#include "cppdefs.h" MODULE rp_rho_eos_mod #if defined TL_IOMS && defined SOLVE3D ! !git $Id$ !svn $Id: rp_rho_eos.F 1188 2023-08-03 19:26:47Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routine computes "in situ" density and other associated ! ! quantitites as a function of potential temperature, salinity, ! ! and pressure from a polynomial expression (Jackett and McDougall, ! ! 1992). The polynomial expression was found from fitting to 248 ! ! values in the oceanographic ranges of salinity, potential ! ! temperature, and pressure. It assumes no pressure variation ! ! along geopotential surfaces, that is, depth (meters; negative) ! ! and pressure (dbar; assumed negative here) are interchangeable. ! ! ! ! Check Values: (T=3 C, S=35.5 PSU, Z=-5000 m) ! ! ! ! alpha = 2.1014611551470d-04 (1/Celsius) ! ! beta = 7.2575037309946d-04 (1/PSU) ! ! gamma = 3.9684764511766d-06 (1/Pa) ! ! den = 1050.3639165364 (kg/m3) ! ! den1 = 1028.2845117925 (kg/m3) ! ! sound = 1548.8815240223 (m/s) ! ! bulk = 23786.056026320 (Pa) ! ! ! ! Reference: ! ! ! ! Jackett, D. R. and T. J. McDougall, 1995, Minimal Adjustment of ! ! Hydrostatic Profiles to Achieve Static Stability, J. of Atmos. ! ! and Oceanic Techn., vol. 12, pp. 381-389. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: rp_rho_eos ! CONTAINS ! !*********************************************************************** SUBROUTINE rp_rho_eos (ng, tile, model) !*********************************************************************** ! USE mod_param USE mod_coupling USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, model ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! # include "tile.h" ! # ifdef PROFILE CALL wclock_on (ng, model, 14, __LINE__, MyFile) # endif CALL rp_rho_eos_tile (ng, tile, model, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), & # ifdef MASKING & GRID(ng) % rmask, & # endif # ifdef VAR_RHO_2D_NOT_YET & GRID(ng) % Hz, & & GRID(ng) % tl_Hz, & # endif & GRID(ng) % z_r, & & GRID(ng) % tl_z_r, & & GRID(ng) % z_w, & & GRID(ng) % tl_z_w, & & OCEAN(ng) % t, & & OCEAN(ng) % tl_t, & # ifdef VAR_RHO_2D_NOT_YET & COUPLING(ng) % rhoA, & & COUPLING(ng) % tl_rhoA, & & COUPLING(ng) % rhoS, & & COUPLING(ng) % tl_rhoS, & # endif # ifdef BV_FREQUENCY_NOT_YET & MIXING(ng) % tl_bvf, & # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES & MIXING(ng) % alpha, & & MIXING(ng) % tl_alpha, & & MIXING(ng) % beta, & & MIXING(ng) % tl_beta, & # ifdef LMD_DDMIX_NOT_YET & MIXING(ng) % tl_alfaobeta, & # endif # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET & OCEAN(ng) % tl_pden, & # endif & OCEAN(ng) % rho, & & OCEAN(ng) % tl_rho) # ifdef PROFILE CALL wclock_off (ng, model, 14, __LINE__, MyFile) # endif ! RETURN END SUBROUTINE rp_rho_eos # ifdef NONLIN_EOS ! !*********************************************************************** SUBROUTINE rp_rho_eos_tile (ng, tile, model, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, & # ifdef MASKING & rmask, & # endif # ifdef VAR_RHO_2D_NOT_YET & Hz, tl_Hz, & # endif & z_r, tl_z_r, & & z_w, tl_z_w, & & t, tl_t, & # ifdef VAR_RHO_2D_NOT_YET & rhoA, tl_rhoA, & & rhoS, tl_rhoS, & # endif # ifdef BV_FREQUENCY_NOT_YET & tl_bvf, & # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES & alpha, tl_alpha, & & beta, tl_beta, & # ifdef LMD_DDMIX_NOT_YET & tl_alfaobeta, & # endif # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET & tl_pden, & # endif & rho, tl_rho) !*********************************************************************** ! USE mod_param USE mod_eoscoef USE mod_scalars # ifdef SEDIMENT_NOT_YET USE mod_sediment # endif ! USE exchange_2d_mod USE exchange_3d_mod # ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : mp_exchange2d, mp_exchange3d # endif ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, model integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs ! # ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: rmask(LBi:,LBj:) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: Hz(LBi:,LBj:,:) # endif real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: z_w(LBi:,LBj:,0:) real(r8), intent(in) :: t(LBi:,LBj:,:,:,:) # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: tl_Hz(LBi:,LBj:,:) # endif real(r8), intent(in) :: tl_z_r(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_w(LBi:,LBj:,0:) real(r8), intent(in) :: tl_t(LBi:,LBj:,:,:,:) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(inout) :: alpha(LBi:,LBj:) real(r8), intent(inout) :: beta(LBi:,LBj:) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(out) :: rhoA(LBi:,LBj:) real(r8), intent(out) :: rhoS(LBi:,LBj:) real(r8), intent(out) :: tl_rhoA(LBi:,LBj:) real(r8), intent(out) :: tl_rhoS(LBi:,LBj:) # endif # ifdef BV_FREQUENCY_NOT_YET