MODULE rp_prsgrd_mod ! !git $Id$ !svn $Id: rp_prsgrd32.h 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routine evaluates the representers tangent linear baroclinic, ! ! hydrostatic pressure gradient term using a nonconservative Density ! ! Jacobian scheme, based on cubic polynomial fits for "rho" and ! ! "z_r" as functions of nondimensional coordinates (XI,ETA,s), that ! ! is, its respective array indices. The cubic polynomials are ! ! monotonized by using harmonic mean instead of linear averages to ! ! interpolate slopes. This scheme retains exact anti-symmetry: ! ! ! ! J(rho,z_r)=-J(z_r,rho). ! ! ! ! If parameter OneFifth (below) is set to zero, the scheme becomes ! ! identical to standard Jacobian. ! ! ! ! Reference: ! ! ! ! Shchepetkin A.F and J.C. McWilliams, 2003: A method for ! ! computing horizontal pressure gradient force in an ocean ! ! model with non-aligned vertical coordinate, JGR, 108, ! ! 1-34. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: rp_prsgrd ! CONTAINS ! !*********************************************************************** SUBROUTINE rp_prsgrd (ng, tile) !*********************************************************************** ! USE mod_param #ifdef DIAGNOSTICS !! USE mod_diags #endif #ifdef ATM_PRESS USE mod_forces #endif USE mod_grid USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! #include "tile.h" ! #ifdef PROFILE CALL wclock_on (ng, iRPM, 23, __LINE__, MyFile) #endif CALL rp_prsgrd32_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), & #ifdef MASKING & GRID(ng) % umask, & & GRID(ng) % vmask, & #endif & GRID(ng) % om_v, & & GRID(ng) % on_u, & & GRID(ng) % Hz, & & GRID(ng) % tl_Hz, & & GRID(ng) % z_r, & & GRID(ng) % tl_z_r, & & GRID(ng) % z_w, & & GRID(ng) % tl_z_w, & & OCEAN(ng) % rho, & & OCEAN(ng) % tl_rho, & #ifdef TIDE_GENERATING_FORCES & OCEAN(ng) % eq_tide, & & OCEAN(ng) % tl_eq_tide, & #endif #ifdef ATM_PRESS & FORCES(ng) % Pair, & #endif #ifdef DIAGNOSTICS_UV !! & DIAGS(ng) % DiaRU, & !! & DIAGS(ng) % DiaRV, & #endif & OCEAN(ng) % tl_ru, & & OCEAN(ng) % tl_rv) #ifdef PROFILE CALL wclock_off (ng, iRPM, 23, __LINE__, MyFile) #endif ! RETURN END SUBROUTINE rp_prsgrd ! !*********************************************************************** SUBROUTINE rp_prsgrd32_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, & #ifdef MASKING & umask, vmask, & #endif & om_v, on_u, & & Hz, tl_Hz, & & z_r, tl_z_r, & & z_w, tl_z_w, & & rho, tl_rho, & #ifdef TIDE_GENERATING_FORCES & eq_tide, tl_eq_tide, & #endif #ifdef ATM_PRESS & Pair, & #endif #ifdef DIAGNOSTICS_UV !! & DiaRU, DiaRV, & #endif & tl_ru, tl_rv) !