#include "cppdefs.h" MODULE v3dbc_mod #ifdef SOLVE3D ! !git $Id$ !svn $Id: v3dbc_im.F 1151 2023-02-09 03:08:53Z arango $ !======================================================================= ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This subroutine sets lateral boundary conditions for total 3D ! ! V-velocity. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: v3dbc_tile ! CONTAINS ! !*********************************************************************** SUBROUTINE v3dbc (ng, tile, nout) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, nout ! ! Local variable declarations. ! # include "tile.h" ! CALL v3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & nstp(ng), nout, & & OCEAN(ng) % v) RETURN END SUBROUTINE v3dbc ! !*********************************************************************** SUBROUTINE v3dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & nstp, nout, & & v) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_clima USE mod_grid USE mod_ncparam USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nstp, nout ! # ifdef ASSUMED_SHAPE real(r8), intent(inout) :: v(LBi:,LBj:,:,:) # else real(r8), intent(inout) :: v(LBi:UBi,LBj:UBj,UBk,2) # endif ! ! Local variable declarations. ! integer :: Jmin, Jmax integer :: i, j, k real(r8), parameter :: eps = 1.0E-20_r8 real(r8) :: Ce, Cx, cff, dVde, dVdt, dVdx real(r8) :: obc_in, obc_out, phi, tau real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN ! ! Southern edge, implicit upstream radiation condition. ! IF (LBC(isouth,isVvel,ng)%radiation) THEN DO k=1,N(ng) DO i=Istr,Iend+1 grad(i,Jstr )=v(i ,Jstr ,k,nstp)- & & v(i-1,Jstr ,k,nstp) grad(i,Jstr+1)=v(i ,Jstr+1,k,nstp)- & & v(i-1,Jstr+1,k,nstp) END DO DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN dVdt=v(i,Jstr+1,k,nstp)-v(i,Jstr+1,k,nout) dVde=v(i,Jstr+1,k,nout)-v(i,Jstr+2,k,nout) IF (LBC(isouth,isVvel,ng)%nudging) THEN IF (LnudgeM3CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M3nudgcof(i,Jstr-1,k)+ & & CLIMA(ng)%M3nudgcof(i,Jstr ,k)) obc_in =obcfac(ng)*obc_out ELSE obc_out=M3obc_out(ng,isouth) obc_in =M3obc_in (ng,isouth) END IF IF ((dVdt*dVde).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF # ifdef IMPLICIT_NUDGING IF (tau.gt.0.0_r8) tau=1.0_r8/tau # else tau=tau*dt(ng) # endif END IF IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i ,Jstr+1)+ & & grad(i+1,Jstr+1))).gt.0.0_r8) THEN dVdx=grad(i ,Jstr+1) ELSE dVdx=grad(i+1,Jstr+1) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dVdt*dVdx,-cff)) # else Cx=0.0_r8 # endif Ce=dVdt*dVde # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%v_south_Cx(i,k)=Cx BOUNDARY(ng)%v_south_Ce(i,k)=Ce BOUNDARY(ng)%v_south_C2(i,k)=cff # endif v(i,Jstr,k,nout)=(cff*v(i,Jstr ,k,nstp)+ & & Ce *v(i,Jstr+1,k,nout)- & & MAX(Cx,0.0_r8)*grad(i ,Jstr)- & & MIN(Cx,0.0_r8)*grad(i+1,Jstr))/ & & (cff+Ce) IF (LBC(isouth,isVvel,ng)%nudging) THEN # ifdef IMPLICIT_NUDGING phi=dt(ng)/(tau+dt(ng)) v(i,Jstr,k,nout)=(1.0_r8-phi)*v(i,Jstr,k,nout)+ & & phi*BOUNDARY(ng)%v_south(i,k) # else v(i,Jstr,k,nout)=v(i,Jstr,k,nout)+ & & tau*(BOUNDARY(ng)%v_south(i,k)- & & v(i,Jstr,k,nstp)) # endif END IF # ifdef MASKING v(i,Jstr,k,nout)=v(i,Jstr,k,nout)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY v(i,Jstr,k,nout)=v(i,Jstr,k,nout)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO END DO ! ! Southern