real(r8), intent(out) :: tl_bvf(LBi:,LBj:,0:) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(out) :: tl_alpha(LBi:,LBj:) real(r8), intent(out) :: tl_beta(LBi:,LBj:) # ifdef LMD_DDMIX_NOT_YET real(r8), intent(out) :: tl_alfaobeta(LBi:,LBj:,0:) # endif # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET real(r8), intent(out) :: tl_pden(LBi:,LBj:,:) # endif real(r8), intent(out) :: rho(LBi:,LBj:,:) real(r8), intent(out) :: tl_rho(LBi:,LBj:,:) # else # ifdef MASKING real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) # endif real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: tl_Hz(LBi:UBi,LBj:UBj,N(ng)) # endif real(r8), intent(in) :: tl_z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: tl_t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(inout) :: alpha(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: beta(LBi:UBi,LBj:UBj) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(out) :: rhoA(LBi:UBi,LBj:UBj) real(r8), intent(out) :: rhoS(LBi:UBi,LBj:UBj) real(r8), intent(out) :: tl_rhoA(LBi:UBi,LBj:UBj) real(r8), intent(out) :: tl_rhoS(LBi:UBi,LBj:UBj) # endif # ifdef BV_FREQUENCY_NOT_YET real(r8), intent(out) :: tl_bvf(LBi:UBi,LBj:UBj,0:N(ng)) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(out) :: tl_alpha(LBi:UBi,LBj:UBj) real(r8), intent(out) :: tl_beta(LBi:UBi,LBj:UBj) # ifdef LMD_DDMIX_NOT_YET real(r8), intent(out) :: tl_alfaobeta(LBi:UBi,LBj:UBj,0:N(ng)) # endif # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET real(r8), intent(out) :: tl_pden(LBi:UBi,LBj:UBj,N(ng)) # endif real(r8), intent(out) :: rho(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(out) :: tl_rho(LBi:UBi,LBj:UBj,N(ng)) # endif ! ! Local variable declarations. ! integer :: i, ised, itrc, j, k real(r8) :: SedDen, Tp, Tpr10, Ts, Tt, sqrtTs real(r8) :: tl_SedDen, tl_Tp, tl_Tpr10, tl_Ts, tl_Tt, tl_sqrtTs # ifdef BV_FREQUENCY_NOT_YET real(r8) :: bulk_dn, bulk_up, den_dn, den_up real(r8) :: tl_bulk_dn, tl_bulk_up, tl_den_dn, tl_den_up # endif real(r8) :: cff, cff1, cff2, cff3 real(r8) :: tl_cff, tl_cff1, tl_cff2, tl_cff3 real(r8), dimension(0:9) :: C real(r8), dimension(0:9) :: tl_C # ifdef EOS_TDERIVATIVE real(r8), dimension(0:9) :: dCdT(0:9) real(r8), dimension(0:9) :: tl_dCdT(0:9) real(r8), dimension(0:9) :: d2Cd2T(0:9) real(r8), dimension(IminS:ImaxS,N(ng)) :: DbulkDS real(r8), dimension(IminS:ImaxS,N(ng)) :: DbulkDT real(r8), dimension(IminS:ImaxS,N(ng)) :: Dden1DS real(r8), dimension(IminS:ImaxS,N(ng)) :: Dden1DT real(r8), dimension(IminS:ImaxS,N(ng)) :: Scof real(r8), dimension(IminS:ImaxS,N(ng)) :: Tcof real(r8), dimension(IminS:ImaxS,N(ng)) :: wrk real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_DbulkDS real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_DbulkDT real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_Dden1DS real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_Dden1DT real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_Scof real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_Tcof real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_wrk # endif real(r8), dimension(IminS:ImaxS,N(ng)) :: bulk real(r8), dimension(IminS:ImaxS,N(ng)) :: bulk0 real(r8), dimension(IminS:ImaxS,N(ng)) :: bulk1 real(r8), dimension(IminS:ImaxS,N(ng)) :: bulk2 real(r8), dimension(IminS:ImaxS,N(ng)) :: den real(r8), dimension(IminS:ImaxS,N(ng)) :: den1 real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_bulk real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_bulk0 real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_bulk1 real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_bulk2 real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_den real(r8), dimension(IminS:ImaxS,N(ng)) :: tl_den1 # include "set_bounds.h" ! !======================================================================= ! Nonlinear equation of state. Notice that this equation of state ! is only valid for potential temperature range of -2C to 40C and ! a salinity range of 0 PSU to 42 PSU. !======================================================================= ! DO j=JstrT,JendT DO k=1,N(ng) DO i=IstrT,IendT ! ! Check temperature and salinity lower values. Assign depth to the ! pressure. ! Tt=MAX(-2.0_r8,t(i,j,k,nrhs,itemp)) tl_Tt=(0.5_r8-SIGN(0.5_r8,-2.0_r8-t(i,j,k,nrhs,itemp)))* & & tl_t(i,j,k,nrhs,itemp)- & # ifdef TL_IOMS & 2.0_r8*(0.5_r8+SIGN(0.5_r8, & & -2.0_r8-t(i,j,k,nrhs,itemp))) # endif # ifdef SALINITY Ts=MAX(0.0_r8,t(i,j,k,nrhs,isalt)) tl_Ts=(0.5_r8-SIGN(0.5_r8,-t(i,j,k,nrhs,isalt)))* & & tl_t(i,j,k,nrhs,isalt) sqrtTs=SQRT(Ts) IF (Ts.ne.0.0_r8) THEN tl_sqrtTs=0.5_r8*(tl_Ts/sqrtTs)+ & # ifdef TL_IOMS & 0.5_r8*sqrtTs # endif ELSE tl_sqrtTs=0.0_r8 END IF # else Ts=0.0_r8 tl_Ts=0.0_r8 sqrtTs=0.0_r8 tl_sqrtTs=0.0_r8 # endif Tp=z_r(i,j,k) tl_Tp=tl_z_r(i,j,k) Tpr10=0.1_r8*Tp tl_Tpr10=0.1_r8*tl_Tp ! !