MODULE step2d_mod ! !git $Id$ !svn $Id: step2d_LF_AM3.h 1178 2023-07-11 17:50:57Z arango $ !======================================================================= ! ! ! Nonlinear shallow-water primitive equations predictor (Leap-frog) ! ! and corrector (Adams-Moulton) time-stepping engine. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: step2d ! CONTAINS ! SUBROUTINE step2d (ng, tile) USE mod_param #ifdef SOLVE3D USE mod_coupling #endif #ifdef DIAGNOSTICS_UV USE mod_diags #endif USE mod_forces USE mod_grid #if defined UV_VIS2 || defined UV_VIS4 USE mod_mixing #endif USE mod_ocean #if defined SEDIMENT && defined SED_MORPH && defined SOLVE3D USE mod_sedbed #endif USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! #include "tile.h" ! #ifdef PROFILE CALL wclock_on (ng, iNLM, 9, __LINE__, MyFile) #endif CALL step2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & krhs(ng), kstp(ng), knew(ng), & #ifdef SOLVE3D & nstp(ng), nnew(ng), & #endif #ifdef MASKING & GRID(ng) % pmask, GRID(ng) % rmask, & & GRID(ng) % umask, GRID(ng) % vmask, & #endif #ifdef WET_DRY & GRID(ng) % pmask_wet, GRID(ng) % pmask_full, & & GRID(ng) % rmask_wet, GRID(ng) % rmask_full, & & GRID(ng) % umask_wet, GRID(ng) % umask_full, & & GRID(ng) % vmask_wet, GRID(ng) % vmask_full, & # ifdef SOLVE3D & GRID(ng) % rmask_wet_avg, & # endif #endif & GRID(ng) % fomn, GRID(ng) % h, & & GRID(ng) % om_u, GRID(ng) % om_v, & & GRID(ng) % on_u, GRID(ng) % on_v, & & GRID(ng) % omn, & & GRID(ng) % pm, GRID(ng) % pn, & #if defined CURVGRID && defined UV_ADV & GRID(ng) % dndx, GRID(ng) % dmde, & #endif #if defined UV_VIS2 || defined UV_VIS4 & GRID(ng) % pmon_r, GRID(ng) % pnom_r, & & GRID(ng) % pmon_p, GRID(ng) % pnom_p, & & GRID(ng) % om_r, GRID(ng) % on_r, & & GRID(ng) % om_p, GRID(ng) % on_p, & # ifdef UV_VIS2 & MIXING(ng) % visc2_p, MIXING(ng) % visc2_r, & # endif # ifdef UV_VIS4 & MIXING(ng) % visc4_p, MIXING(ng) % visc4_r, & # endif #endif #if defined SEDIMENT && defined SED_MORPH & SEDBED(ng) % bed_thick, & #endif #ifdef WEC # ifdef WEC_VF # ifdef WEC_ROLLER & MIXING(ng) % rurol2d, & & MIXING(ng) % rvrol2d, & # endif # ifdef BOTTOM_STREAMING & MIXING(ng) % rubst2d, & & MIXING(ng) % rvbst2d, & # endif # ifdef SURFACE_STREAMING & MIXING(ng) % russt2d, & & MIXING(ng) % rvsst2d, & # endif & MIXING(ng) % rubrk2d, & & MIXING(ng) % rvbrk2d, & & MIXING(ng) % rukvf2d, & & MIXING(ng) % rvkvf2d, & & OCEAN(ng) % bh, & & OCEAN(ng) % qsp, & & OCEAN(ng) % zetaw, & # endif & OCEAN(ng) % ubar_stokes, & & OCEAN(ng) % vbar_stokes, & #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D & OCEAN(ng) % eq_tide, & #endif #ifndef SOLVE3D & FORCES(ng) % sustr, FORCES(ng) % svstr, & & FORCES(ng) % bustr, FORCES(ng) % bvstr, & # ifdef ATM_PRESS & FORCES(ng) % Pair, & # endif #else # ifdef VAR_RHO_2D & COUPLING(ng) % rhoA, COUPLING(ng) % rhoS, & # endif & COUPLING(ng) % DU_avg1, COUPLING(ng) % DU_avg2, & & COUPLING(ng) % DV_avg1, COUPLING(ng) % DV_avg2, & & COUPLING(ng) % Zt_avg1, & & COUPLING(ng) % rufrc, COUPLING(ng) % rvfrc, & & OCEAN(ng) % ru, OCEAN(ng) % rv, & #endif #ifdef DIAGNOSTICS_UV & DIAGS(ng) % DiaU2wrk, DIAGS(ng) % DiaV2wrk, & & DIAGS(ng) % DiaRUbar, DIAGS(ng) % DiaRVbar, & # ifdef SOLVE3D & DIAGS(ng) % DiaU2int, DIAGS(ng) % DiaV2int, & & DIAGS(ng) % DiaRUfrc, DIAGS(ng) % DiaRVfrc, & # endif #endif #if defined NESTING && !defined SOLVE3D & OCEAN(ng) % DU_flux, OCEAN(ng) % DV_flux, & #endif & OCEAN(ng) % rubar, OCEAN(ng) % rvbar, & & OCEAN(ng) % rzeta, & & OCEAN(ng) % ubar, OCEAN(ng) % vbar, & & OCEAN(ng) % zeta) #ifdef PROFILE CALL wclock_off (ng, iNLM, 9, __LINE__, MyFile) #endif ! RETURN END SUBROUTINE step2d ! !