*********************************************************************** ! USE mod_param USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs #ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: z_w(LBi:,LBj:,0:) real(r8), intent(in) :: rho(LBi:,LBj:,:) real(r8), intent(in) :: tl_Hz(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_r(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_w(LBi:,LBj:,0:) real(r8), intent(in) :: tl_rho(LBi:,LBj:,:) # ifdef TIDE_GENERATING_FORCES real(r8), intent(in) :: eq_tide(LBi:,LBj:) real(r8), intent(in) :: tl_eq_tide(LBi:,LBj:) # endif # ifdef ATM_PRESS real(r8), intent(in) :: Pair(LBi:,LBj:) # endif # ifdef DIAGNOSTICS_UV !! real(r8), intent(inout) :: DiaRU(LBi:,LBj:,:,:,:) !! real(r8), intent(inout) :: DiaRV(LBi:,LBj:,:,:,:) # endif real(r8), intent(inout) :: tl_ru(LBi:,LBj:,0:,:) real(r8), intent(inout) :: tl_rv(LBi:,LBj:,0:,:) #else # ifdef MASKING real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: rho(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: tl_z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: tl_rho(LBi:UBi,LBj:UBj,N(ng)) # ifdef TIDE_GENERATING_FORCES real(r8), intent(in) :: eq_tide(LBi:UBi,LBj:UBj) real(r8), intent(in) :: tl_eq_tide(LBi:UBi,LBj:UBj) # endif # ifdef ATM_PRESS real(r8), intent(in) :: Pair(LBi:UBi,LBj:UBj) # endif # ifdef DIAGNOSTICS_UV !! real(r8), intent(inout) :: DiaRU(LBi:UBi,LBj:UBj,N(ng),2,NDrhs) !! real(r8), intent(inout) :: DiaRV(LBi:UBi,LBj:UBj,N(ng),2,NDrhs) # endif real(r8), intent(inout) :: tl_ru(LBi:UBi,LBj:UBj,0:N(ng),2) real(r8), intent(inout) :: tl_rv(LBi:UBi,LBj:UBj,0:N(ng),2) #endif ! ! Local variable declarations. ! integer :: i, j, k real(r8), parameter :: OneFifth = 0.2_r8 real(r8), parameter :: OneTwelfth = 1.0_r8/12.0_r8 real(r8), parameter :: eps = 1.0E-10_r8 real(r8) :: GRho, GRho0, HalfGRho real(r8) :: cff, cff1, cff2 real(r8) :: tl_cff, tl_cff1, tl_cff2 #ifdef ATM_PRESS real(r8) :: OneAtm, fac #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: P real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: tl_P real(r8), dimension(IminS:ImaxS,0:N(ng)) :: dR real(r8), dimension(IminS:ImaxS,0:N(ng)) :: dR1 real(r8), dimension(IminS:ImaxS,0:N(ng)) :: dZ real(r8), dimension(IminS:ImaxS,0:N(ng)) :: dZ1 real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_dR real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_dZ real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FC real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: aux real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: dRx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: dZx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_FC real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_aux real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_dRx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_dZx #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Preliminary step (same for XI- and ETA-components: !