MODULE t3dmix2_mod ! !git $Id$ !svn $Id: t3dmix2_geo.h 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This subroutine computes horizontal harmonic mixing of tracers ! ! along geopotential surfaces. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC t3dmix2 ! CONTAINS ! !*********************************************************************** SUBROUTINE t3dmix2 (ng, tile) !*********************************************************************** ! USE mod_param #ifdef TS_MIX_CLIMA USE mod_clima #endif #ifdef DIAGNOSTICS_TS USE mod_diags #endif USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! #include "tile.h" ! #ifdef PROFILE CALL wclock_on (ng, iNLM, 25, __LINE__, MyFile) #endif CALL t3dmix2_geo_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), nstp(ng), nnew(ng), & #ifdef MASKING & GRID(ng) % umask, & & GRID(ng) % vmask, & #endif #ifdef WET_DRY & GRID(ng) % umask_wet, & & GRID(ng) % vmask_wet, & #endif & GRID(ng) % om_v, & & GRID(ng) % on_u, & & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % Hz, & & GRID(ng) % z_r, & #ifdef DIFF_3DCOEF & MIXING(ng) % diff3d_r, & #else & MIXING(ng) % diff2, & #endif #ifdef TS_MIX_CLIMA & CLIMA(ng) % tclm, & #endif #ifdef DIAGNOSTICS_TS & DIAGS(ng) % DiaTwrk, & #endif & OCEAN(ng) % t) #ifdef PROFILE CALL wclock_off (ng, iNLM, 25, __LINE__, MyFile) #endif ! RETURN END SUBROUTINE t3dmix2 ! !*********************************************************************** SUBROUTINE t3dmix2_geo_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, nstp, nnew, & #ifdef MASKING & umask, vmask, & #endif #ifdef WET_DRY & umask_wet, vmask_wet, & #endif & om_v, on_u, pm, pn, & & Hz, z_r, & #ifdef DIFF_3DCOEF & diff3d_r, & #else & diff2, & #endif #ifdef TS_MIX_CLIMA & tclm, & #endif #ifdef DIAGNOSTICS_TS & DiaTwrk, & #endif & t) !*********************************************************************** ! USE mod_param USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs, nstp, nnew #ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif # ifdef WET_DRY real(r8), intent(in) :: umask_wet(LBi:,LBj:) real(r8), intent(in) :: vmask_wet(LBi:,LBj:) # endif # ifdef DIFF_3DCOEF real(r8), intent(in) :: diff3d_r(LBi:,LBj:,:) # else real(r8), intent(in) :: diff2(LBi:,LBj:,:) # endif real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) # ifdef TS_MIX_CLIMA real(r8), intent(in) :: tclm(LBi:,LBj:,:,:) # endif # ifdef DIAGNOSTICS_TS real(r8), intent(inout) :: DiaTwrk(LBi:,LBj:,:,:,:) # endif real(r8), intent(inout) :: t(LBi:,LBj:,:,:,:) #else # ifdef MASKING real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif # ifdef WET_DRY real(r8), intent(in) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask_wet(LBi:UBi,LBj:UBj) # endif # ifdef DIFF_3DCOEF real(r8), intent(in) :: diff3d_r(LBi:UBi,LBj:UBj,N(ng)) # else real(r8), intent(in) :: diff2(LBi:UBi,LBj:UBj,NT(ng)) # endif real(r8), intent(in) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) # ifdef TS_MIX_CLIMA real(r8), intent(in) :: tclm(LBi:UBi,LBj:UBj,N(ng),NT(ng)) # endif # ifdef DIAGNOSTICS_TS real(r8), intent(inout) :: DiaTwrk(LBi:UBi,LBj:UBj,N(ng),NT(ng), & & NDT) # endif real(r8), intent(inout) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) #endif ! ! Local variable declarations. ! integer :: i, itrc, j, k, k1, k2 real(r8) :: cff, cff1, cff2, cff3, cff4 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: FS real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dTdz real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dTdx real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dTde real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dZdx real(r8), dimension(IminS:ImaxS,JminS:JmaxS,2) :: dZde #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Compute horizontal harmonic diffusion along geopotential surfaces. !----------------------------------------------------------------------- ! ! Compute horizontal and vertical gradients. Notice the recursive ! blocking sequence. The vertical placement of the gradients is: ! ! dTdx,dTde(:,:,k1) k rho-points ! dTdx,dTde(:,:,k2) k+1 rho-points ! FS,dTdz(:,:,k1) k-1/2 W-points ! FS,dTdz(:,:,k2) k+1/2 W-points ! #ifdef TS_MIX_STABILITY ! In order to increase stability, the biharmonic operator is applied ! as: 3/4 t(:,:,:,nrhs,:) + 1/4 t(:,:,:,nstp,:). ! #endif T_LOOP : DO itrc=1,NT(ng) k2=1 K_LOOP : DO k=0,N(ng) k1=k2 k2=3-k1 IF (k.lt.N(ng)) THEN DO j=Jstr,Jend DO i=Istr,Iend+1 cff=0.5_r8*(pm(i,j)+pm(i-1,j)) #ifdef MASKING cff=cff*umask(i,j) #endif #ifdef WET_DRY cff=cff*umask_wet(i,j) #endif dZdx(i,j,k2)=cff*(z_r(i ,j,k+1)- & & z_r(i-1,j,k+1)) #if defined TS_MIX_STABILITY dTdx(i,j,k2)=cff*(0.75_r8*(t(i ,j,k+1,nrhs,itrc)- & & t(i-1,j,k+1,nrhs,itrc))+ & & 0.25_r8*(t(i ,j,k+1,nstp,itrc)- & & t(i-1,j,k+1,nstp,itrc))) #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN dTdx(i,j,k2)=cff*((t(i ,j,k+1,nrhs,itrc)- & & tclm(i ,j,k+1,itrc))- & & (t(i-1,j,k+1,nrhs,itrc)- & & tclm(i-1,j,k+1,itrc))) ELSE dTdx(i,j,k2)=cff*(t(i ,j,k+1,nrhs,itrc)- & & t(i-1,j,k+1,nrhs,itrc)) END IF #else dTdx(i,j,k2)=cff*(t(i ,j,k+1,nrhs,itrc)- & & t(i-1,j,k+1,nrhs,itrc)) #endif END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend cff=0.5_r8*(pn(i,j)+pn(i,j-1)) #ifdef MASKING cff=cff*vmask(i,j) #endif #ifdef WET_DRY cff=cff*vmask_wet(i,j) #endif dZde(i,j,k2)=cff*(z_r(i,j ,k+1)- & & z_r(i,j-1,k+1)) #if defined TS_MIX_STABILITY dTde(i,j,k2)=cff*(0.75_r8*(t(i,j ,k+1,nrhs,itrc)- & & t(i,j-1,k+1,nrhs,itrc))+ & & 0.25_r8*(t(i,j ,k+1,nstp,itrc)- & & t(i,j-1,k+1,nstp,itrc))) #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN dTde(i,j,k2)=cff*((t(i,j ,k+1,nrhs,itrc)- & & tclm(i,j ,k+1,itrc))- & & (t(i,j-1,k+1,nrhs,itrc)- & & tclm(i,j-1,k+1,itrc))) ELSE dTde(i,j,k2)=cff*(t(i,j ,k+1,nrhs,itrc)- & & t(i,j-1,k+1,nrhs,itrc)) END IF #else dTde(i,j,k2)=cff*(t(i,j ,k+1,nrhs,itrc)- & & t(i,j-1,k+1,nrhs,itrc)) #endif END DO END DO END IF IF ((k.eq.0).or.