----------------------------------------------------------------------- ! Compute BASIC STATE and tangent linear density (kg/m3) at standard ! one atmosphere pressure. !----------------------------------------------------------------------- ! C(0)=Q00+Tt*(Q01+Tt*(Q02+Tt*(Q03+Tt*(Q04+Tt*Q05)))) C(1)=U00+Tt*(U01+Tt*(U02+Tt*(U03+Tt*U04))) C(2)=V00+Tt*(V01+Tt*V02) # ifdef EOS_TDERIVATIVE ! dCdT(0)=Q01+Tt*(2.0_r8*Q02+Tt*(3.0_r8*Q03+Tt*(4.0_r8*Q04+ & & Tt*5.0_r8*Q05))) dCdT(1)=U01+Tt*(2.0_r8*U02+Tt*(3.0_r8*U03+Tt*4.0_r8*U04)) dCdT(2)=V01+Tt*2.0_r8*V02 # endif tl_C(0)=tl_Tt*dCdT(0)+ & # ifdef TL_IOMS & Q00-Tt*Tt*(Q02+Tt*(2.0_r8*Q03+Tt*(3.0_r8*Q04+ & & Tt*4.0_r8*Q05))) # endif tl_C(1)=tl_Tt*dCdT(1)+ & # ifdef TL_IOMS & U00-Tt*Tt*(U02+Tt*(2.0_r8*U03+Tt*3.0_r8*U04)) # endif tl_C(2)=tl_Tt*dCdT(2)+ & # ifdef TL_IOMS & V00-V02*Tt*Tt # endif ! den1(i,k)=C(0)+Ts*(C(1)+sqrtTs*C(2)+Ts*W00) tl_den1(i,k)=tl_C(0)+ & & tl_Ts*(C(1)+sqrtTs*C(2)+Ts*W00)+ & & Ts*(tl_C(1)+tl_sqrtTs*C(2)+ & & sqrtTs*tl_C(2)+tl_Ts*W00)- & # ifdef TL_IOMS & Ts*(C(1)+2.0_r8*sqrtTs*C(2)+Ts*W00) # endif # ifdef EOS_TDERIVATIVE ! ! Compute d(den1)/d(S) and d(den1)/d(T) derivatives used in the ! computation of thermal expansion and saline contraction ! coefficients. ! d2Cd2T(0)=2.0_r8*Q02+Tt*(6.0_r8*Q03+Tt*(12.0_r8*Q04+ & & Tt*20.0_r8*Q05)) d2Cd2T(1)=2.0_r8*U02+Tt*(6.0_r8*U03+Tt*12.0_r8*U04) d2Cd2T(2)=2.0_r8*V02 ! tl_dCdT(0)=tl_Tt*d2Cd2T(0)+ & # ifdef TL_IOMS & Q01-Tt*Tt*(3.0_r8*Q03+Tt*(8.0_r8*Q04+ & & Tt*15.0_r8*Q05*Tt)) # endif tl_dCdT(1)=tl_Tt*d2Cd2T(1)+ & # ifdef TL_IOMS & U01-Tt*Tt*(3.0_r8*U03+Tt*8.0_r8*U04) # endif tl_dCdT(2)=tl_Tt*d2Cd2T(2)+ & # ifdef TL_IOMS & V01 # endif ! Dden1DS(i,k)=C(1)+1.5_r8*C(2)*sqrtTs+2.0_r8*W00*Ts Dden1DT(i,k)=dCdT(0)+Ts*(dCdT(1)+sqrtTs*dCdT(2)) ! tl_Dden1DS(i,k)=tl_C(1)+ & & 1.5_r8*(tl_C(2)*sqrtTs+ & & C(2)*tl_sqrtTs)+ & & 2.0_r8*W00*tl_Ts- & # ifdef TL_IOMS & 1.5_r8*C(2)*sqrtTs # endif tl_Dden1DT(i,k)=tl_dCdT(0)+ & & tl_Ts*(dCdT(1)+sqrtTs*dCdT(2))+ & & Ts*(tl_dCdT(1)+tl_sqrtTs*dCdT(2)+ & & sqrtTs*tl_dCdT(2))- & # ifdef TL_IOMS & Ts*(dCdT(1)+2.0_r8*sqrtTs*dCdT(2)) # endif # endif ! !----------------------------------------------------------------------- ! Compute BASIC STATE and tangent linear secant bulk modulus. !----------------------------------------------------------------------- ! C(3)=A00+Tt*(A01+Tt*(A02+Tt*(A03+Tt*A04))) C(4)=B00+Tt*(B01+Tt*(B02+Tt*B03)) C(5)=D00+Tt*(D01+Tt*D02) C(6)=E00+Tt*(E01+Tt*(E02+Tt*E03)) C(7)=F00+Tt*(F01+Tt*F02) C(8)=G01+Tt*(G02+Tt*G03) C(9)=H00+Tt*(H01+Tt*H02) # ifdef EOS_TDERIVATIVE ! dCdT(3)=A01+Tt*(2.0_r8*A02+Tt*(3.0_r8*A03+Tt*4.0_r8*A04)) dCdT(4)=B01+Tt*(2.0_r8*B02+Tt*3.0_r8*B03) dCdT(5)=D01+Tt*2.0_r8*D02 dCdT(6)=E01+Tt*(2.0_r8*E02+Tt*3.0_r8*E03) dCdT(7)=F01+Tt*2.0_r8*F02 dCdT(8)=G02+Tt*2.0_r8*G03 dCdT(9)=H01+Tt*2.0_r8*H02 # endif ! tl_C(3)=tl_Tt*dCdT(3)+ & # ifdef TL_IOMS & A00-Tt*Tt*(A02+Tt*(2.0_r8*A03+Tt*3.0_r8*A04)) # endif tl_C(4)=tl_Tt*dCdT(4)+ & # ifdef TL_IOMS & B00-Tt*Tt*(B02+Tt*2.0_r8*B03) # endif tl_C(5)=tl_Tt*dCdT(5)+ & # ifdef TL_IOMS & D00-Tt*Tt*D02 # endif tl_C(6)=tl_Tt*dCdT(6)+ & # ifdef TL_IOMS & E00-Tt*Tt*(E02+Tt*2.0_r8*E03) # endif tl_C(7)=tl_Tt*dCdT(7)+ & # ifdef TL_IOMS & F00-Tt*Tt*F02 # endif tl_C(8)=tl_Tt*dCdT(8)+ & # ifdef TL_IOMS & G01-Tt*Tt*G03 # endif tl_C(9)=tl_Tt*dCdT(9)+ & # ifdef TL_IOMS & H00-Tt*Tt*H02 # endif ! bulk0(i,k)=C(3)+Ts*(C(4)+sqrtTs*C(5)) bulk1(i,k)=C(6)+Ts*(C(7)+sqrtTs*G00) bulk2(i,k)=C(8)+Ts*C(9) bulk (i,k)=bulk0(i,k)-Tp*(bulk1(i,k)-Tp*bulk2(i,k)) ! tl_bulk0(i,k)=tl_C(3)+ & & tl_Ts*(C(4)+sqrtTs*C(5))+ & & Ts*(tl_C(4)+tl_sqrtTs*C(5)+ & & sqrtTs*tl_C(5))- & # ifdef TL_IOMS & Ts*(C(4)+2.0_r8*sqrtTs*C(5)) # endif tl_bulk1(i,k)=tl_C(6)+ & & tl_Ts*(C(7)+sqrtTs*G00)+ & & Ts*(tl_C(7)+tl_sqrtTs*G00)- & # ifdef TL_IOMS & Ts*(C(7)+sqrtTs*G00) # endif tl_bulk2(i,k)=tl_C(8)+tl_Ts*C(9)+Ts*tl_C(9)- & # ifdef TL_IOMS & Ts*C(9) # endif tl_bulk (i,k)=tl_bulk0(i,k)- & & tl_Tp*(bulk1(i,k)-Tp*bulk2(i,k))- & & Tp*(tl_bulk1(i,k)- & & tl_Tp*bulk2(i,k)- & & Tp*tl_bulk2(i,k))+ & # ifdef TL_IOMS & Tp*(bulk1(i,k)-2.0_r8*Tp*bulk2(i,k)) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES ! ! Compute d(bulk)/d(S) and d(bulk)/d(T) derivatives used ! in the computation of thermal expansion and saline contraction ! coefficients. ! d2Cd2T(3)=2.0_r8*A02+Tt*(6.0_r8*A03+Tt*12.0_r8*A04) d2Cd2T(4)=2.0_r8*B02+Tt*6.0_r8*B03 d2Cd2T(5)=2.0_r8*D02 d2Cd2T(6)=2.0_r8*E02+Tt*6.0_r8*E03 d2Cd2T(7)=2.0_r8*F02 d2Cd2T(8)=2.0_r8*G03 d2Cd2T(9)=2.0_r8*H02 ! tl_dCdT(3)=tl_Tt*d2Cd2T(3)+ & # ifdef TL_IOMS & A01-Tt*Tt*(3.0_r8*A03+Tt*8.0_r8*A04) # endif tl_dCdT(4)=tl_Tt*d2Cd2T(4)+ & # ifdef TL_IOMS & B01-Tt*Tt*3.0_r8*B03 # endif tl_dCdT(5)=tl_Tt*d2Cd2T(5)+ & # ifdef TL_IOMS & D01 # endif tl_dCdT(6)=tl_Tt*d2Cd2T(6)+ & # ifdef TL_IOMS & E01-Tt*Tt*3.0_r8*E03 # endif tl_dCdT(7)=tl_Tt*d2Cd2T(7)+ & # ifdef TL_IOMS & F01 # endif