edge, clamped boundary condition. ! ELSE IF (LBC(isouth,isVvel,ng)%clamped) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN v(i,Jstr,k,nout)=BOUNDARY(ng)%v_south(i,k) # ifdef MASKING v(i,Jstr,k,nout)=v(i,Jstr,k,nout)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY v(i,Jstr,k,nout)=v(i,Jstr,k,nout)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (LBC(isouth,isVvel,ng)%gradient) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN v(i,Jstr,k,nout)=v(i,Jstr+1,k,nout) # ifdef MASKING v(i,Jstr,k,nout)=v(i,Jstr,k,nout)* & & GRID(ng)%vmask(i,Jstr) # endif # ifdef WET_DRY v(i,Jstr,k,nout)=v(i,Jstr,k,nout)* & & GRID(ng)%vmask_wet(i,Jstr) # endif END IF END DO END DO ! ! Southern edge, closed boundary condition. ! ELSE IF (LBC(isouth,isVvel,ng)%closed) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN v(i,Jstr,k,nout)=0.0_r8 END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN ! ! Northern edge, implicit upstream radiation condition. ! IF (LBC(inorth,isVvel,ng)%radiation) THEN DO k=1,N(ng) DO i=Istr,Iend+1 grad(i,Jend )=v(i ,Jend ,k,nstp)- & & v(i-1,Jend ,k,nstp) grad(i,Jend+1)=v(i ,Jend+1,k,nstp)- & & v(i-1,Jend+1,k,nstp) END DO DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN dVdt=v(i,Jend,k,nstp)-v(i,Jend ,k,nout) dVde=v(i,Jend,k,nout)-v(i,Jend-1,k,nout) IF (LBC(inorth,isVvel,ng)%nudging) THEN IF (LnudgeM3CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M3nudgcof(i,Jend ,k)+ & & CLIMA(ng)%M3nudgcof(i,Jend+1,k)) obc_in =obcfac(ng)*obc_out ELSE obc_out=M3obc_out(ng,inorth) obc_in =M3obc_in (ng,inorth) END IF IF ((dVdt*dVde).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF # ifdef IMPLICIT_NUDGING IF (tau.gt.0.0_r8) tau=1.0_r8/tau # else tau=tau*dt(ng) # endif END IF IF ((dVdt*dVde).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(i ,Jend)+ & & grad(i+1,Jend))).gt.0.0_r8) THEN dVdx=grad(i ,Jend) ELSE dVdx=grad(i+1,Jend) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) # ifdef RADIATION_2D Cx=MIN(cff,MAX(dVdt*dVdx,-cff)) # else Cx=0.0_r8 # endif Ce=dVdt*dVde # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%v_north_Cx(i,k)=Cx BOUNDARY(ng)%v_north_Ce(i,k)=Ce BOUNDARY(ng)%v_north_C2(i,k)=cff # endif v(i,Jend+1,k,nout)=(cff*v(i,Jend+1,k,nstp)+ & & Ce *v(i,Jend ,k,nout)- & & MAX(Cx,0.0_r8)*grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)*grad(i+1,Jend+1))/ & & (cff+Ce) IF (LBC(inorth,isVvel,ng)%nudging) THEN # ifdef IMPLICIT_NUDGING phi=dt(ng)/(tau+dt(ng)) v(i,Jend+1,k,nout)=(1.0_r8-phi)*v(i,Jend+1,k,nout)+ & & phi*BOUNDARY(ng)%v_north(i,k) # else v(i,Jend+1,k,nout)=v(i,Jend+1,k,nout)+ & & tau*(BOUNDARY(ng)%v_north(i,k)- & & v(i,Jend+1,k,nstp)) # endif END IF # ifdef MASKING v(i,Jend+1,k,nout)=v(i,Jend+1,k,nout)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY v(i,Jend+1,k,nout)=v(i,Jend+1,k,nout)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, clamped boundary condition. ! ELSE IF (LBC(inorth,isVvel,ng)%clamped) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN v(i,Jend+1,k,nout)=BOUNDARY(ng)%v_north(i,k) # ifdef MASKING v(i,Jend+1,k,nout)=v(i,Jend+1,k,nout)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY v(i,Jend+1,k,nout)=v(i,Jend+1,k,nout)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (LBC(inorth,isVvel,ng)%gradient) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN v(i,Jend+1,k,nout)=v(i,Jend,k,nout) # ifdef