----------------------------------------------------------------------- ! GRho=g/rho0 GRho0=1000.0_r8*GRho HalfGRho=0.5_r8*GRho #ifdef ATM_PRESS OneAtm=1013.25_r8 ! 1 atm = 1013.25 mb fac=100.0_r8/rho0 #endif ! DO j=JstrV-1,Jend DO k=1,N(ng)-1 DO i=IstrU-1,Iend dR(i,k)=rho(i,j,k+1)-rho(i,j,k) tl_dR(i,k)=tl_rho(i,j,k+1)-tl_rho(i,j,k) dZ(i,k)=z_r(i,j,k+1)-z_r(i,j,k) tl_dZ(i,k)=tl_z_r(i,j,k+1)-tl_z_r(i,j,k) END DO END DO DO i=IstrU-1,Iend dR(i,N(ng))=dR(i,N(ng)-1) tl_dR(i,N(ng))=tl_dR(i,N(ng)-1) dZ(i,N(ng))=dZ(i,N(ng)-1) tl_dZ(i,N(ng))=tl_dZ(i,N(ng)-1) dR(i,0)=dR(i,1) tl_dR(i,0)=tl_dR(i,1) dZ(i,0)=dZ(i,1) tl_dZ(i,0)=tl_dZ(i,1) END DO DO k=N(ng),1,-1 DO i=IstrU-1,Iend cff=2.0_r8*dR(i,k)*dR(i,k-1) tl_cff=2.0_r8*(tl_dR(i,k)*dR(i,k-1)+ & & dR(i,k)*tl_dR(i,k-1))- & #ifdef TL_IOMS & cff #endif dR1(i,k)=dR(i,k) IF (cff.gt.eps) THEN dR(i,k)=cff/(dR(i,k)+dR(i,k-1)) tl_dR(i,k)=(tl_cff-dR(i,k)*(tl_dR(i,k)+tl_dR(i,k-1)))/ & & (dR1(i,k)+dR(i,k-1))+ & #ifdef TL_IOMS & dR(i,k) #endif ELSE dR(i,k)=0.0_r8 tl_dR(i,k)=0.0_r8 END IF dZ1(i,k)=dZ(i,k) dZ(i,k)=2.0_r8*dZ(i,k)*dZ(i,k-1)/(dZ(i,k)+dZ(i,k-1)) tl_dZ(i,k)=(2.0_r8*(tl_dZ(i,k)*dZ(i,k-1)+ & & dZ1(i,k)*tl_dZ(i,k-1))- & & dZ(i,k)*(tl_dZ(i,k)+tl_dZ(i,k-1)))/ & & (dZ1(i,k)+dZ(i,k-1)) END DO END DO DO i=IstrU-1,Iend cff1=1.0_r8/(z_r(i,j,N(ng))-z_r(i,j,N(ng)-1)) tl_cff1=-cff1*cff1*(tl_z_r(i,j,N(ng))-tl_z_r(i,j,N(ng)-1))+ & #ifdef TL_IOMS & 2.0_r8*cff1 #endif cff2=0.5_r8*(rho(i,j,N(ng))-rho(i,j,N(ng)-1))* & & (z_w(i,j,N(ng))-z_r(i,j,N(ng)))*cff1 tl_cff2=0.5_r8*((tl_rho(i,j,N(ng))-tl_rho(i,j,N(ng)-1))* & & (z_w(i,j,N(ng))-z_r(i,j,N(ng)))*cff1+ & & (rho(i,j,N(ng))-rho(i,j,N(ng)-1))* & & ((tl_z_w(i,j,N(ng))-tl_z_r(i,j,N(ng)))*cff1+ & & (z_w(i,j,N(ng))-z_r(i,j,N(ng)))*tl_cff1))- & #ifdef TL_IOMS & 2.0_r8*cff2 #endif P(i,j,N(ng))=g*z_w(i,j,N(ng))+ & #ifdef ATM_PRESS & fac*(Pair(i,j)-OneAtm)+ & #endif & GRho*(rho(i,j,N(ng))+cff2)* & & (z_w(i,j,N(ng))-z_r(i,j,N(ng))) tl_P(i,j,N(ng))=g*tl_z_w(i,j,N(ng))+ & & GRho*((tl_rho(i,j,N(ng))+tl_cff2)* & & (z_w(i,j,N(ng))-z_r(i,j,N(ng)))+ & & (rho(i,j,N(ng))+cff2)* & & (tl_z_w(i,j,N(ng))-tl_z_r(i,j,N(ng))))- & #ifdef TL_IOMS & GRho*(rho(i,j,N(ng))+cff2)* & & (z_w(i,j,N(ng))-z_r(i,j,N(ng))) #endif #ifdef TIDE_GENERATING_FORCES P(i,j,N(ng))=P(i,j,N(ng))-g*eq_tide(i,j) tl_P(i,j,N(ng))=tl_P(i,j,N(ng))-g*tl_eq_tide(i,j) #endif END DO DO k=N(ng)-1,1,-1 DO i=IstrU-1,Iend