tl_dCdT(8)=tl_Tt*d2Cd2T(8)+ & # ifdef TL_IOMS & G02 # endif tl_dCdT(9)=tl_Tt*d2Cd2T(9)+ & # ifdef TL_IOMS & H01 # endif ! DbulkDS(i,k)=C(4)+sqrtTs*1.5_r8*C(5)- & & Tp*(C(7)+sqrtTs*1.5_r8*G00-Tp*C(9)) DbulkDT(i,k)=dCdT(3)+Ts*(dCdT(4)+sqrtTs*dCdT(5))- & & Tp*(dCdT(6)+Ts*dCdT(7)- & & Tp*(dCdT(8)+Ts*dCdT(9))) ! tl_DbulkDS(i,k)=tl_C(4)+ & & 1.5_r8*(tl_sqrtTs*C(5)+ & & sqrtTs*tl_C(5))- & & tl_Tp*(C(7)+sqrtTs*1.5_r8*G00- & & Tp*C(9))- & & Tp*(tl_C(7)+tl_sqrtTs*1.5_r8*G00- & & tl_Tp*C(9)-Tp*tl_C(9))- & # ifdef TL_IOMS & sqrtTs*1.5_r8*C(5)+ & & Tp*(C(7)+sqrtTs*1.5_r8*G00-2.0_r8*Tp*C(9)) # endif tl_DbulkDT(i,k)=tl_dCdT(3)+ & & tl_Ts*(dCdT(4)+sqrtTs*dCdT(5))+ & & Ts*(tl_dCdT(4)+tl_sqrtTs*dCdT(5)+ & & sqrtTs*tl_dCdT(5))- & & tl_Tp*(dCdT(6)+Ts*dCdT(7)- & & Tp*(dCdT(8)+Ts*dCdT(9)))- & & Tp*(tl_dCdT(6)+tl_Ts*dCdT(7)+Ts*tl_dCdT(7)- & & tl_Tp*(dCdT(8)+Ts*dCdT(9))- & & Tp*(tl_dCdT(8)+tl_Ts*dCdT(9)+ & & Ts*tl_dCdT(9)))- & # ifdef TL_IOMS & Ts*(dCdT(4)+2.0_r8*sqrtTs*dCdT(5))+ & & Tp*(dCdT(6)+2.0_r8*Ts*dCdT(7)- & & Tp*(2.0_r8*dCdT(8)+ & & 3.0_r8*Ts*dCdT(9))) # endif # endif ! !----------------------------------------------------------------------- ! Compute local "in situ" density anomaly (kg/m3 - 1000). !----------------------------------------------------------------------- ! cff=1.0_r8/(bulk(i,k)+Tpr10) tl_cff=-cff*cff*(tl_bulk(i,k)+tl_Tpr10)+ & # ifdef TL_IOMS & 2.0_r8*cff # endif den(i,k)=den1(i,k)*bulk(i,k)*cff tl_den(i,k)=tl_den1(i,k)*bulk(i,k)*cff+ & & den1(i,k)*(tl_bulk(i,k)*cff+ & & bulk(i,k)*tl_cff)- & # ifdef TL_IOMS & 2.0_r8*den(i,k) # endif # if defined SEDIMENT_NOT_YET && defined SED_DENS_NOT_YET SedDen=0.0_r8 tl_SedDen=0.0_r8 DO ised=1,NST itrc=idsed(ised) cff1=1.0_r8/Srho(ised,ng) SedDen=SedDen+ & & t(i,j,k,nrhs,itrc)* & & (Srho(ised,ng)-den(i,k))*cff1 tl_SedDen=tl_SedDen+ & & (tl_t(i,j,k,nrhs,itrc)* & & (Srho(ised,ng)-den(i,k))- & & t(i,j,k,nrhs,itrc)* & & tl_den(i,k))*cff1+ & # ifdef TL_IOMS & t(i,j,k,nrhs,itrc)*den(i,k)*cff1 # endif END DO den(i,k)=den(i,k)+SedDen tl_den(i,k)=tl_den(i,k)+tl_SedDen # endif den(i,k)=den(i,k)-1000.0_r8 # ifdef TL_IOMS tl_den(i,k)=tl_den(i,k)-1000.0_r8 # endif # ifdef MASKING den(i,k)=den(i,k)*rmask(i,j) tl_den(i,k)=tl_den(i,k)*rmask(i,j) # endif END DO END DO # ifdef VAR_RHO_2D_NOT_YET ! !----------------------------------------------------------------------- ! Compute vertical averaged density (rhoA) and density perturbation ! (rhoS) used in barotropic pressure gradient. !----------------------------------------------------------------------- ! DO i=IstrT,IendT cff1=den(i,N(ng))*Hz(i,j,N(ng)) tl_cff1=tl_den(i,N(ng))*Hz(i,j,N(ng))+ & & den(i,N(ng))*tl_Hz(i,j,N(ng))- & # ifdef TL_IOMS & cff1 # endif rhoS(i,j)=0.5_r8*cff1*Hz(i,j,N(ng)) tl_rhoS(i,j)=0.5_r8*(tl_cff1*Hz(i,j,N(ng))+ & & cff1*tl_Hz(i,j,N(ng)))- & # ifdef TL_IOMS & rhoS(i,j) # endif rhoA(i,j)=cff1 tl_rhoA(i,j)=tl_cff1 END DO DO k=N(ng)-1,1,-1 DO i=IstrT,IendT cff1=den(i,k)*Hz(i,j,k) tl_cff1=tl_den(i,k)*Hz(i,j,k)+ & & den(i,k)*tl_Hz(i,j,k)- & # ifdef TL_IOMS & cff1 # endif rhoS(i,j)=rhoS(i,j)+Hz(i,j,k)*(rhoA(i,j)+0.5_r8*cff1) tl_rhoS(i,j)=tl_rhoS(i,j)+ & & tl_Hz(i,j,k)*(rhoA(i,j)+0.5_r8*cff1)+ & & Hz(i,j,k)*(tl_rhoA(i,j)+0.5_r8*tl_cff1)- & # ifdef TL_IOMS & Hz(i,j,k)*(rhoA(i,j)+0.5_r8*cff1) # endif rhoA(i,j)=rhoA(i,j)+cff1 tl_rhoA(i,j)=tl_rhoA(i,j)+tl_cff1 END DO END DO cff2=1.0_r8/rho0 DO i=IstrT,IendT cff1=1.0_r8/(z_w(i,j,N(ng))-z_w(i,j,0)) tl_cff1=-cff1*cff1*(tl_z_w(i,j,N(ng))-tl_z_w(i,j,0))+ & # ifdef TL_IOMS & 2.0_r8*cff1 # endif ! ! Here we reverse the order of the NL and TL operations since an ! intermeridiate value of rhoA and rhoS is needed because they are ! recursive. ! tl_rhoA(i,j)=cff2*(tl_cff1*rhoA(i,j)+cff1*tl_rhoA(i,j)) rhoA(i,j)=cff2*cff1*rhoA(i,j) # ifdef TL_IOMS tl_rhoA(i,j)=tl_rhoA(i,j)-rhoA(i,j) # endif tl_rhoS(i,j)=2.0_r8*cff2* & & cff1*(2.0_r8*tl_cff1*rhoS(i,j)+ & & cff1*tl_rhoS(i,j)) rhoS(i,j)=2.0_r8*cff1*cff1*cff2*rhoS(i,j) # ifdef TL_IOMS tl_rhoS(i,j)=tl_rhoS(i,j)-2.0_r8*rhoS(i,j) # endif END DO # endif # if defined BV_FREQUENCY_NOT_YET ! !----------------------------------------------------------------------- ! Compute Brunt-Vaisala frequency (1/s2) at horizontal RHO-points ! and vertical W-points: ! ! bvf = - g/rho d(rho)/d(z). ! ! The density anomaly difference is computed by lowering/rising the ! water parcel above/below adiabatically at W-point depth "z_w". !