MASKING v(i,Jend+1,k,nout)=v(i,Jend+1,k,nout)* & & GRID(ng)%vmask(i,Jend+1) # endif # ifdef WET_DRY v(i,Jend+1,k,nout)=v(i,Jend+1,k,nout)* & & GRID(ng)%vmask_wet(i,Jend+1) # endif END IF END DO END DO ! ! Northern edge, closed boundary condition. ! ELSE IF (LBC(inorth,isVvel,ng)%closed) THEN DO k=1,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN v(i,Jend+1,k,nout)=0.0_r8 END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN ! ! Western edge, implicit upstream radiation condition. ! IF (LBC(iwest,isVvel,ng)%radiation) THEN DO k=1,N(ng) DO j=JstrV-1,Jend grad(Istr-1,j)=v(Istr-1,j+1,k,nstp)- & & v(Istr-1,j ,k,nstp) grad(Istr ,j)=v(Istr ,j+1,k,nstp)- & & v(Istr ,j ,k,nstp) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN dVdt=v(Istr,j,k,nstp)-v(Istr ,j,k,nout) dVdx=v(Istr,j,k,nout)-v(Istr+1,j,k,nout) IF (LBC(iwest,isVvel,ng)%nudging) THEN IF (LnudgeM3CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M3nudgcof(Istr-1,j-1,k)+ & & CLIMA(ng)%M3nudgcof(Istr-1,j ,k)) obc_in =obcfac(ng)*obc_out ELSE obc_out=M3obc_out(ng,iwest) obc_in =M3obc_in (ng,iwest) END IF IF ((dVdt*dVdx).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF # ifdef IMPLICIT_NUDGING IF (tau.gt.0.0_r8) tau=1.0_r8/tau # else tau=tau*dt(ng) # endif END IF IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Istr,j-1)+ & & grad(Istr,j ))).gt.0.0_r8) THEN dVde=grad(Istr,j-1) ELSE dVde=grad(Istr,j ) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) Cx=dVdt*dVdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dVdt*dVde,-cff)) # else Ce=0.0_r8 # endif # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%v_west_Cx(j,k)=Cx BOUNDARY(ng)%v_west_Ce(j,k)=Ce BOUNDARY(ng)%v_west_C2(j,k)=cff # endif v(Istr-1,j,k,nout)=(cff*v(Istr-1,j,k,nstp)+ & & Cx *v(Istr ,j,k,nout)- & & MAX(Ce,0.0_r8)*grad(Istr-1,j-1)- & & MIN(Ce,0.0_r8)*grad(Istr-1,j ))/ & & (cff+Cx) IF (LBC(iwest,isVvel,ng)%nudging) THEN # ifdef IMPLICIT_NUDGING phi=dt(ng)/(tau+dt(ng)) v(Istr-1,j,k,nout)=(1.0_r8-phi)*v(Istr-1,j,k,nout)+ & & phi*BOUNDARY(ng)%v_west(j,k) # else v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)+ & & tau*(BOUNDARY(ng)%v_west(j,k)- & & v(Istr-1,j,k,nstp)) # endif END IF # ifdef MASKING v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO ! ! Western edge, clamped boundary condition. ! ELSE IF (LBC(iwest,isVvel,ng)%clamped) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN v(Istr-1,j,k,nout)=BOUNDARY(ng)%v_west(j,k) # ifdef MASKING v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (LBC(iwest,isVvel,ng)%gradient) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN v(Istr-1,j,k,nout)=v(Istr,j,k,nout) # ifdef MASKING v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO ! ! Western edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(iwest,isVvel,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO k=1,N(ng) DO j=Jmin,Jmax IF (LBC_apply(ng)%west(j)) THEN v(Istr-1,j,k,nout)=gamma2(ng)*v(Istr,j,k,nout) # ifdef MASKING v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask(Istr-1,j) # endif # ifdef WET_DRY v(Istr-1,j,k,nout)=v(Istr-1,j,k,nout)* & & GRID(ng)%vmask_wet(Istr-1,j) # endif END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN ! ! Eastern edge, implicit upstream radiation condition. ! IF (LBC(ieast,isVvel,ng)%radiation) THEN DO k=1,N(ng) DO j=JstrV-1,Jend grad(Iend ,j)=v(Iend ,j+1,k,nstp)- & & v(Iend ,j ,k,nstp) grad(Iend+1,j)=v(Iend+1,j+1,k,nstp)- & & v(Iend+1,j ,k,nstp) END DO DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN dVdt=v(Iend,j,k,nstp)-v(Iend ,j,k,nout) dVdx=v(Iend,j,k,nout)-v(Iend-1,j,k,nout) IF (LBC(ieast,isVvel,ng)%nudging) THEN IF (LnudgeM3CLM(ng)) THEN obc_out=0.5_r8* & & (CLIMA(ng)%M3nudgcof(Iend+1,j-1,k)+ & & CLIMA(ng)%M3nudgcof(Iend+1,j ,k)) obc_in =obcfac(ng)*obc_out ELSE obc_out=M3obc_out(ng,ieast) obc_in =M3obc_in (ng,ieast) END IF IF ((dVdt*dVdx).lt.0.0_r8) THEN tau=obc_in ELSE tau=obc_out END IF # ifdef IMPLICIT_NUDGING IF (tau.gt.0.0_r8) tau=1.0_r8/tau # else tau=tau*dt(ng) # endif END IF IF ((dVdt*dVdx).lt.0.0_r8) dVdt=0.0_r8 IF ((dVdt*(grad(Iend,j-1)+ & & grad(Iend,j ))).gt.0.0_r8) THEN dVde=grad(Iend,j-1) ELSE dVde=grad(Iend,j ) END IF cff=MAX(dVdx*dVdx+dVde*dVde,eps) Cx=dVdt*dVdx # ifdef RADIATION_2D Ce=MIN(cff,MAX(dVdt*dVde,-cff)) # else Ce=0.0_r8 # endif # if defined CELERITY_WRITE && defined FORWARD_WRITE BOUNDARY(ng)%v_east_Cx(j,k)=Cx BOUNDARY(ng)%v_east_Ce(j,k)=Ce BOUNDARY(ng)%v_east_C2(j,k)=cff # endif v(Iend+1,j,k,nout)=(cff*v(Iend+1,j,k,nstp)+ & & Cx *v(Iend ,j,k,nout)- & & MAX(Ce,0.0_r8)*grad(Iend+1,j-1)- & & MIN(Ce,0.0_r8)*grad(Iend+1,j ))/ & & (cff+Cx) IF (LBC(ieast,isVvel,ng)%nudging) THEN # ifdef IMPLICIT_NUDGING phi=dt(ng)/(tau+dt(ng)) v(Iend+1,j,k,nout)=(1.0_r8-phi)*v(Iend+1,j,k,nout)+ & & phi*BOUNDARY(ng)%v_east(j,k) # else v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)+ & & tau*(BOUNDARY(ng)%v_east(j,k)- & & v(Iend+1,j,k,nstp)) # endif END IF # ifdef MASKING v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, clamped boundary condition. ! ELSE IF (LBC(ieast,isVvel,ng)%clamped) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN v(Iend+1,j,k,nout)=BOUNDARY(ng)%v_east(j,k) # ifdef MASKING v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (LBC(ieast,isVvel,ng)%gradient) THEN DO k=1,N(ng) DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN v(Iend+1,j,k,nout)=v(Iend,j,k,nout) # ifdef MASKING v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO ! ! Eastern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (LBC(ieast,isVvel,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO k=1,N(ng) DO j=Jmin,Jmax IF (LBC_apply(ng)%east(j)) THEN v(Iend+1,j,k,nout)=gamma2(ng)*v(Iend,j,k,nout) # ifdef MASKING v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask(Iend+1,j) # endif # ifdef WET_DRY v(Iend+1,j,k,nout)=v(Iend+1,j,k,nout)* & & GRID(ng)%vmask_wet(Iend+1,j) # endif END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr-1).and. & & LBC_apply(ng)%west (Jstr )) THEN DO k=1,N(ng) v(Istr-1,Jstr,k,nout)=0.5_r8*(v(Istr ,Jstr ,k,nout)+ & & v(Istr-1,Jstr+1,k,nout)) END DO END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr )) THEN DO k=1,N(ng) v(Iend+1,Jstr,k,nout)=0.5_r8*(v(Iend ,Jstr ,k,nout)+ & & v(Iend+1,Jstr+1,k,nout)) END DO END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr-1).and. & & LBC_apply(ng)%west (Jend+1)) THEN DO k=1,N(ng) v(Istr-1,Jend+1,k,nout)=0.5_r8*(v(Istr-1,Jend ,k,nout)+ & & v(Istr ,Jend+1,k,nout)) END DO END IF END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN DO k=1,N(ng) v(Iend+1,Jend+1,k,nout)=0.5_r8*(v(Iend+1,Jend ,k,nout)+ & & v(Iend ,Jend+1,k,nout)) END DO END IF END IF END IF RETURN END SUBROUTINE v3dbc_tile #endif END MODULE v3dbc_mod