cff=HalfGRho*((rho(i,j,k+1)+rho(i,j,k))* & & (z_r(i,j,k+1)-z_r(i,j,k))- & & OneFifth* & & ((dR(i,k+1)-dR(i,k))* & & (z_r(i,j,k+1)-z_r(i,j,k)- & & OneTwelfth* & & (dZ(i,k+1)+dZ(i,k)))- & & (dZ(i,k+1)-dZ(i,k))* & & (rho(i,j,k+1)-rho(i,j,k)- & & OneTwelfth* & & (dR(i,k+1)+dR(i,k))))) tl_cff=HalfGRho*((tl_rho(i,j,k+1)+tl_rho(i,j,k))* & & (z_r(i,j,k+1)-z_r(i,j,k))+ & & (rho(i,j,k+1)+rho(i,j,k))* & & (tl_z_r(i,j,k+1)-tl_z_r(i,j,k))- & & OneFifth* & & ((tl_dR(i,k+1)-tl_dR(i,k))* & & (z_r(i,j,k+1)-z_r(i,j,k)- & & OneTwelfth* & & (dZ(i,k+1)+dZ(i,k)))+ & & (dR(i,k+1)-dR(i,k))* & & (tl_z_r(i,j,k+1)-tl_z_r(i,j,k)- & & OneTwelfth* & & (tl_dZ(i,k+1)+tl_dZ(i,k)))- & & (tl_dZ(i,k+1)-tl_dZ(i,k))* & & (rho(i,j,k+1)-rho(i,j,k)- & & OneTwelfth* & & (dR(i,k+1)+dR(i,k)))- & & (dZ(i,k+1)-dZ(i,k))* & & (tl_rho(i,j,k+1)-tl_rho(i,j,k)- & & OneTwelfth* & & (tl_dR(i,k+1)+tl_dR(i,k)))))- & #ifdef TL_IOMS & cff #endif P(i,j,k)=P(i,j,k+1)+cff tl_P(i,j,k)=tl_P(i,j,k+1)+tl_cff END DO END DO END DO ! !----------------------------------------------------------------------- ! Compute XI-component pressure gradient term. !----------------------------------------------------------------------- ! DO k=N(ng),1,-1 DO j=Jstr,Jend DO i=IstrU-1,Iend+1 aux(i,j)=z_r(i,j,k)-z_r(i-1,j,k) tl_aux(i,j)=tl_z_r(i,j,k)-tl_z_r(i-1,j,k) #ifdef MASKING aux(i,j)=aux(i,j)*umask(i,j) tl_aux(i,j)=tl_aux(i,j)*umask(i,j) #endif FC(i,j)=rho(i,j,k)-rho(i-1,j,k) tl_FC(i,j)=tl_rho(i,j,k)-tl_rho(i-1,j,k) #ifdef MASKING FC(i,j)=FC(i,j)*umask(i,j) tl_FC(i,j)=tl_FC(i,j)*umask(i,j) #endif END DO END DO ! DO j=Jstr,Jend DO i=IstrU-1,Iend cff=2.0_r8*aux(i,j)*aux(i+1,j) tl_cff=2.0_r8*(tl_aux(i,j)*aux(i+1,j)+ & & aux(i,j)*tl_aux(i+1,j))- & #ifdef TL_IOMS & cff #endif IF (cff.gt.eps) THEN cff1=1.0_r8/(aux(i,j)+aux(i+1,j)) tl_cff1=-cff1*cff1*(tl_aux(i,j)+tl_aux(i+1,j))+ & #ifdef TL_IOMS & 2.0_r8*cff1 #endif dZx(i,j)=cff*cff1 tl_dZx(i,j)=tl_cff*cff1+cff*tl_cff1- & #ifdef TL_IOMS & dZx(i,j) #endif ELSE dZx(i,j)=0.0_r8 tl_dZx(i,j)=0.0_r8 END IF cff1=2.0_r8*FC(i,j)*FC(i+1,j) tl_cff1=2.0_r8*(tl_FC(i,j)*FC(i+1,j)+ & & FC(i,j)*tl_FC(i+1,j))- & #ifdef TL_IOMS & cff1 #endif IF (cff1.gt.eps) THEN cff2=1.0_r8/(FC(i,j)+FC(i+1,j)) tl_cff2=-cff2*cff2*(tl_FC(i,j)+tl_FC(i+1,j))+ & #ifdef TL_IOMS & 2.0_r8*cff2 #endif dRx(i,j)=cff1*cff2 tl_dRx(i,j)=tl_cff1*cff2+cff1*tl_cff2- & #ifdef TL_IOMS & dRx(i,j) #endif ELSE dRx(i,j)=0.0_r8 tl_dRx(i,j)=0.0_r8 END IF END DO END DO ! DO j=Jstr,Jend DO i=IstrU,Iend !^ ru(i,j,k,nrhs)=on_u(i,j)*0.5_r8* & !^ & (Hz(i,j,k)+Hz(i-1,j,k))* & !^ & (P(i-1,j,k)-P(i,j,k)- & !^ & HalfGRho* & !^ & ((rho(i,j,k)+rho(i-1,j,k))* & !^ & (z_r(i,j,k)-z_r(i-1,j,k))- & !^ & OneFifth* & !^ & ((dRx(i,j)-dRx(i-1,j))* & !^ & (z_r(i,j,k)-z_r(i-1,j,k)- & !^ & OneTwelfth* & !