----------------------------------------------------------------------- ! DO k=1,N(ng)-1 DO i=IstrT,IendT bulk_up=bulk0(i,k+1)- & & z_w(i,j,k)*(bulk1(i,k+1)- & & bulk2(i,k+1)*z_w(i,j,k)) tl_bulk_up=tl_bulk0(i,k+1)- & & tl_z_w(i,j,k)*(bulk1(i,k+1)- & & bulk2(i,k+1)*z_w(i,j,k))- & & z_w(i,j,k)*(tl_bulk1(i,k+1)- & & tl_bulk2(i,k+1)*z_w(i,j,k)- & & bulk2(i,k+1)*tl_z_w(i,j,k))+ & # ifdef TL_IOMS & z_w(i,j,k)*(bulk1(i,k+1)- & & 2.0_r8*bulk2(i,k+1)*z_w(i,j,k)) # endif bulk_dn=bulk0(i,k )- & & z_w(i,j,k)*(bulk1(i,k )- & & bulk2(i,k )*z_w(i,j,k)) tl_bulk_dn=tl_bulk0(i,k )- & & tl_z_w(i,j,k)*(bulk1(i,k )- & & bulk2(i,k )*z_w(i,j,k))- & & z_w(i,j,k)*(tl_bulk1(i,k )- & & tl_bulk2(i,k )*z_w(i,j,k)- & & bulk2(i,k )*tl_z_w(i,j,k))+ & # ifdef TL_IOMS & z_w(i,j,k)*(bulk1(i,k )- & & 2.0_r8*bulk2(i,k )*z_w(i,j,k)) # endif cff1=1.0_r8/(bulk_up+0.1_r8*z_w(i,j,k)) cff2=1.0_r8/(bulk_dn+0.1_r8*z_w(i,j,k)) tl_cff1=-cff1*cff1*(tl_bulk_up+0.1_r8*tl_z_w(i,j,k))+ & # ifdef TL_IOMS & 2.0_r8*cff1 # endif tl_cff2=-cff2*cff2*(tl_bulk_dn+0.1_r8*tl_z_w(i,j,k))+ & # ifdef TL_IOMS & 2.0_r8*cff2 # endif den_up=cff1*(den1(i,k+1)*bulk_up) den_dn=cff2*(den1(i,k )*bulk_dn) tl_den_up=tl_cff1*(den1(i,k+1)*bulk_up)+ & & cff1*(tl_den1(i,k+1)*bulk_up+ & & den1(i,k+1)*tl_bulk_up)- & # ifdef TL_IOMS & 2.0_r8*den_up # endif tl_den_dn=tl_cff2*(den1(i,k )*bulk_dn)+ & & cff2*(tl_den1(i,k )*bulk_dn+ & & den1(i,k )*tl_bulk_dn)- & # ifdef TL_IOMS & 2.0_r8*den_dn # endif !^ bvf(i,j,k)=-g*(den_up-den_dn)/ & !^ & (0.5_r8*(den_up+den_dn)* & !^ & (z_r(i,j,k+1)-z_r(i,j,k))) !^ cff3=1.0_r8/(0.5_r8*(den_up+den_dn)* & & (z_r(i,j,k+1)-z_r(i,j,k))) tl_cff3=-cff3*cff3* & & 0.5_r8*((tl_den_up+tl_den_dn)* & & (z_r(i,j,k+1)-z_r(i,j,k))+ & & (den_up+den_dn)* & & (tl_z_r(i,j,k+1)-tl_z_r(i,j,k)))+ & # ifdef TL_IOMS & 3.0_r8*cff3 # endif tl_bvf(i,j,k)=-g*((tl_den_up-tl_den_dn)*cff3+ & & (den_up-den_dn)*tl_cff3)+ & # ifdef TL_IOMS & 2.0_r8*g*(den_up-den_dn)*cff3 # endif END DO END DO DO i=IstrT,IendT !^ bvf(i,j,0)=0.0_r8 !^ tl_bvf(i,j,0)=0.0_r8 !^ bvf(i,j,N(ng))=0.0_r8 !^ tl_bvf(i,j,N(ng))=0.0_r8 END DO # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES ! !----------------------------------------------------------------------- ! Compute thermal expansion (1/Celsius) and saline contraction ! (1/PSU) coefficients. !----------------------------------------------------------------------- ! # ifdef LMD_DDMIX_NOT_YET DO k=1,N(ng) # else DO k=N(ng),N(ng) # endif DO i=IstrT,IendT Tpr10=0.1_r8*z_r(i,j,k) tl_Tpr10=0.1_r8*tl_z_r(i,j,k) ! ! Compute thermal expansion and saline contraction coefficients. ! cff=bulk(i,k)+Tpr10 tl_cff=tl_bulk(i,k)+tl_Tpr10 cff1=Tpr10*den1(i,k) tl_cff1=tl_Tpr10*den1(i,k)+Tpr10*tl_den1(i,k)- & # ifdef TL_IOMS & cff1 # endif cff2=bulk(i,k)*cff tl_cff2=tl_bulk(i,k)*cff+bulk(i,k)*tl_cff- & # ifdef TL_IOMS & cff2 # endif wrk(i,k)=(den(i,k)+1000.0_r8)*cff*cff tl_wrk(i,k)=cff*(cff*tl_den(i,k)+ & & 2.0_r8*tl_cff*(den(i,k)+1000.0_r8))- & # ifdef TL_IOMS & cff*cff*(2.0_r8*den(i,k)+1000.0_r8) # endif Tcof(i,k)=-(DbulkDT(i,k)*cff1+ & & Dden1DT(i,k)*cff2) tl_Tcof(i,k)=-(tl_DbulkDT(i,k)*cff1+ & & DbulkDT(i,k)*tl_cff1+ & & tl_Dden1DT(i,k)*cff2+ & & Dden1DT(i,k)*tl_cff2)- & # ifdef TL_IOMS & Tcof(i,k) # endif Scof(i,k)= (DbulkDS(i,k)*cff1+ & & Dden1DS(i,k)*cff2) tl_Scof(i,k)= (tl_DbulkDS(i,k)*cff1+ & & DbulkDS(i,k)*tl_cff1+ & & tl_Dden1DS(i,k)*cff2+ & & Dden1DS(i,k)*tl_cff2)- & # ifdef TL_IOMS & Scof(i,k) # endif # ifdef LMD_DDMIX_NOT_YET !^ alfaobeta(i,j,k)=Tcof(i,k)/Scof(i,k) !^ tl_alfaobeta(i,j,k)=(tl_Tcof(i,k)*Scof(i,k)- & & Tcof(i,k)*tl_Scof(i,k))/ & & (Scof(i,k)*Scof(i,k))+ & # ifdef TL_IOMS & Tcof(i,k)/Scof(i,k) # endif # endif END DO IF (k.eq.N(ng)) THEN DO i=IstrT,IendT cff=1.0_r8/wrk(i,N(ng)) tl_cff=-cff*cff*tl_wrk(i,N(ng))+ & # ifdef TL_IOMS & 2.0_r8*cff # endif alpha(i,j)=cff*Tcof(i,N(ng)) tl_alpha(i,j)=tl_cff*Tcof(i,N(ng))+cff*tl_Tcof(i,N(ng))- & # ifdef TL_IOMS & alpha(i,j) # endif beta (i,j)=cff*Scof(i,N(ng)) tl_beta (i,j)=tl_cff*Scof(i,N(ng))+cff*tl_Scof(i,N(ng))- & # ifdef TL_IOMS & beta (i,j) # endif END DO END IF END DO # endif ! !----------------------------------------------------------------------- ! Load "in situ" density anomaly (kg/m3 - 1000) and potential ! density anomaly (kg/m3 - 1000) referenced to the surface into global ! arrays. Notice that this is done in a separate (i,k) DO-loops to ! facilitate the adjoint. !----------------------------------------------------------------------- ! DO k=1,N(ng) DO i=IstrT,IendT rho(i,j,k)=den(i,k) tl_rho(i,j,k)=tl_den(i,k) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET !^ pden(i,j,k)=(den1(i,k)-1000.0_r8) ! This gives a fatal !^ ! result in 4D-Var tl_pden(i,j,k)=tl_den1(i,k)- & # ifdef TL_IOMS & 1000.0_r8 ! posterior error... # endif # ifdef MASKING !^ pden(i,j,k)=pden(i,k)*rmask(i,j) !^ tl_pden(i,j,k)=tl_pden(i,k)*rmask(i,j) # endif # endif END DO END DO END DO ! !----------------------------------------------------------------------- ! Exchange boundary data. !----------------------------------------------------------------------- ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & rho) CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & tl_rho) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET !^ CALL exchange_r3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & pden) !^ CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & tl_pden) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES_NOT_YET # ifdef LMD_DDMIX_NOT_YET !^ CALL exchange_w3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & alfaobeta) !^ CALL exchange_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & tl_alfaobeta) # endif CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & alpha) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_alpha) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & beta) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_beta) # endif # ifdef VAR_RHO_2D_NOT_YET CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & rhoA) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_rhoA) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & rhoS) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_rhoS) # endif # ifdef BV_FREQUENCY_NOT_YET !^ CALL exchange_w3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & bvf) !^ CALL exchange_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & tl_bvf) # endif END IF # ifdef DISTRIBUTE ! CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & rho) CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_rho) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET !^ CALL mp_exchange3d (ng, tile, model, 1, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & pden) !^ CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_pden) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES # ifdef LMD_DDMIX_NOT_YET !^ CALL mp_exchange3d (ng, tile, model, 1, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & alfaobeta) !^ CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 0, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_alfaobeta) # endif CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & alpha, beta) CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_alpha, tl_beta) # endif # ifdef VAR_RHO_2D_NOT_YET CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & rhoA, rhoS) CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_rhoA, tl_rhoS) # endif # ifdef BV_FREQUENCY_NOT_YET !^ CALL mp_exchange3d (ng, tile, model, 1, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & bvf) !^ CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 0, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_bvf) # endif # endif ! RETURN END SUBROUTINE rp_rho_eos_tile # endif # ifndef NONLIN_EOS ! !*********************************************************************** SUBROUTINE rp_rho_eos_tile (ng, tile, model, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, & # ifdef MASKING & rmask, & # endif # ifdef VAR_RHO_2D_NOT_YET & Hz, tl_Hz, & # endif & z_r, tl_z_r, & & z_w, tl_z_w, & & t, tl_t, & # ifdef VAR_RHO_2D_NOT_YET & rhoA, tl_rhoA, & & rhoS, tl_rhoS, & # endif # ifdef BV_FREQUENCY_NOT_YET & tl_bvf, & # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES & alpha, tl_alpha, & & beta, tl_beta, & # ifdef LMD_DDMIX_NOT_YET & tl_alfaobeta, & # endif # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET & tl_pden, & # endif & rho, tl_rho) !*********************************************************************** ! USE mod_param USE mod_scalars # ifdef SEDIMENT_NOT_YET USE mod_sediment # endif ! USE exchange_2d_mod USE exchange_3d_mod # ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : mp_exchange2d, mp_exchange3d # endif ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, model integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs ! # ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: rmask(LBi:,LBj:) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: Hz(LBi:,LBj:,:) # endif real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: z_w(LBi:,LBj:,0:) real(r8), intent(in) :: t(LBi:,LBj:,:,:,:) # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: tl_Hz(LBi:,LBj:,:) # endif real(r8), intent(in) :: tl_z_r(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_w(LBi:,LBj:,0:) real(r8), intent(in) :: tl_t(LBi:,LBj:,:,:,:) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(inout) :: alpha(LBi:,LBj:) real(r8), intent(inout) :: beta(LBi:,LBj:) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(out) :: rhoA(LBi:,LBj:) real(r8), intent(out) :: rhoS(LBi:,LBj:) real(r8), intent(out) :: tl_rhoA(LBi:,LBj:) real(r8), intent(out) :: tl_rhoS(LBi:,LBj:) # endif # ifdef BV_FREQUENCY_NOT_YET real(r8), intent(out) :: tl_bvf(LBi:,LBj:,0:) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(out) :: tl_alpha(LBi:,LBj:) real(r8), intent(out) :: tl_beta(LBi:,LBj:) # ifdef LMD_DDMIX_NOT_YET real(r8), intent(out) :: tl_alfaobeta(LBi:,LBj:,0:) # endif # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET real(r8), intent(out) :: tl_pden(LBi:,LBj:,:) # endif