#include "cppdefs.h" MODULE v2dbc_mod ! !git $Id$ !svn $Id: v2dbc_ex.F 1180 2023-07-13 02:42:10Z arango $ !======================================================================= ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This subroutine sets lateral boundary conditions for vertically ! ! integrated V-velocity. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: v2dbc, v2dbc_tile ! CONTAINS ! !*********************************************************************** SUBROUTINE v2dbc (ng, tile, kout) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, kout ! ! Local variable declarations. ! #include "tile.h" ! CALL v2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs(ng), kstp(ng), kout, & & OCEAN(ng) % ubar, & & OCEAN(ng) % vbar, & & OCEAN(ng) % zeta) RETURN END SUBROUTINE v2dbc ! !*********************************************************************** SUBROUTINE v2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, kout, & & ubar, vbar, zeta) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_clima USE mod_forces USE mod_grid USE mod_ncparam USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: krhs, kstp, kout ! #ifdef ASSUMED_SHAPE real(r8), intent(in) :: ubar(LBi:,LBj:,:) real(r8), intent(in) :: zeta(LBi:,LBj:,:) real(r8), intent(inout) :: vbar(LBi:,LBj:,:) #else real(r8), intent(in) :: ubar(LBi:UBi,LBj:UBj,:) real(r8), intent(in) :: zeta(LBi:UBi,LBj:UBj,:) real(r8), intent(inout) :: vbar(LBi:UBi,LBj:UBj,:) #endif ! ! Local variable declarations. ! integer :: Jmin, Jmax integer :: i, j, know real(r8), parameter :: eps = 1.0E-20_r8 real(r8) :: Ce, Cx real(r8) :: bry_pgr, bry_cor, bry_str, bry_val real(r8):: cff, cff1, cff2, dt2d, dVde, dVdt, dVdx real(r8) :: obc_in, obc_out, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Set time-indices !----------------------------------------------------------------------- ! IF (FIRST_2D_STEP) THEN know=krhs dt2d=dtfast(ng) ELSE IF (PREDICTOR_2D_STEP(ng)) THEN know=krhs dt2d=2.0_r8*dtfast(ng) ELSE know=kstp dt2d=dtfast(ng) END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN ! ! Southern edge, implicit upstream radiation condition. ! IF (LBC(isouth,isVbar,ng)%radiation) THEN DO i=Istr,Iend+1 grad(i,Jstr )=vbar(i ,Jstr ,know)- & & vbar(i-1,Jstr ,know) grad(i,Jstr+1)=vbar(i ,Jstr+1,know)- & & vbar(i-1,Jstr+1,know) END DO DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN dVdt=vbar(i,Jstr+1,know)-vbar(i,Jstr+1,kout) dVde=vbar(i,Jstr+1,know)-vbar(i,Jstr+2,know) IF (LBC(isouth,isVbar,ng)%nudging) THEN IF (LnudgeM2CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M2nudgcof(i,Jstr-1)+ & & CLIMA(ng)%M2nudgcof(i,Jstr )) obc_in =obcfac(ng)*obc_out ELSE obc_out=M2obc_out(ng,isouth) obc_in =M2obc_in (ng,isouth) END IF IF ((dVdt*dVde).