^ & (dZx(i,j)+dZx(i-1,j)))- & !^ & (dZx(i,j)-dZx(i-1,j))* & !^ & (rho(i,j,k)-rho(i-1,j,k)- & !^ & OneTwelfth* & !^ & (dRx(i,j)+dRx(i-1,j)))))) !^ tl_ru(i,j,k,nrhs)=on_u(i,j)*0.5_r8* & & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & & (P(i-1,j,k)-P(i,j,k)- & & HalfGRho* & & ((rho(i,j,k)+rho(i-1,j,k))* & & (z_r(i,j,k)-z_r(i-1,j,k))- & & OneFifth* & & ((dRx(i,j)-dRx(i-1,j))* & & (z_r(i,j,k)-z_r(i-1,j,k)- & & OneTwelfth* & & (dZx(i,j)+dZx(i-1,j)))- & & (dZx(i,j)-dZx(i-1,j))* & & (rho(i,j,k)-rho(i-1,j,k)- & & OneTwelfth* & & (dRx(i,j)+dRx(i-1,j))))))+ & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (tl_P(i-1,j,k)-tl_P(i,j,k)- & & HalfGRho* & & ((tl_rho(i,j,k)+tl_rho(i-1,j,k))* & & (z_r(i,j,k)-z_r(i-1,j,k))+ & & (rho(i,j,k)+rho(i-1,j,k))* & & (tl_z_r(i,j,k)-tl_z_r(i-1,j,k))- & & OneFifth* & & ((tl_dRx(i,j)-tl_dRx(i-1,j))* & & (z_r(i,j,k)-z_r(i-1,j,k)- & & OneTwelfth* & & (dZx(i,j)+dZx(i-1,j)))+ & & (dRx(i,j)-dRx(i-1,j))* & & (tl_z_r(i,j,k)-tl_z_r(i-1,j,k)- & & OneTwelfth* & & (tl_dZx(i,j)+tl_dZx(i-1,j)))- & & (tl_dZx(i,j)-tl_dZx(i-1,j))* & & (rho(i,j,k)-rho(i-1,j,k)- & & OneTwelfth* & & (dRx(i,j)+dRx(i-1,j)))- & & (dZx(i,j)-dZx(i-1,j))* & & (tl_rho(i,j,k)-tl_rho(i-1,j,k)- & & OneTwelfth* & & (tl_dRx(i,j)+tl_dRx(i-1,j)))))))- & #ifdef TL_IOMS & on_u(i,j)*0.5_r8* & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (P(i-1,j,k)-P(i,j,k)- & & 2.0_r8*HalfGRho* & & ((rho(i,j,k)+rho(i-1,j,k))* & & (z_r(i,j,k)-z_r(i-1,j,k))- & & OneFifth* & & ((dRx(i,j)-dRx(i-1,j))* & & (z_r(i,j,k)-z_r(i-1,j,k)- & & OneTwelfth* & & (dZx(i,j)+dZx(i-1,j)))- & & (dZx(i,j)-dZx(i-1,j))* & & (rho(i,j,k)-rho(i-1,j,k)- & & OneTwelfth* & & (dRx(i,j)+dRx(i-1,j)))))) #endif #ifdef DIAGNOSTICS_UV !! DiaRU(i,j,k,nrhs,M3pgrd)=ru(i,j,k,nrhs) #endif END DO END DO END DO ! !----------------------------------------------------------------------- ! ETA-component pressure gradient term. !----------------------------------------------------------------------- ! DO k=N(ng),1,-1 DO j=JstrV-1,Jend+1 DO i=Istr,Iend aux(i,j)=z_r(i,j,k)-z_r(i,j-1,k) tl_aux(i,j)=tl_z_r(i,j,k)-tl_z_r(i,j-1,k) #ifdef MASKING aux(i,j)=aux(i,j)*vmask(i,j) tl_aux(i,j)=tl_aux(i,j)*vmask(i,j) #endif FC(i,j)=rho(i,j,k)-rho(i,j-1,k) tl_FC(i,j)=tl_rho(i,j,k)-tl_rho(i,j-1,k) #ifdef MASKING FC(i,j)=FC(i,j)*vmask(i,j) tl_FC(i,j)=tl_FC(i,j)*vmask(i,j) #endif END DO END DO ! DO j=JstrV-1,Jend DO i=Istr,Iend cff=2.0_r8*aux(i,j)*aux(i,j+1) tl_cff=2.0_r8*(tl_aux(i,j)*aux(i,j+1)+ & & aux(i,j)*tl_aux(i,j+1))- & #ifdef TL_IOMS & cff #endif IF (cff.gt.eps) THEN cff1=1.0_r8/(aux(i,j)+aux(i,j+1)) tl_cff1=-cff1*cff1*(tl_aux(i,j)+tl_aux(i,j+1))+ & #ifdef TL_IOMS & 2.0_r8*cff1 #endif dZx(i,j)=cff*cff1 