real(r8), intent(out) :: rho(LBi:,LBj:,:) real(r8), intent(out) :: tl_rho(LBi:,LBj:,:) # else # ifdef MASKING real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) # endif real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: tl_Hz(LBi:UBi,LBj:UBj,N(ng)) # endif real(r8), intent(in) :: tl_z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: tl_t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(inout) :: alpha(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: beta(LBi:UBi,LBj:UBj) # endif # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(out) :: rhoA(LBi:UBi,LBj:UBj) real(r8), intent(out) :: rhoS(LBi:UBi,LBj:UBj) real(r8), intent(out) :: tl_rhoA(LBi:UBi,LBj:UBj) real(r8), intent(out) :: tl_rhoS(LBi:UBi,LBj:UBj) # endif # ifdef BV_FREQUENCY_NOT_YET real(r8), intent(out) :: tl_bvf(LBi:UBi,LBj:UBj,0:N(ng)) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES real(r8), intent(out) :: tl_alpha(LBi:UBi,LBj:UBj) real(r8), intent(out) :: tl_beta(LBi:UBi,LBj:UBj) # ifdef LMD_DDMIX_NOT_YET real(r8), intent(out) :: tl_alfaobeta(LBi:UBi,LBj:UBj,0:N(ng)) # endif # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET real(r8), intent(out) :: tl_pden(LBi:UBi,LBj:UBj,N(ng)) # endif real(r8), intent(out) :: rho(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(out) :: tl_rho(LBi:UBi,LBj:UBj,N(ng)) # endif ! ! Local variable declarations. ! integer :: i, ised, itrc, j, k real(r8) :: SedDen, cff, cff1, cff2 real(r8) :: tl_SedDen, tl_cff, tl_cff1 # include "set_bounds.h" ! !======================================================================= ! Tangent linear, linear equation of state. !======================================================================= ! !----------------------------------------------------------------------- ! Compute "in situ" density anomaly (kg/m3 - 1000) using the linear ! equation of state. !----------------------------------------------------------------------- ! DO j=JstrT,JendT DO k=1,N(ng) DO i=IstrT,IendT rho(i,j,k)=R0(ng)- & & R0(ng)*Tcoef(ng)*(t(i,j,k,nrhs,itemp)-T0(ng)) tl_rho(i,j,k)=-R0(ng)*Tcoef(ng)*tl_t(i,j,k,nrhs,itemp)+ & # ifdef TL_IOMS & R0(ng)+R0(ng)*Tcoef(ng)*T0(ng) # endif # ifdef SALINITY rho(i,j,k)=rho(i,j,k)+ & & R0(ng)*Scoef(ng)*(t(i,j,k,nrhs,isalt)-S0(ng)) tl_rho(i,j,k)=tl_rho(i,j,k)+ & & R0(ng)*Scoef(ng)*tl_t(i,j,k,nrhs,isalt)- & # ifdef TL_IOMS & R0(ng)*Scoef(ng)*S0(ng) # endif # endif # if defined SEDIMENT_NOT_YET && defined SED_DENS_NOT_YET SedDen=0.0_r8 tl_SedDen=0.0_r8 DO ised=1,NST itrc=idsed(ised) cff1=1.0_r8/Srho(ised,ng) SedDen=SedDen+ & & t(i,j,k,nrhs,itrc)* & & (Srho(ised,ng)-rho(i,j,k))*cff1 tl_SedDen=tl_SedDen+ & & (tl_t(i,j,k,nrhs,itrc)* & & (Srho(ised,ng)-rho(i,j,k))- & & t(i,j,k,nrhs,itrc)* & & tl_rho(i,j,k))*cff1+ & # ifdef TL_IOMS & t(i,j,k,nrhs,itrc)*rho(i,j,k)*cff1 # endif END DO rho(i,j,k)=rho(i,j,k)+SedDen tl_rho(i,j,k)=tl_rho(i,j,k)+tl_SedDen # endif rho(i,j,k)=rho(i,j,k)-1000.0_r8 # ifdef TL_IOMS tl_rho(i,j,k)=tl_rho(i,j,k)-1000.0_r8 # endif # ifdef MASKING rho(i,j,k)=rho(i,j,k)*rmask(i,j) tl_rho(i,j,k)=tl_rho(i,j,k)*rmask(i,j) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET !^ pden(i,j,k)=rho(i,j,k) !^ tl_pden(i,j,k)=tl_rho(i,j,k) # endif END DO END DO # ifdef VAR_RHO_2D_NOT_YET ! !----------------------------------------------------------------------- ! Compute vertical averaged density (rhoA) and density perturbation ! used (rhoS) in barotropic pressure gradient. !----------------------------------------------------------------------- ! DO i=IstrT,IendT cff1=rho(i,j,N(ng))*Hz(i,j,N(ng)) tl_cff1=tl_rho(i,j,N(ng))*Hz(i,j,N(ng))+ & & rho(i,j,N(ng))*tl_Hz(i,j,N(ng))- & # ifdef TL_IOMS & cff1 # endif rhoS(i,j)=0.5_r8*cff1*Hz(i,j,N(ng)) tl_rhoS(i,j)=0.5_r8*(tl_cff1*Hz(i,j,N(ng))+ & & cff1*tl_Hz(i,j,N(ng)))- & # ifdef TL_IOMS & rhoS(i,j) # endif rhoA(i,j)=cff1 tl_rhoA(i,j)=tl_cff1 END DO DO k=N(ng)-1,1,-1 DO i=IstrT,IendT cff1=rho(i,j,k)*Hz(i,j,k) tl_cff1=tl_rho(i,j,k)*Hz(i,j,k)+ & & rho(i,j,k)*tl_Hz(i,j,k)- & # ifdef TL_IOMS & cff1 # endif rhoS(i,j)=rhoS(i,j)+Hz(i,j,k)*(rhoA(i,j)+0.5_r8*cff1) tl_rhoS(i,j)=tl_rhoS(i,j)+ & & tl_Hz(i,j,k)*(rhoA(i,j)+0.5_r8*cff1)+ & & Hz(i,j,k)*(tl_rhoA(i,j)+0.5_r8*tl_cff1)- & # ifdef TL_IOMS & Hz(i,j,k)*(rhoA(i,j)+0.5_r8*cff1) # endif rhoA(i,j)=rhoA(i,j)+cff1 tl_rhoA(i,j)=tl_rhoA(i,j)+tl_cff1 END DO END DO cff2=1.0_r8/rho0 DO i=IstrT,IendT cff1=1.0_r8/(z_w(i,j,N(ng))-z_w(i,j,0)) tl_cff1=-cff1*cff1*(tl_z_w(i,j,N(ng))-tl_z_w(i,j,0))+ & # ifdef TL_IOMS & 2.0_r8*cff1 # endif ! ! Here we reverse the order of the NL and TL operations since an ! intermeridiate value of rhoA and rhoS is needed because they are ! recursive. ! tl_rhoA(i,j)=cff2*(tl_cff1*rhoA(i,j)+cff1*tl_rhoA(i,j)) rhoA(i,j)=cff2*cff1*rhoA(i,j) # ifdef TL_IOMS tl_rhoA(i,j)=tl_rhoA(i,j)-rhoA(i,j) # endif tl_rhoS(i,j)=2.0_r8*cff2* & & cff1*(2.0_r8*tl_cff1*rhoS(i,j)+ & & cff1*tl_rhoS(i,j)) rhoS(i,j)=2.0_r8*cff1*cff1*cff2*rhoS(i,j) # ifdef TL_IOMS tl_rhoS(i,j)=tl_rhoS(i,j)-2.0_r8*rhoS(i,j) # endif END DO # endif # ifdef BV_FREQUENCY_NOT_YET ! !