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF tau=tau*dt2d END IF IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i ,Jstr+1)+ & & grad(i+1,Jstr+1))).gt.0.0_r8) THEN dVdx=grad(i ,Jstr+1) ELSE dVdx=grad(i+1,Jstr+1) END IF cff=dVdt/MAX(dVdx*dVdx+dVde*dVde,eps) #ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(-1.0_r8,cff*dVdx)) #else Cx=0.0_r8 #endif Ce=MIN(1.0_r8,cff*dVde) #if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%vbar_south_Cx(i)=Cx BOUNDARY(ng)%vbar_south_Ce(i)=Ce BOUNDARY(ng)%vbar_south_C2(i)=cff #endif vbar(i,Jstr,kout)=(1.0_r8-Ce)*vbar(i,Jstr,know)+ & & Ce*vbar(i,Jstr+1,know)- & & MAX(Cx,0.0_r8)*grad(i ,Jstr)- & & MIN(Cx,0.0_r8)*grad(i+1,Jstr) IF (LBC(isouth,isVbar,ng)%nudging) THEN vbar(i,Jstr,kout)=vbar(i,Jstr,kout)+ & & tau*(BOUNDARY(ng)%vbar_south(i)- & & vbar(i,Jstr,know)) END IF #ifdef MASKING vbar(i,Jstr,kout)=vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) #endif END IF END DO ! ! Southern edge, Flather boundary condition. ! ELSE IF (LBC(isouth,isVbar,ng)%Flather) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN #if defined SSH_TIDES && !defined UV_TIDES IF (LBC(isouth,isFsur,ng)%acquire) THEN bry_pgr=-g*(zeta(i,Jstr,know)- & & BOUNDARY(ng)%zeta_south(i))* & & 0.5_r8*GRID(ng)%pn(i,Jstr) ELSE bry_pgr=-g*(zeta(i,Jstr ,know)- & & zeta(i,Jstr-1,know))* & & 0.5_r8*(GRID(ng)%pn(i,Jstr-1)+ & & GRID(ng)%pn(i,Jstr )) END IF # ifdef UV_COR bry_cor=-0.125_r8*(ubar(i ,Jstr-1,know)+ & & ubar(i+1,Jstr-1,know)+ & & ubar(i ,Jstr ,know)+ & & ubar(i+1,Jstr ,know))* & & (GRID(ng)%f(i,Jstr-1)+ & & GRID(ng)%f(i,Jstr )) # else bry_cor=0.0_r8 # endif cff1=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jstr-1)+ & & zeta(i,Jstr-1,know)+ & & GRID(ng)%h(i,Jstr )+ & & zeta(i,Jstr ,know))) bry_str=cff1*(FORCES(ng)%svstr(i,Jstr)- & & FORCES(ng)%bvstr(i,Jstr)) Ce=1.0_r8/SQRT(g*0.5_r8*(GRID(ng)%h(i,Jstr-1)+ & & zeta(i,Jstr-1,know)+ & & GRID(ng)%h(i,Jstr )+ & & zeta(i,Jstr ,know))) cff2=GRID(ng)%on_v(i,Jstr)*Ce !! cff2=dt2d bry_val=vbar(i,Jstr+1,know)+ & & cff2*(bry_pgr+ & & bry_cor+ & & bry_str) #else bry_val=BOUNDARY(ng)%vbar_south(i) #endif cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jstr-1)+ & & zeta(i,Jstr-1,know)+ & & GRID(ng)%h(i,Jstr )+ & & zeta(i,Jstr ,know))) Ce=SQRT(g*cff) vbar(i,Jstr,kout)=bry_val- & & Ce*(0.5_r8*(zeta(i,Jstr-1,know)+ & & zeta(i,Jstr ,know))- & & BOUNDARY(ng)%zeta_south(i)) #ifdef MASKING vbar(i,Jstr,kout)=vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) #endif END IF END DO ! ! Southern edge, clamped boundary condition. ! ELSE IF (LBC(isouth,isVbar,ng)%clamped) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN vbar(i,Jstr,kout)=BOUNDARY(ng)%vbar_south(i) #ifdef MASKING vbar(i,Jstr,kout)=vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) #endif END IF END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (LBC(isouth,isVbar,ng)%gradient) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN vbar(i,Jstr,kout)=vbar(i,Jstr+1,kout) #ifdef MASKING vbar(i,Jstr,kout)=vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) #endif END IF END DO ! ! Southern edge, reduced-physics boundary condition. ! ELSE IF (LBC(isouth,isVbar,ng)%reduced) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN IF (LBC(isouth,isFsur,ng)%acquire) THEN bry_pgr=-g*(zeta(i,Jstr,know)- & & BOUNDARY(ng)%zeta_south(i))* & & 0.5_r8*GRID(ng)%pn(i,Jstr) ELSE bry_pgr=-g*(zeta(i,Jstr ,know)- & & zeta(i,Jstr-1,know))* & & 0.5_r8*(GRID(ng)%pn(i,Jstr-1)+ & & GRID(ng)%pn(i,Jstr )) END IF #ifdef UV_COR bry_cor=-0.125_r8*(ubar(i ,Jstr-1,know)+ & & ubar(i+1,Jstr-1,know)+ & & ubar(i ,Jstr ,know)+ & & ubar(i+1,Jstr ,know))* & & (GRID(ng)%f(i,Jstr-1)+ & & GRID(ng)%f(i,Jstr )) #else bry_cor=0.0_r8 #endif cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jstr-1)+ & & zeta(i,Jstr-1,know)+ & & GRID(ng)%h(i,Jstr )+ & & zeta(i,Jstr ,know))) bry_str=cff*(FORCES(ng)%svstr(i,Jstr)- & & FORCES(ng)%bvstr(i,Jstr)) vbar(i,Jstr,kout)=vbar(i,Jstr,know)+ & & dt2d*(bry_pgr+ & & bry_cor+ & & bry_str) #ifdef MASKING vbar(i,Jstr,kout)=vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) #endif END IF END DO ! ! Southern edge, closed boundary condition. ! ELSE IF (LBC(isouth,isVbar,ng)%closed) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN vbar(i,Jstr,kout)=0.0_r8 END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN ! ! Northern edge, implicit upstream radiation condition. ! IF (LBC(inorth,isVbar,ng)%radiation) THEN DO i=Istr,Iend+1 grad(i,Jend )=vbar(i ,Jend ,know)- & & vbar(i-1,Jend ,know) grad(i,Jend+1)=vbar(i ,Jend+1,know)- & & vbar(i-1,Jend+1,know) END DO DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN dVdt=vbar(i,Jend,know)-vbar(i,Jend ,kout) dVde=vbar(i,Jend,know)-vbar(i,Jend-1,know) IF (LBC(inorth,isVbar,ng)%nudging) THEN IF (LnudgeM2CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M2nudgcof(i,Jend )+ & & CLIMA(ng)%M2nudgcof(i,Jend+1)) obc_in =obcfac(ng)*obc_out ELSE obc_out=M2obc_out(ng,inorth) obc_in =M2obc_in (ng,inorth) END IF IF ((dVdt*dVde).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF tau=tau*dt2d END IF IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i ,Jend)+ & & grad(i+1,Jend))).gt.0.0_r8) THEN dVdx=grad(i ,Jend) ELSE dVdx=grad(i+1,Jend) END IF cff=dVdt/MAX(dVdx*dVdx+dVde*dVde,eps) #ifdef RADIATION_2D Cx=MIN(1.0_r8,MAX(-1.0_r8,cff*dVdx)) #else Cx=0.0_r8 #endif Ce=MIN(1.0_r8,cff*dVde) #if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%vbar_north_Cx(i)=Cx BOUNDARY(ng)%vbar_north_Ce(i)=Ce BOUNDARY(ng)%vbar_north_C2(i)=cff #endif vbar(i,Jend+1,kout)=(1.0_r8-Ce)*vbar(i,Jend+1,know)+ & & Ce*vbar(i,Jend,know)- & & MAX(Cx,0.0_r8)*grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jend+1) IF (LBC(inorth,isVbar,ng)%nudging) THEN vbar(i,Jend+1,kout)=vbar(i,Jend+1,kout)+ & & tau*(BOUNDARY(ng)%vbar_north(i)- & & vbar(i,Jend+1,know)) END IF #ifdef MASKING vbar(i,Jend+1,kout)=vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) #endif END IF END DO ! ! Northern edge, Flather boundary condition. ! ELSE IF (LBC(inorth,isVbar,ng)%Flather) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN #if defined SSH_TIDES && !defined UV_TIDES IF (LBC(inorth,isFsur,ng)%acquire) THEN bry_pgr=-g*(BOUNDARY(ng)%zeta_north(i)- & & zeta(i,Jend,know))* & & 0.5_r8*GRID(ng)%pn(i,Jend) ELSE bry_pgr=-g*(zeta(i,Jend+1,know)- & & zeta(i,Jend ,know))* & & 0.5_r8*(GRID(ng)%pn(i,Jend )+ & & GRID(ng)%pn(i,Jend+1)) END IF # ifdef UV_COR bry_cor=-0.125_r8*(ubar(i ,Jend ,know)+ & & ubar(i+1,Jend ,know)+ & & ubar(i ,Jend+1,know)+ & & ubar(i+1,Jend+1,know))* & & (GRID(ng)%f(i,Jend )+ & & GRID(ng)%f(i,Jend+1)) # else bry_cor=0.0_r8 # endif cff1=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jend )+ & & zeta(i,Jend ,know)+ & & GRID(ng)%h(i,Jend+1)+ & & zeta(i,Jend+1,know))) bry_str=cff1*(FORCES(ng)%svstr(i,Jend+1)- & & FORCES(ng)%bvstr(i,Jend+1)) Ce=1.0_r8/SQRT(g*0.5_r8*(GRID(ng)%h(i,Jend+1)+ & & zeta(i,Jend+1,know)+ & & GRID(ng)%h(i,Jend )+ & & zeta(i,Jend ,know))) cff2=GRID(ng)%on_v(i,Jend+1)*Ce !! cff2=dt2d bry_val=vbar(i,Jend,know)+ & & cff2*(bry_pgr+ & & bry_cor+ & & bry_str) #else bry_val=BOUNDARY(ng)%vbar_north(i) #endif cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jend )+ & & zeta(i,Jend ,know)+ & & GRID(ng)%h(i,Jend+1)+ & & zeta(i,Jend+1,know))) Ce=SQRT(g*cff) vbar(i,Jend+1,kout)=bry_val+ & & Ce*(0.5_r8*(zeta(i,Jend ,know)+ & & zeta(i,Jend+1,know))- & & BOUNDARY(ng)%zeta_north(i)) #ifdef MASKING vbar(i,Jend+1,kout)=vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) #endif END IF END DO ! ! Northern edge, clamped boundary condition. ! ELSE IF (LBC(inorth,isVbar,ng)%clamped) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN vbar(i,Jend+1,kout)=BOUNDARY(ng)%vbar_north(i) #ifdef MASKING vbar(i,Jend+1,kout)=vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) #endif END IF END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (LBC(inorth,isVbar,ng)%gradient) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN vbar(i,Jend+1,kout)=vbar(i,Jend,kout) #ifdef MASKING vbar(i,Jend+1,kout)=vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) #endif END IF END DO ! ! Northern edge, reduced-physics boundary condition. ! ELSE IF (LBC(inorth,isVbar,ng)%reduced) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN IF (LBC(inorth,isFsur,ng)%acquire) THEN bry_pgr=-g*(BOUNDARY(ng)%zeta_north(i)- & & zeta(i,Jend,know))* & & 0.5_r8*GRID(ng)%pn(i,Jend) ELSE bry_pgr=-g*(zeta(i,Jend+1,know)- & & zeta(i,Jend ,know))* & & 0.5_r8*(GRID(ng)%pn(i,Jend )+ & & GRID(ng)%pn(i,Jend+1)) END IF #ifdef UV_COR bry_cor=-0.125_r8*(ubar(i ,Jend ,know)+ & & ubar(i+1,Jend ,know)+ & & ubar(i ,Jend+1,know)+ & & ubar(i+1,Jend+1,know))* & & (GRID(ng)%f(i,Jend )+ & & GRID(ng)%f(i,Jend+1)) #else bry_cor=0.0_r8 #endif cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jend )+ & & zeta(i,Jend ,know)+ & & GRID(ng)%h(i,Jend+1)+ & & zeta(i,Jend+1,know))) bry_str=cff*(FORCES(ng)%svstr(i,Jend+1)- & & FORCES(ng)%bvstr(i,Jend+1)) vbar(i,Jend+1,kout)=vbar(i,Jend+1,know)+ & & dt2d*(bry_pgr+ & & bry_cor+ & & bry_str) #ifdef MASKING vbar(i,Jend+1,kout)=vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) #endif END IF END DO ! ! Northern edge, closed boundary condition. ! ELSE IF (LBC(inorth,isVbar,ng)%closed) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN vbar(i,Jend+1,kout)=0.0_r8 END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN ! ! Western edge, implicit upstream radiation condition. ! IF (LBC(iwest,isVbar,ng)%radiation) THEN DO j=JstrV-1,Jend grad(Istr-1,j)=vbar(Istr-1,j+1,know)- & & vbar(Istr-1,j ,know) grad(Istr ,j)=vbar(Istr ,j+1,know)- & & vbar(Istr ,j ,know) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN dVdt=vbar(Istr,j,know)-vbar(Istr ,j,kout) dVdx=vbar(Istr,j,know)-vbar(Istr+1,j,know) IF (LBC(iwest,isVbar,ng)%nudging) THEN IF (LnudgeM2CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M2nudgcof(Istr-1,j-1)+ & & CLIMA(ng)%M2nudgcof(Istr-1,j )) obc_in =obcfac(ng)*obc_out ELSE obc_out=M2obc_out(ng,iwest) obc_in =M2obc_in (ng,iwest) END IF IF ((dVdt*dVdx).