(k.eq.N(ng))) THEN DO j=Jstr-1,Jend+1 DO i=Istr-1,Iend+1 dTdz(i,j,k2)=0.0_r8 FS(i,j,k2)=0.0_r8 END DO END DO ELSE DO j=Jstr-1,Jend+1 DO i=Istr-1,Iend+1 cff=1.0_r8/(z_r(i,j,k+1)-z_r(i,j,k)) #if defined TS_MIX_STABILITY dTdz(i,j,k2)=cff*(0.75_r8*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc))+ & & 0.25_r8*(t(i,j,k+1,nstp,itrc)- & & t(i,j,k ,nstp,itrc))) #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN dTdz(i,j,k2)=cff*((t(i,j,k+1,nrhs,itrc)- & & tclm(i,j,k+1,itrc))- & & (t(i,j,k ,nrhs,itrc)- & & tclm(i,j,k ,itrc))) ELSE dTdz(i,j,k2)=cff*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc)) END IF #else dTdz(i,j,k2)=cff*(t(i,j,k+1,nrhs,itrc)- & & t(i,j,k ,nrhs,itrc)) #endif END DO END DO END IF ! ! Compute components of the rotated tracer flux (T m3/s) along ! geopotential surfaces. ! IF (k.gt.0) THEN DO j=Jstr,Jend DO i=Istr,Iend+1 #ifdef DIFF_3DCOEF cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i-1,j,k))* & & on_u(i,j) #else cff=0.25_r8*(diff2(i,j,itrc)+diff2(i-1,j,itrc))* & & on_u(i,j) #endif FX(i,j)=cff* & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (dTdx(i,j,k1)- & & 0.5_r8*(MIN(dZdx(i,j,k1),0.0_r8)* & & (dTdz(i-1,j,k1)+ & & dTdz(i ,j,k2))+ & & MAX(dZdx(i,j,k1),0.0_r8)* & & (dTdz(i-1,j,k2)+ & & dTdz(i ,j,k1)))) END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend #ifdef DIFF_3DCOEF cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i,j-1,k))* & & om_v(i,j) #else cff=0.25_r8*(diff2(i,j,itrc)+diff2(i,j-1,itrc))* & & om_v(i,j) #endif FE(i,j)=cff* & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (dTde(i,j,k1)- & & 0.5_r8*(MIN(dZde(i,j,k1),0.0_r8)* & & (dTdz(i,j-1,k1)+ & & dTdz(i,j ,k2))+ & & MAX(dZde(i,j,k1),0.0_r8)* & & (dTdz(i,j-1,k2)+ & & dTdz(i,j ,k1)))) END DO END DO IF (k.lt.N(ng)) THEN DO j=Jstr,Jend DO i=Istr,Iend #ifdef DIFF_3DCOEF cff=0.5_r8*diff3d_r(i,j,k) #else cff=0.5_r8*diff2(i,j,itrc) #endif cff1=MIN(dZdx(i ,j,k1),0.0_r8) cff2=MIN(dZdx(i+1,j,k2),0.0_r8) cff3=MAX(dZdx(i ,j,k2),0.0_r8) cff4=MAX(dZdx(i+1,j,k1),0.0_r8) FS(i,j,k2)=cff* & & (cff1*(cff1*dTdz(i,j,k2)-dTdx(i ,j,k1))+ & & cff2*(cff2*dTdz(i,j,k2)-dTdx(i+1,j,k2))+ & & cff3*(cff3*dTdz(i,j,k2)-dTdx(i ,j,k2))+ & & cff4*(cff4*dTdz(i,j,k2)-dTdx(i+1,j,k1))) cff1=MIN(dZde(i,j ,k1),0.0_r8) cff2=MIN(dZde(i,j+1,k2),0.0_r8) cff3=MAX(dZde(i,j ,k2),0.0_r8) cff4=MAX(dZde(i,j+1,k1),0.0_r8) FS(i,j,k2)=FS(i,j,k2)+ & & cff* & & (cff1*(cff1*dTdz(i,j,k2)-dTde(i,j ,k1))+ & & cff2*(cff2*dTdz(i,j,k2)-dTde(i,j+1,k2))+ & & cff3*(cff3*dTdz(i,j,k2)-dTde(i,j ,k2))+ & & cff4*(cff4*dTdz(i,j,k2)-dTde(i,j+1,k1))) END DO END DO END IF ! ! Time-step harmonic, geopotential diffusion term (m Tunits). ! DO j=Jstr,Jend DO i=Istr,Iend cff=dt(ng)*pm(i,j)*pn(i,j) cff1=cff*(FX(i+1,j )-FX(i,j)) cff2=cff*(FE(i ,j+1)-FE(i,j)) cff3=dt(ng)*(FS(i,j,k2)-FS(i,j,k1)) cff4=cff1+cff2+cff3 t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)+cff4 #ifdef DIAGNOSTICS_TS DiaTwrk(i,j,k,itrc,iTxdif)=cff1 DiaTwrk(i,j,k,itrc,iTydif)=cff2 DiaTwrk(i,j,k,itrc,iTsdif)=cff3 DiaTwrk(i,j,k,itrc,iThdif)=cff4 #endif END DO END DO END IF END DO K_LOOP END DO T_LOOP ! RETURN END SUBROUTINE t3dmix2_geo_tile END MODULE t3dmix2_mod