itrc)- & & tl_t(i-1,j,k+1,nrhs,itrc))+ & & 0.25_r8*(tl_t(i ,j,k+1,nstp,itrc)- & & tl_t(i-1,j,k+1,nstp,itrc))) #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN dTdx(i,j,k2)=cff*((t(i ,j,k+1,nrhs,itrc)- & & tclm(i ,j,k+1,itrc))- & & (t(i-1,j,k+1,nrhs,itrc)- & & tclm(i-1,j,k+1,itrc))) ELSE dTdx(i,j,k2)=cff*(t(i ,j,k+1,nrhs,itrc)- & & t(i-1,j,k+1,nrhs,itrc)) END IF tl_dTdx(i,j,k2)=cff*(tl_t(i ,j,k+1,nrhs,itrc)- & & tl_t(i-1,j,k+1,nrhs,itrc)) #else dTdx(i,j,k2)=cff*(t(i ,j,k+1,nrhs,itrc)- & & t(i-1,j,k+1,nrhs,itrc)) tl_dTdx(i,j,k2)=cff*(tl_t(i ,j,k+1,nrhs,itrc)- & & tl_t(i-1,j,k+1,nrhs,itrc)) #endif END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend cff=0.5_r8*(pn(i,j)+pn(i,j-1)) #ifdef MASKING cff=cff*vmask(i,j) #endif #ifdef WET_DRY_NOT_YET cff=cff*vmask_wet(i,j) #endif dRde(i,j,k2)=cff*(pden(i,j ,k+1)- & & pden(i,j-1,k+1)) tl_dRde(i,j,k2)=cff*(tl_pden(i,j ,k+1)- & & tl_pden(i,j-1,k+1)) #if defined TS_MIX_STABILITY dTde(i,j,k2)=cff*(0.75_r8*(t(i,j ,k+1,nrhs,itrc)- & & t(i,j-1,k+1,nrhs,itrc))+ & & 0.25_r8*(t(i,j ,k+1,nstp,itrc)- & & t(i,j-1,k+1,nstp,itrc))) tl_dTde(i,j,k2)=cff* & & (0.75_r8*(tl_t(i,j ,k+1,nrhs,itrc)- & & tl_t(i,j-1,k+1,nrhs,itrc))+ & & 0.25_r8*(tl_t(i,j ,k+1,nstp,itrc)- & & tl_t(i,j-1,k+1,nstp,itrc))) #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN dTde(i,j,k2)=cff*((t(i,j ,k+1,nrhs,itrc)- & & tclm(i,j ,k+1,itrc))- & & (t(i,j-1,k+1,nrhs,itrc)- & & tclm(i,j-1,k+1,itrc))) ELSE dTde(i,j,k2)=cff*(t(i,j ,k+1,nrhs,itrc)- & & t(i,j-1,k+1,nrhs,itrc)) END IF tl_dTde(i,j,k2)=cff*(tl_t(i,j ,k+1,nrhs,itrc)- & & tl_t(i,j-1,k+1,nrhs,itrc)) #else dTde(i,j,k2)=cff*(t(i,j ,k+1,nrhs,itrc)- & & t(i,j-1,k+1,nrhs,itrc)) tl_dTde(i,j,k2)=cff*(tl_t(i,j ,k+1,nrhs,itrc)- & & tl_t(i,j-1,k+1,nrhs,itrc)) #endif END DO END DO END IF IF ((k.eq.0).or.