*********************************************************************** SUBROUTINE step2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & #ifdef SOLVE3D & nstp, nnew, & #endif #ifdef MASKING & pmask, rmask, umask, vmask, & #endif #ifdef WET_DRY & pmask_wet, pmask_full, & & rmask_wet, rmask_full, & & umask_wet, umask_full, & & vmask_wet, vmask_full, & # ifdef SOLVE3D & rmask_wet_avg, & # endif #endif & fomn, h, & & om_u, om_v, on_u, on_v, omn, pm, pn, & #if defined CURVGRID && defined UV_ADV & dndx, dmde, & #endif #if defined UV_VIS2 || defined UV_VIS4 & pmon_r, pnom_r, pmon_p, pnom_p, & & om_r, on_r, om_p, on_p, & # ifdef UV_VIS2 & visc2_p, visc2_r, & # endif # ifdef UV_VIS4 & visc4_p, visc4_r, & # endif #endif #if defined SEDIMENT && defined SED_MORPH & bed_thick, & #endif #ifdef WEC # ifdef WEC_VF # ifdef WEC_ROLLER & rurol2d, rvrol2d, & # endif # ifdef BOTTOM_STREAMING & rubst2d, rvbst2d, & # endif # ifdef SURFACE_STREAMING & russt2d, rvsst2d, & # endif & rubrk2d, rvbrk2d, & & rukvf2d, rvkvf2d, & & bh, qsp, zetaw, & # endif & ubar_stokes, vbar_stokes, & #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D & eq_tide, & #endif #ifndef SOLVE3D & sustr, svstr, bustr, bvstr, & # ifdef ATM_PRESS & Pair, & # endif #else # ifdef VAR_RHO_2D & rhoA, rhoS, & # endif & DU_avg1, DU_avg2, & & DV_avg1, DV_avg2, & & Zt_avg1, & & rufrc, rvfrc, ru, rv, & #endif #ifdef DIAGNOSTICS_UV & DiaU2wrk, DiaV2wrk, & & DiaRUbar, DiaRVbar, & # ifdef SOLVE3D & DiaU2int, DiaV2int, & & DiaRUfrc, DiaRVfrc, & # endif #endif #if defined NESTING && !defined SOLVE3D & DU_flux, DV_flux, & #endif & rubar, rvbar, rzeta, & & ubar, vbar, zeta) !*********************************************************************** ! USE mod_param USE mod_clima USE mod_ncparam USE mod_scalars #if defined SEDIMENT && defined SED_MORPH USE mod_sedbed #endif USE mod_sources ! USE exchange_2d_mod #ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : mp_exchange2d #endif USE obc_volcons_mod, ONLY : obc_flux_tile, set_DUV_bc_tile USE u2dbc_mod, ONLY : u2dbc_tile USE v2dbc_mod, ONLY : v2dbc_tile USE zetabc_mod, ONLY : zetabc_tile #ifdef WET_DRY USE wetdry_mod, ONLY : wetdry_tile #endif ! ! Imported variable declarations. ! integer, intent(in ) :: ng, tile integer, intent(in ) :: LBi, UBi, LBj, UBj, UBk integer, intent(in ) :: IminS, ImaxS, JminS, JmaxS integer, intent(in ) :: krhs, kstp, knew #ifdef SOLVE3D integer, intent(in ) :: nstp, nnew #endif ! #ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in ) :: pmask(LBi:,LBj:) real(r8), intent(in ) :: rmask(LBi:,LBj:) real(r8), intent(in ) :: umask(LBi:,LBj:) real(r8), intent(in ) :: vmask(LBi:,LBj:) # endif real(r8), intent(in ) :: fomn(LBi:,LBj:) # if