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF tau=tau*dt2d END IF IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Istr,j-1)+ & & grad(Istr,j ))).gt.0.0_r8) THEN dVde=grad(Istr,j-1) ELSE dVde=grad(Istr,j ) END IF cff=dVdt/MAX(dVdx*dVdx+dVde*dVde,eps) Cx=MIN(1.0_r8,cff*dVdx) #ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(-1.0_r8,cff*dVde)) #else Ce=0.0_r8 #endif #if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%vbar_west_Cx(j)=Cx BOUNDARY(ng)%vbar_west_Ce(j)=Ce BOUNDARY(ng)%vbar_west_C2(j)=cff #endif vbar(Istr-1,j,kout)=(1.0_r8-Cx)*vbar(Istr-1,j,know)+ & & Cx*vbar(Istr,j,know)- & & MAX(Ce,0.0_r8)*grad(Istr-1,j-1)- & & MIN(Ce,0.0_r8)*grad(Istr-1,j ) IF (LBC(iwest,isVbar,ng)%nudging) THEN vbar(Istr-1,j,kout)=vbar(Istr-1,j,kout)+ & & tau*(BOUNDARY(ng)%vbar_west(j)- & & vbar(Istr-1,j,know)) END IF #ifdef MASKING vbar(Istr-1,j,kout)=vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) #endif END IF END DO ! ! Western edge, Chapman boundary condition. ! ELSE IF (LBC(iwest,isVbar,ng)%Flather.or. & & LBC(iwest,isVbar,ng)%reduced) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN cff=dt2d*0.5_r8*(GRID(ng)%pm(Istr,j-1)+ & & GRID(ng)%pm(Istr,j )) cff1=SQRT(g*0.5_r8*(GRID(ng)%h(Istr,j-1)+ & & zeta(Istr,j-1,know)+ & & GRID(ng)%h(Istr,j )+ & & zeta(Istr,j ,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) vbar(Istr-1,j,kout)=cff2*(vbar(Istr-1,j,know)+ & & Cx*vbar(Istr,j,kout)) #ifdef MASKING vbar(Istr-1,j,kout)=vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) #endif END IF END DO ! ! Western edge, clamped boundary condition. ! ELSE IF (LBC(iwest,isVbar,ng)%clamped) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN vbar(Istr-1,j,kout)=BOUNDARY(ng)%vbar_west(j) #ifdef MASKING vbar(Istr-1,j,kout)=vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) #endif END IF END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (LBC(iwest,isVbar,ng)%gradient) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN vbar(Istr-1,j,kout)=vbar(Istr,j,kout) #ifdef MASKING vbar(Istr-1,j,kout)=vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) #endif END IF END DO ! ! Western edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(iwest,isVbar,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO j=Jmin,Jmax IF (LBC_apply(ng)%west(j)) THEN vbar(Istr-1,j,kout)=gamma2(ng)*vbar(Istr,j,kout) #ifdef MASKING vbar(Istr-1,j,kout)=vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) #endif END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN ! ! Eastern edge, implicit upstream radiation condition. ! IF (LBC(ieast,isVbar,ng)%radiation) THEN DO j=JstrV-1,Jend grad(Iend ,j)=vbar(Iend ,j+1,know)- & & vbar(Iend ,j ,know) grad(Iend+1,j)=vbar(Iend+1,j+1,know)- & & vbar(Iend+1,j ,know) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN dVdt=vbar(Iend,j,know)-vbar(Iend ,j,kout) dVdx=vbar(Iend,j,know)-vbar(Iend-1,j,know) IF (LBC(ieast,isVbar,ng)%nudging) THEN IF (LnudgeM2CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M2nudgcof(Iend+1,j-1)+ & & CLIMA(ng)%M2nudgcof(Iend+1,j )) obc_in =obcfac(ng)*obc_out ELSE obc_out=M2obc_out(ng,ieast) obc_in =M2obc_in (ng,ieast) END IF IF ((dVdt*dVdx).