tl_dZx(i,j)=tl_cff*cff1+cff*tl_cff1- & #ifdef TL_IOMS & dZx(i,j) #endif ELSE dZx(i,j)=0.0_r8 tl_dZx(i,j)=0.0_r8 END IF cff1=2.0_r8*FC(i,j)*FC(i,j+1) tl_cff1=2.0_r8*(tl_FC(i,j)*FC(i,j+1)+ & & FC(i,j)*tl_FC(i,j+1))- & #ifdef TL_IOMS & cff1 #endif IF (cff1.gt.eps) THEN cff2=1.0_r8/(FC(i,j)+FC(i,j+1)) tl_cff2=-cff2*cff2*(tl_FC(i,j)+tl_FC(i,j+1))+ & #ifdef TL_IOMS & 2.0_r8*cff2 #endif dRx(i,j)=cff1*cff2 tl_dRx(i,j)=tl_cff1*cff2+cff1*tl_cff2- & #ifdef TL_IOMS & dRx(i,j) #endif ELSE dRx(i,j)=0.0_r8 tl_dRx(i,j)=0.0_r8 END IF END DO END DO ! DO j=JstrV,Jend DO i=Istr,Iend !^ rv(i,j,k,nrhs)=om_v(i,j)*0.5_r8* & !^ & (Hz(i,j,k)+Hz(i,j-1,k))* & !^ & (P(i,j-1,k)-P(i,j,k)- & !^ & HalfGRho* & !^ & ((rho(i,j,k)+rho(i,j-1,k))* & !^ & (z_r(i,j,k)-z_r(i,j-1,k))- & !^ & OneFifth* & !^ & ((dRx(i,j)-dRx(i,j-1))* & !^ & (z_r(i,j,k)-z_r(i,j-1,k)- & !^ & OneTwelfth* & !^ & (dZx(i,j)+dZx(i,j-1)))- & !^ & (dZx(i,j)-dZx(i,j-1))* & !^ & (rho(i,j,k)-rho(i,j-1,k)- & !^ & OneTwelfth* & !^ & (dRx(i,j)+dRx(i,j-1)))))) !^ tl_rv(i,j,k,nrhs)=om_v(i,j)*0.5_r8* & & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & & (P(i,j-1,k)-P(i,j,k)- & & HalfGRho* & & ((rho(i,j,k)+rho(i,j-1,k))* & & (z_r(i,j,k)-z_r(i,j-1,k))- & & OneFifth* & & ((dRx(i,j)-dRx(i,j-1))* & & (z_r(i,j,k)-z_r(i,j-1,k)- & & OneTwelfth* & & (dZx(i,j)+dZx(i,j-1)))- & & (dZx(i,j)-dZx(i,j-1))* & & (rho(i,j,k)-rho(i,j-1,k)- & & OneTwelfth* & & (dRx(i,j)+dRx(i,j-1))))))+ & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (tl_P(i,j-1,k)-tl_P(i,j,k)- & & HalfGRho* & & ((tl_rho(i,j,k)+tl_rho(i,j-1,k))* & & (z_r(i,j,k)-z_r(i,j-1,k))+ & & (rho(i,j,k)+rho(i,j-1,k))* & & (tl_z_r(i,j,k)-tl_z_r(i,j-1,k))- & & OneFifth* & & ((tl_dRx(i,j)-tl_dRx(i,j-1))* & & (z_r(i,j,k)-z_r(i,j-1,k)- & & OneTwelfth* & & (dZx(i,j)+dZx(i,j-1)))+ & & (dRx(i,j)-dRx(i,j-1))* & & (tl_z_r(i,j,k)-tl_z_r(i,j-1,k)- & & OneTwelfth* & & (tl_dZx(i,j)+tl_dZx(i,j-1)))- & & (tl_dZx(i,j)-tl_dZx(i,j-1))* & & (rho(i,j,k)-rho(i,j-1,k)- & & OneTwelfth* & & (dRx(i,j)+dRx(i,j-1)))- & & (dZx(i,j)-dZx(i,j-1))* & & (tl_rho(i,j,k)-tl_rho(i,j-1,k)- & & OneTwelfth* & & (tl_dRx(i,j)+tl_dRx(i,j-1)))))))- & #ifdef TL_IOMS & om_v(i,j)*0.5_r8* & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (P(i,j-1,k)-P(i,j,k)- & & 2.0_r8*HalfGRho* & & ((rho(i,j,k)+rho(i,j-1,k))* & & (z_r(i,j,k)-z_r(i,j-1,k))- & & OneFifth* & & ((dRx(i,j)-dRx(i,j-1))* & & (z_r(i,j,k)-z_r(i,j-1,k)- & & OneTwelfth* & & (dZx(i,j)+dZx(i,j-1)))- & & (dZx(i,j)-dZx(i,j-1))* & & (rho(i,j,k)-rho(i,j-1,k)- & & OneTwelfth* & & (dRx(i,j)+dRx(i,j-1)))))) #endif #ifdef DIAGNOSTICS_UV !! DiaRV(i,j,k,nrhs,M3pgrd)=rv(i,j,k,nrhs) #endif END DO END DO END DO ! RETURN END SUBROUTINE rp_prsgrd32_tile END MODULE rp_prsgrd_mod