(k.eq.N(ng))) THEN DO j=Jstr-1,Jend+1 DO i=Istr-1,Iend+1 dTdr(i,j,k2)=0.0_r8 tl_dTdr(i,j,k2)=0.0_r8 FS(i,j,k2)=0.0_r8 tl_FS(i,j,k2)=0.0_r8 END DO END DO ELSE DO j=Jstr-1,Jend+1 DO i=Istr-1,Iend+1 #if defined TS_MIX_MAX_SLOPE cff1=SQRT(dRdx(i,j,k2)**2+dRdx(i+1,j,k2)**2+ & & dRdx(i,j,k1)**2+dRdx(i+1,j,k1)**2+ & & dRde(i,j,k2)**2+dRde(i,j+1,k2)**2+ & & dRde(i,j,k1)**2+dRde(i,j+1,k1)**2) IF (cff1.ne.0.0_r8) THEN tl_cff1=(dRdx(i ,j,k2)*tl_dRdx(i ,j,k2)+ & & dRdx(i+1,j,k2)*tl_dRdx(i+1,j,k2)+ & & dRdx(i ,j,k1)*tl_dRdx(i ,j,k1)+ & & dRdx(i+1,j,k1)*tl_dRdx(i+1,j,k1)+ & & dRde(i,j ,k2)*tl_dRde(i,j ,k2)+ & & dRde(i,j+1,k2)*tl_dRde(i,j+1,k2)+ & & dRde(i,j ,k1)*tl_dRde(i,j ,k1)+ & & dRde(i,j+1,k1)*tl_dRde(i,j+1,k1))/cff1 ELSE tl_cff1=0.0_r8 END IF cff2=0.25_r8*slope_max* & & (z_r(i,j,k+1)-z_r(i,j,k))*cff1 tl_cff2=0.25_r8*slope_max* & & ((tl_z_r(i,j,k+1)-tl_z_r(i,j,k))*cff1+ & & (z_r(i,j,k+1)-z_r(i,j,k))*tl_cff1)- & # ifdef TL_IOMS & cff2 # endif cff3=MAX(pden(i,j,k)-pden(i,j,k+1),small) tl_cff3=(0.5_r8+SIGN(0.5_r8,pden(i,j,k)-pden(i,j,k+1)- & & small))* & & (tl_pden(i,j,k)-tl_pden(i,j,k+1))+ & # ifdef TL_IOMS & (0.5_r8-SIGN(0.5_r8, & & pden(i,j,k)-pden(i,j,k+1)-small))* & & small # endif cff4=MAX(cff2,cff3) tl_cff4=(0.5_r8+SIGN(0.5_r8,cff2-cff3))*tl_cff2+ & & (0.5_r8-SIGN(0.5_r8,cff2-cff3))*tl_cff3 cff=-1.0_r8/cff4 tl_cff=cff*cff*tl_cff4+ & # ifdef TL_IOMS & 2.0_r8*cff # endif #elif defined TS_MIX_MIN_STRAT cff1=MAX(pden(i,j,k)-pden(i,j,k+1), & & strat_min*(z_r(i,j,k+1)-z_r(i,j,k))) tl_cff1=(0.5_r8+SIGN(0.5_r8, & & pden(i,j,k)-pden(i,j,k+1)- & & strat_min*(z_r(i,j,k+1)- & & z_r(i,j,k ))))* & & (tl_pden(i,j,k)-tl_pden(i,j,k+1))+ & & (0.5_r8-SIGN(0.5_r8, & & pden(i,j,k)-pden(i,j,k+1)- & & strat_min*(z_r(i,j,k+1)- & & z_r(i,j,k ))))* & & (strat_min*(tl_z_r(i,j,k+1)-tl_z_r(i,j,k ))) cff=-1.0_r8/cff1 tl_cff=cff*cff*tl_cff1+ & # ifdef TL_IOMS & 2.0_r8*cff # endif #else cff1=MAX(pden(i,j,k)-pden(i,j,k+1),eps) tl_cff1=(0.5_r8+SIGN(0.5_r8, & & pden(i,j,k)-pden(i,j,k+1)-eps))* & & (tl_pden(i,j,k)-tl_pden(i,j,k+1))+ & # ifdef TL_IOMS & (0.5_r8- & & SIGN(0.5_r8,pden(i,j,k)-pden(i,j,k+1)-eps))*eps # endif cff=-1.0_r8/cff1 tl_cff=cff*cff*tl_cff1+ & # ifdef TL_IOMS & 2.0_r8*cff # endif #endif #if defined TS_MIX_STABILITY dTdr(i,j,k2)=cff*(0.75_r8*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc))+ & & 0.25_r8*(t(i,j,k+1,nstp,itrc)- & & t(i,j,k ,nstp,itrc))) tl_dTdr(i,j,k2)=tl_cff* & & (0.75_r8*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc))+ & & 0.25_r8*(t(i,j,k+1,nstp,itrc)- & & t(i,j,k ,nstp,itrc)))+ & & cff* & & (0.75_r8*(tl_t(i,j,k+1,nrhs,itrc)- & & tl_t(i,j,k ,nrhs,itrc))+ & & 0.25_r8*(tl_t(i,j,k+1,nstp,itrc)- & & tl_t(i,j,k ,nstp,itrc)))- & # ifdef TL_IOMS & dTdr(i,j,k2) # endif #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN dTdr(i,j,k2)=cff*((t(i,j,k+1,nrhs,itrc)- & & tclm(i,j,k+1,itrc))- & & (t(i,j,k ,nrhs,itrc)- & & tclm(i,j,k ,itrc))) tl_dTdr(i,j,k2)=tl_cff*((t(i,j,k+1,nrhs,itrc)- & & tclm(i,j,k+1,itrc))- & & (t(i,j,k ,nrhs,itrc)- & & tclm(i,j,k ,itrc)))+ & & cff*(tl_t(i,j,k+1,nrhs,itrc)- & & tl_t(i,j,k ,nrhs,itrc))- & # ifdef TL_IOMS & dTdr(i,j,k2) # endif ELSE dTdr(i,j,k2)=cff*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc)) tl_dTdr(i,j,k2)=tl_cff*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc))+ & & cff*(tl_t(i,j,k+1,nrhs,itrc)- & & tl_t(i,j,k ,nrhs,itrc))- & # ifdef TL_IOMS & dTdr(i,j,k2) # endif END IF #else dTdr(i,j,k2)=cff*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc)) tl_dTdr(i,j,k2)=tl_cff*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc))+ & & cff*(tl_t(i,j,k+1,nrhs,itrc)- & & tl_t(i,j,k ,nrhs,itrc))- & # ifdef TL_IOMS & dTdr(i,j,k2) # endif #endif FS(i,j,k2)=cff*(z_r(i,j,k+1)-z_r(i,j,k)) tl_FS(i,j,k2)=tl_cff*(z_r(i,j,k+1)-z_r(i,j,k))+ & & cff*(tl_z_r(i,j,k+1)-tl_z_r(i,j,k))- & #ifdef TL_IOMS & FS(i,j,k2) #endif END DO END DO END IF ! ! Compute components of the rotated tracer flux (T m4/s) along ! isopycnic surfaces. ! IF (k.gt.0) THEN DO j=Jstr,Jend DO i=Istr,Iend+1 #ifdef DIFF_3DCOEF cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i-1,j,k))* & & on_u(i,j) #else cff=0.25_r8*(diff2(i,j,itrc)+diff2(i-1,j,itrc))* & & on_u(i,j) #endif !^ FX(i,j)=cff* & !^ & (Hz(i,j,k)+Hz(i-1,j,k))* & !^ & (dTdx(i,j,k1)- & !^ & 0.5_r8*(MAX(dRdx(i,j,k1),0.0_r8)* & !^ & (dTdr(i-1,j,k1)+ & !^ & dTdr(i ,j,k2))+ & !^ & MIN(dRdx(i,j,k1),0.0_r8)* & !^ & (dTdr(i-1,j,k2)+ & !^ & dTdr(i,j,k1)))) !