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF tau=tau*dt2d END IF IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Iend,j-1)+ & & grad(Iend,j ))).gt.0.0_r8) THEN dVde=grad(Iend,j-1) ELSE dVde=grad(Iend,j ) END IF cff=dVdt/MAX(dVdx*dVdx+dVde*dVde,eps) Cx=MIN(1.0_r8,cff*dVdx) #ifdef RADIATION_2D Ce=MIN(1.0_r8,MAX(-1.0_r8,cff*dVde)) #else Ce=0.0_r8 #endif #if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%vbar_east_Cx(j)=Cx BOUNDARY(ng)%vbar_east_Ce(j)=Ce BOUNDARY(ng)%vbar_east_C2(j)=cff #endif vbar(Iend+1,j,kout)=(1.0_r8-Cx)*vbar(Iend+1,j,know)+ & & Cx*vbar(Iend,j,know)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j-1)- & & MIN(Ce,0.0_r8)*grad(Iend+1,j ) IF (LBC(ieast,isVbar,ng)%nudging) THEN vbar(Iend+1,j,kout)=vbar(Iend+1,j,kout)+ & & tau*(BOUNDARY(ng)%vbar_east(j)- & & vbar(Iend+1,j,know)) END IF #ifdef MASKING vbar(Iend+1,j,kout)=vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) #endif END IF END DO ! ! Eastern edge, Chapman boundary condition. ! ELSE IF (LBC(ieast,isVbar,ng)%Flather.or. & & LBC(ieast,isVbar,ng)%reduced) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN cff=dt2d*0.5_r8*(GRID(ng)%pm(Iend,j-1)+ & & GRID(ng)%pm(Iend,j )) cff1=SQRT(g*0.5_r8*(GRID(ng)%h(Iend,j-1)+ & & zeta(Iend,j-1,know)+ & & GRID(ng)%h(Iend,j )+ & & zeta(Iend,j ,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) vbar(Iend+1,j,kout)=cff2*(vbar(Iend+1,j,know)+ & & Cx*vbar(Iend,j,kout)) #ifdef MASKING vbar(Iend+1,j,kout)=vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) #endif END IF END DO ! ! Eastern edge, clamped boundary condition. ! ELSE IF (LBC(ieast,isVbar,ng)%clamped) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN vbar(Iend+1,j,kout)=BOUNDARY(ng)%vbar_east(j) #ifdef MASKING vbar(Iend+1,j,kout)=vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) #endif END IF END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (LBC(ieast,isVbar,ng)%gradient) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN vbar(Iend+1,j,kout)=vbar(Iend,j,kout) #ifdef MASKING vbar(Iend+1,j,kout)=vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) #endif END IF END DO ! ! Eastern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(ieast,isVbar,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO j=Jmin,Jmax IF (LBC_apply(ng)%east(j)) THEN vbar(Iend+1,j,kout)=gamma2(ng)*vbar(Iend,j,kout) #ifdef MASKING vbar(Iend+1,j,kout)=vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) #endif END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr-1).and. & & LBC_apply(ng)%west (Jstr )) THEN vbar(Istr-1,Jstr,kout)=0.5_r8*(vbar(Istr ,Jstr ,kout)+ & & vbar(Istr-1,Jstr+1,kout)) END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr )) THEN vbar(Iend+1,Jstr,kout)=0.5_r8*(vbar(Iend ,Jstr ,kout)+ & & vbar(Iend+1,Jstr+1,kout)) END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr-1).and. & & LBC_apply(ng)%west (Jend+1)) THEN vbar(Istr-1,Jend+1,kout)=0.5_r8*(vbar(Istr-1,Jend ,kout)+ & & vbar(Istr ,Jend+1,kout)) END IF END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN vbar(Iend+1,Jend+1,kout)=0.5_r8*(vbar(Iend+1,Jend ,kout)+ & & vbar(Iend ,Jend+1,kout)) END IF END IF END IF #if defined WET_DRY ! !