----------------------------------------------------------------------- ! Compute Brunt-Vaisala frequency (1/s2) at horizontal RHO-points ! and vertical W-points. !----------------------------------------------------------------------- ! DO k=1,N(ng)-1 DO i=IstrT,IendT !^ bvf(i,j,k)=-gorho0*(rho(i,j,k+1)-rho(i,j,k))/ & !^ & (z_r(i,j,k+1)-z_r(i,j,k)) !^ cff=1.0_r8/(z_r(i,j,k+1)-z_r(i,j,k)) tl_cff=-cff*cff*(tl_z_r(i,j,k+1)-tl_z_r(i,j,k))+ & # ifdef TL_IOMS & 2.0*cff # endif tl_bvf(i,j,k)=-gorho0* & & (cff*(tl_rho(i,j,k+1)-tl_rho(i,j,k))+ & & tl_cff*(rho(i,j,k+1)-rho(i,j,k)))+ & # ifdef TL_IOMS & gorho0*(rho(i,j,k+1)-rho(i,j,k))*cff # endif END DO END DO # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES ! !----------------------------------------------------------------------- ! Compute thermal expansion (1/Celsius) and saline contraction ! (1/PSU) coefficients. !----------------------------------------------------------------------- ! DO i=IstrT,IendT alpha(i,j)=ABS(Tcoef(ng)) # ifdef TL_IOMS tl_alpha(i,j)=ABS(Tcoef(ng)) # else tl_alpha(i,j)=0.0_r8 # endif # ifdef SALINITY beta(i,j)=ABS(Scoef(ng)) # ifdef TL_IOMS tl_beta(i,j)=ABS(Scoef(ng)) # else tl_beta(i,j)=0.0_r8 # endif # else beta(i,j)=0.0_r8 tl_beta(i,j)=0.0_r8 # endif END DO # ifdef LMD_DDMIX_NOT_YET ! ! Compute ratio of thermal expansion and saline contraction ! coefficients. ! IF (Scoef(ng).eq.0.0_r8) THEN cff=1.0_r8 ELSE cff=1.0_r8/Scoef(ng) END IF DO k=1,N(ng) DO i=IstrT,IendT !^ alfaobeta(i,j,k)=cff*Tcoef(ng) !^ # ifdef TL_IOMS tl_alfaobeta(i,j,k)=cff*Tcoef(ng) # else tl_alfaobeta(i,j,k)=0.0_r8 # endif END DO END DO # endif # endif END DO ! !----------------------------------------------------------------------- ! Exchange boundary data. !----------------------------------------------------------------------- ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & rho) CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & tl_rho) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET !^ CALL exchange_r3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & pden) !^ CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & tl_pden) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES_NOT_YET # ifdef LMD_DDMIX_NOT_YET !^ CALL exchange_w3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & alfaobeta) !^ CALL exchange_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & tl_alfaobeta) # endif CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & alpha) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_alpha) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & beta) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_beta) # endif # ifdef VAR_RHO_2D_NOT_YET CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & rhoA) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_rhoA) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & rhoS) CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & tl_rhoS) # endif # ifdef BV_FREQUENCY_NOT_YET !^ CALL exchange_w3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & bvf) !^ CALL exchange_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & tl_bvf) # endif END IF # ifdef DISTRIBUTE ! CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & rho) CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_rho) # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET !^ CALL mp_exchange3d (ng, tile, model, 1, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & pden) !^ CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_pden) # endif # if defined LMD_SKPP_NOT_YET || defined LMD_BKPP_NOT_YET || \ defined BULK_FLUXES # ifdef LMD_DDMIX_NOT_YET !^ CALL mp_exchange3d (ng, tile, model, 1, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & alfaobeta) !^ CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 0, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_alfaobeta) # endif CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & alpha, beta) CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_alpha, tl_beta) # endif # ifdef VAR_RHO_2D_NOT_YET CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & rhoA, rhoS) CALL mp_exchange2d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_rhoA, tl_rhoS) # endif # ifdef BV_FREQUENCY_NOT_YET !^ CALL mp_exchange3d (ng, tile, model, 1, & !^ & LBi, UBi, LBj, UBj, 0, N(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & bvf) !^ CALL mp_exchange3d (ng, tile, model, 1, & & LBi, UBi, LBj, UBj, 0, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_bvf) # endif # endif ! RETURN END SUBROUTINE rp_rho_eos_tile # endif #endif END MODULE rp_rho_eos_mod