^ tl_FX(i,j)=cff* & & (((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & & (dTdx(i,j,k1)- & & 0.5_r8*(MAX(dRdx(i,j,k1),0.0_r8)* & & (dTdr(i-1,j,k1)+ & & dTdr(i ,j,k2))+ & & MIN(dRdx(i,j,k1),0.0_r8)* & & (dTdr(i-1,j,k2)+ & & dTdr(i ,j,k1)))))+ & & ((Hz(i,j,k)+Hz(i-1,j,k))* & & (tl_dTdx(i,j,k1)- & & 0.5_r8*(MAX(dRdx(i,j,k1),0.0_r8)* & & (tl_dTdr(i-1,j,k1)+ & & tl_dTdr(i ,j,k2))+ & & MIN(dRdx(i,j,k1),0.0_r8)* & & (tl_dTdr(i-1,j,k2)+ & & tl_dTdr(i ,j,k1)))- & & 0.5_r8*((0.5_r8+ & & SIGN(0.5_r8, dRdx(i,j,k1)))* & & tl_dRdx(i,j,k1)* & & (dTdr(i-1,j,k1)+dTdr(i,j,k2))+ & & (0.5_r8+ & & SIGN(0.5_r8,-dRdx(i,j,k1)))* & & tl_dRdx(i,j,k1)* & & (dTdr(i-1,j,k2)+dTdr(i,j,k1))))))-& #ifdef TL_IOMS & cff* & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (dTdx(i,j,k1)- & & (MAX(dRdx(i,j,k1),0.0_r8)* & & (dTdr(i-1,j,k1)+ & & dTdr(i ,j,k2))+ & & MIN(dRdx(i,j,k1),0.0_r8)* & & (dTdr(i-1,j,k2)+ & & dTdr(i,j,k1)))) #endif END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend #ifdef DIFF_3DCOEF cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i,j-1,k))* & & om_v(i,j) #else cff=0.25_r8*(diff2(i,j,itrc)+diff2(i,j-1,itrc))* & & om_v(i,j) #endif !^ FE(i,j)=cff* & !^ & (Hz(i,j,k)+Hz(i,j-1,k))* & !^ & (dTde(i,j,k1)- & !^ & 0.5_r8*(MAX(dRde(i,j,k1),0.0_r8)* & !^ & (dTdr(i,j-1,k1)+ & !^ & dTdr(i,j ,k2))+ & !^ & MIN(dRde(i,j,k1),0.0_r8)* & !^ & (dTdr(i,j-1,k2)+ & !^ & dTdr(i,j ,k1)))) !^ tl_FE(i,j)=cff* & & (((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & & (dTde(i,j,k1)- & & 0.5_r8*(MAX(dRde(i,j,k1),0.0_r8)* & & (dTdr(i,j-1,k1)+ & & dTdr(i,j ,k2))+ & & MIN(dRde(i,j,k1),0.0_r8)* & & (dTdr(i,j-1,k2)+ & & dTdr(i,j ,k1)))))+ & & ((Hz(i,j,k)+Hz(i,j-1,k))* & & (tl_dTde(i,j,k1)- & & 0.5_r8*(MAX(dRde(i,j,k1),0.0_r8)* & & (tl_dTdr(i,j-1,k1)+ & & tl_dTdr(i,j ,k2))+ & & MIN(dRde(i,j,k1),0.0_r8)* & & (tl_dTdr(i,j-1,k2)+ & & tl_dTdr(i,j ,k1)))- & & 0.5_r8*((0.5_r8+ & & SIGN(0.5_r8, dRde(i,j,k1)))* & & tl_dRde(i,j,k1)* & & (dTdr(i,j-1,k1)+dTdr(i,j,k2))+ & & (0.5_r8+ & & SIGN(0.5_r8,-dRde(i,j,k1)))* & & tl_dRde(i,j,k1)* & & (dTdr(i,j-1,k2)+dTdr(i,j,k1))))))-& #ifdef TL_IOMS & cff* & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (dTde(i,j,k1)- & & (MAX(dRde(i,j,k1),0.0_r8)* & & (dTdr(i,j-1,k1)+ & & dTdr(i,j ,k2))+ & & MIN(dRde(i,j,k1),0.0_r8)* & & (dTdr(i,j-1,k2)+ & & dTdr(i,j ,k1)))) #endif END DO END DO IF (k.lt.N(ng)) THEN DO j=Jstr,Jend DO i=Istr,Iend cff1=MAX(dRdx(i ,j,k1),0.0_r8) cff2=MAX(dRdx(i+1,j,k2),0.0_r8) cff3=MIN(dRdx(i ,j,k2),0.0_r8) cff4=MIN(dRdx(i+1,j,k1),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5_r8, dRdx(i ,j,k1)))* & & tl_dRdx(i ,j,k1) tl_cff2=(0.5_r8+SIGN(0.5_r8, dRdx(i+1,j,k2)))* & & tl_dRdx(i+1,j,k2) tl_cff3=(0.5_r8+SIGN(0.5_r8,-dRdx(i ,j,k2)))* & & tl_dRdx(i ,j,k2) tl_cff4=(0.5_r8+SIGN(0.5_r8,-dRdx(i+1,j,k1)))* & & tl_dRdx(i+1,j,k1) cff=cff1*(cff1*dTdr(i,j,k2)-dTdx(i ,j,k1))+ & & cff2*(cff2*dTdr(i,j,k2)-dTdx(i+1,j,k2))+ & & cff3*(cff3*dTdr(i,j,k2)-dTdx(i ,j,k2))+ & & cff4*(cff4*dTdr(i,j,k2)-dTdx(i+1,j,k1)) tl_cff=tl_cff1*(cff1*dTdr(i ,j,k2)- & & dTdx(i ,j,k1))+ & & tl_cff2*(cff2*dTdr(i,j,k2)- & & dTdx(i+1,j,k2))+ & & tl_cff3*(cff3*dTdr(i,j,k2)- & & dTdx(i ,j,k2))+ & & tl_cff4*(cff4*dTdr(i,j,k2)- & & dTdx(i+1,j,k1))+ & & cff1*(tl_cff1*dTdr(i,j,k2)+ & & cff1*tl_dTdr(i,j,k2)- & & tl_dTdx(i ,j,k1))+ & & cff2*(tl_cff2*dTdr(i,j,k2)+ & & cff2*tl_dTdr(i,j,k2)- & & tl_dTdx(i+1,j,k2))+ & & cff3*(tl_cff3*dTdr(i,j,k2)+ & & cff3*tl_dTdr(i,j,k2)- & & tl_dTdx(i ,j,k2))+ & & cff4*(tl_cff4*dTdr(i,j,k2)+ & & cff4*tl_dTdr(i,j,k2)- & & tl_dTdx(i+1,j,k1))- & #ifdef TL_IOMS & cff1*(2.0_r8*cff1*dTdr(i,j,k2)- & & dTdx(i,j,k1))- & & cff2*(2.0_r8*cff2*dTdr(i ,j,k2)- & & dTdx(i+1,j,k2))- & & cff3*(2.0_r8*cff3*dTdr(i,j,k2)- & & dTdx(i,j,k2))- & & cff4*(2.0_r8*cff4*dTdr(i ,j,k2)- & & dTdx(i+1,j,k1)) #endif cff1=MAX(dRde(i,j ,k1),0.0_r8) cff2=MAX(dRde(i,j+1,k2),0.0_r8) cff3=MIN(dRde(i,j ,k2),0.0_r8) cff4=MIN(dRde(i,j+1,k1),0.0_r8) tl_cff1=(0.5_r8+SIGN(0.5_r8, dRde(i,j ,k1)))* & & tl_dRde(i,j ,k1) tl_cff2=(0.5_r8+SIGN(0.5_r8, dRde(i,j+1,k2)))* & & tl_dRde(i,j+1,k2) tl_cff3=(0.5_r8+SIGN(0.5_r8,-dRde(i,j ,k2)))* & & tl_dRde(i,j ,k2) tl_cff4=(0.5_r8+SIGN(0.5_r8,-dRde(i,j+1,k1)))* & & tl_dRde(i,j+1,k1) cff=cff+ & & cff1*(cff1*dTdr(i,j,k2)-dTde(i,j ,k1))+ & & cff2*(cff2*dTdr(i,j,k2)-dTde(i,j+1,k2))+ & & cff3*(cff3*dTdr(i,j,k2)-dTde(i,j ,k2))+ & & cff4*(cff4*dTdr(i,j,k2)-dTde(i,j+1,k1)) tl_cff=tl_cff+ & & tl_cff1*(cff1*dTdr(i,j,k2)- & & dTde(i,j ,k1))+ & & tl_cff2*(cff2*dTdr(i,j,k2)- & & dTde(i,j+1,k2))+ & & tl_cff3*(cff3*dTdr(i,j,k2)- & & dTde(i,j ,k2))+ & & tl_cff4*(cff4*dTdr(i,j,k2)- & & dTde(i,j+1,k1))+ & & cff1*(tl_cff1*dTdr(i,j,k2)+ & & cff1*tl_dTdr(i,j,k2)- & & tl_dTde(i,j ,k1))+ & & cff2*(tl_cff2*dTdr(i,j,k2)+ & & cff2*tl_dTdr(i,j,k2)- & & tl_dTde(i,j+1,k2))+ & & cff3*(tl_cff3*dTdr(i,j,k2)+ & & cff3*tl_dTdr(i,j,k2)- & & tl_dTde(i,j ,k2))+ & & cff4*(tl_cff4*dTdr(i,j,k2)+ & & cff4*tl_dTdr(i,j,k2)- & & tl_dTde(i,j+1,k1))- & #ifdef TL_IOMS & cff1*(2.0_r8*cff1*dTdr(i,j,k2)- & & dTde(i,j,k1))- & & cff2*(2.0_r8*cff2*dTdr(i,j ,k2)- & & dTde(i,j+1,k2))- & & cff3*(2.0_r8*cff3*dTdr(i,j,k2)- & & dTde(i,j,k2))- & & cff4*(2.0_r8*cff4*dTdr(i,j ,k2)- & & dTde(i,j+1,k1)) #endif #ifdef DIFF_3DCOEF !^ FS(i,j,k2)=0.5_r8*cff*diff3d_r(i,j,k)*FS(i,j,k2) !^ tl_FS(i,j,k2)=0.5_r8*diff3d_r(i,j,k)* & & (tl_cff*FS(i,j,k2)+ & & cff*tl_FS(i,j,k2))- & # ifdef TL_IOMS & 0.5_r8*diff3d_r(i,j,k)*cff*FS(i,j,k2) # endif #else !^ FS(i,j,k2)=0.5_r8*cff*diff2(i,j,itrc)*FS(i,j,k2) !^ tl_FS(i,j,k2)=0.5_r8*diff2(i,j,itrc)* & & (tl_cff*FS(i,j,k2)+ & & cff*tl_FS(i,j,k2))- & # ifdef TL_IOMS & 0.5_r8*diff2(i,j,itrc)*cff*FS(i,j,k2) # endif #endif END DO END DO END IF ! ! Time-step harmonic, isopycnic diffusion term (m Tunits). ! DO j=Jstr,Jend DO i=Istr,Iend !^ cff=dt(ng)*pm(i,j)*pn(i,j)* & !^ & (FX(i+1,j)-FX(i,j)+ & !^ & FE(i,j+1)-FE(i,j))+ & !^ & dt(ng)*(FS(i,j,k2)-FS(i,j,k1)) !^ tl_cff=dt(ng)*pm(i,j)*pn(i,j)* & & (tl_FX(i+1,j)-tl_FX(i,j)+ & & tl_FE(i,j+1)-tl_FE(i,j))+ & & dt(ng)*(tl_FS(i,j,k2)-tl_FS(i,j,k1)) !^ t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)+cff !^ tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)+tl_cff #ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iThdif)=cff #endif END DO END DO END IF END DO K_LOOP END DO T_LOOP ! RETURN END SUBROUTINE rp_t3dmix2_iso_tile END MODULE rp_t3dmix2_mod