----------------------------------------------------------------------- ! Impose wetting and drying conditions. !----------------------------------------------------------------------- ! IF (.not.EWperiodic(ng)) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(Istr-1,j))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(Istr-1,j,kout))* & & GRID(ng)%vmask_wet(Istr-1,j) cff=0.5_r8*GRID(ng)%vmask_wet(Istr-1,j)*cff1+ & & cff2*(1.0_r8-cff1) vbar(Istr,j,kout)=vbar(Istr,j,kout)*cff END IF END DO END IF IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(Iend+1,j))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(Iend+1,j,kout))* & & GRID(ng)%vmask_wet(Iend+1,j) cff=0.5_r8*GRID(ng)%vmask_wet(Iend+1,j)*cff1+ & & cff2*(1.0_r8-cff1) vbar(Iend+1,j,kout)=vbar(Iend+1,j,kout)*cff END IF END DO END IF END IF IF (.not.NSperiodic(ng)) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(i,Jstr))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(i,Jstr,kout))* & & GRID(ng)%vmask_wet(i,Jstr) cff=0.5_r8*GRID(ng)%vmask_wet(i,Jstr)*cff1+ & & cff2*(1.0_r8-cff1) vbar(i,Jstr,kout)=vbar(i,Jstr,kout)*cff END IF END DO END IF IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(i,Jend+1))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(i,Jend+1,kout))* & & GRID(ng)%vmask_wet(i,Jend+1) cff=0.5_r8*GRID(ng)%vmask_wet(i,Jend+1)*cff1+ & & cff2*(1.0_r8-cff1) vbar(i,Jend+1,kout)=vbar(i,Jend+1,kout)*cff END IF END DO END IF END IF IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr-1).and. & & LBC_apply(ng)%west (Jstr )) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(Istr-1,Jstr))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(Istr-1,Jstr,kout))* & & GRID(ng)%vmask_wet(Istr-1,Jstr) cff=0.5_r8*GRID(ng)%vmask_wet(Istr-1,Jstr)*cff1+ & & cff2*(1.0_r8-cff1) vbar(Istr-1,Jstr,kout)=vbar(Istr-1,Jstr,kout)*cff END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr )) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(Iend+1,Jstr))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(Iend+1,Jstr,kout))* & & GRID(ng)%vmask_wet(Iend+1,Jstr) cff=0.5_r8*GRID(ng)%vmask_wet(Iend+1,Jstr)*cff1+ & & cff2*(1.0_r8-cff1) vbar(Iend+1,Jstr,kout)=vbar(Iend+1,Jstr,kout)*cff END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr-1).and. & & LBC_apply(ng)%west (Jend+1)) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(Istr-1,Jend+1))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(Istr-1,Jend+1,kout))* & & GRID(ng)%vmask_wet(Istr-1,Jend+1) cff=0.5_r8*GRID(ng)%vmask_wet(Istr-1,Jend+1)*cff1+ & & cff2*(1.0_r8-cff1) vbar(Istr-1,Jend+1,kout)=vbar(Istr-1,Jend+1,kout)*cff END IF END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN cff1=ABS(ABS(GRID(ng)%vmask_wet(Iend+1,Jend+1))-1.0_r8) cff2=0.5_r8+DSIGN(0.5_r8,vbar(Iend+1,Jend+1,kout))* & & GRID(ng)%vmask_wet(Iend+1,Jend+1) cff=0.5_r8*GRID(ng)%vmask_wet(Iend+1,Jend+1)*cff1+ & & cff2*(1.0_r8-cff1) vbar(Iend+1,Jend+1,kout)=vbar(Iend+1,Jend+1,kout)*cff END IF END IF END IF #endif RETURN END SUBROUTINE v2dbc_tile END MODULE v2dbc_mod