defined SEDIMENT && defined SED_MORPH real(r8), intent(inout) :: h(LBi:,LBj:) # else real(r8), intent(in ) :: h(LBi:,LBj:) # endif real(r8), intent(in ) :: om_u(LBi:,LBj:) real(r8), intent(in ) :: om_v(LBi:,LBj:) real(r8), intent(in ) :: on_u(LBi:,LBj:) real(r8), intent(in ) :: on_v(LBi:,LBj:) real(r8), intent(in ) :: omn(LBi:,LBj:) real(r8), intent(in ) :: pm(LBi:,LBj:) real(r8), intent(in ) :: pn(LBi:,LBj:) # if defined CURVGRID && defined UV_ADV real(r8), intent(in ) :: dndx(LBi:,LBj:) real(r8), intent(in ) :: dmde(LBi:,LBj:) # endif # if defined UV_VIS2 || defined UV_VIS4 real(r8), intent(in ) :: pmon_r(LBi:,LBj:) real(r8), intent(in ) :: pnom_r(LBi:,LBj:) real(r8), intent(in ) :: pmon_p(LBi:,LBj:) real(r8), intent(in ) :: pnom_p(LBi:,LBj:) real(r8), intent(in ) :: om_r(LBi:,LBj:) real(r8), intent(in ) :: on_r(LBi:,LBj:) real(r8), intent(in ) :: om_p(LBi:,LBj:) real(r8), intent(in ) :: on_p(LBi:,LBj:) # ifdef UV_VIS2 real(r8), intent(in ) :: visc2_p(LBi:,LBj:) real(r8), intent(in ) :: visc2_r(LBi:,LBj:) # endif # ifdef UV_VIS4 real(r8), intent(in ) :: visc4_p(LBi:,LBj:) real(r8), intent(in ) :: visc4_r(LBi:,LBj:) # endif # endif # if defined SEDIMENT && defined SED_MORPH real(r8), intent(in ) :: bed_thick(LBi:,LBj:,:) # endif # ifdef WEC # ifdef WEC_VF # ifdef WEC_ROLLER real(r8), intent(in) :: rurol2d(LBi:,LBj:) real(r8), intent(in) :: rvrol2d(LBi:,LBj:) # endif # ifdef BOTTOM_STREAMING real(r8), intent(in) :: rubst2d(LBi:,LBj:) real(r8), intent(in) :: rvbst2d(LBi:,LBj:) # endif # ifdef SURFACE_STREAMING real(r8), intent(in) :: russt2d(LBi:,LBj:) real(r8), intent(in) :: rvsst2d(LBi:,LBj:) # endif real(r8), intent(in) :: rubrk2d(LBi:,LBj:) real(r8), intent(in) :: rvbrk2d(LBi:,LBj:) real(r8), intent(in) :: rukvf2d(LBi:,LBj:) real(r8), intent(in) :: rvkvf2d(LBi:,LBj:) real(r8), intent(in) :: bh(LBi:,LBj:) real(r8), intent(in) :: qsp(LBi:,LBj:) real(r8), intent(in) :: zetaw(LBi:,LBj:) # endif real(r8), intent(in) :: ubar_stokes(LBi:,LBj:) real(r8), intent(in) :: vbar_stokes(LBi:,LBj:) # endif # if defined TIDE_GENERATING_FORCES && !defined SOLVE3D real(r8), intent(in ) :: eq_tide(LBi:,LBj:) # endif # ifndef SOLVE3D real(r8), intent(in ) :: sustr(LBi:,LBj:) real(r8), intent(in ) :: svstr(LBi:,LBj:) real(r8), intent(in ) :: bustr(LBi:,LBj:) real(r8), intent(in ) :: bvstr(LBi:,LBj:) # ifdef ATM_PRESS real(r8), intent(in ) :: Pair(LBi:,LBj:) # endif # else # ifdef VAR_RHO_2D real(r8), intent(in ) :: rhoA(LBi:,LBj:) real(r8), intent(in ) :: rhoS(LBi:,LBj:) # endif real(r8), intent(inout) :: DU_avg1(LBi:,LBj:) real(r8), intent(inout) :: DU_avg2(LBi:,LBj:) real(r8), intent(inout) :: DV_avg1(LBi:,LBj:) real(r8), intent(inout) :: DV_avg2(LBi:,LBj:) real(r8), intent(inout) :: Zt_avg1(LBi:,LBj:) real(r8), intent(inout) :: rufrc(LBi:,LBj:) real(r8), intent(inout) :: rvfrc(LBi:,LBj:) real(r8), intent(inout) :: ru(LBi:,LBj:,0:,:) real(r8), intent(inout) :: rv(LBi:,LBj:,0:,:) # endif # ifdef WET_DRY real(r8), intent(inout) :: pmask_full(LBi:,LBj:) real(r8), intent(inout) :: rmask_full(LBi:,LBj:) real(r8), intent(inout) :: umask_full(LBi:,LBj:) real(r8), intent(inout) :: vmask_full(LBi:,LBj:) real(r8), intent(inout) :: pmask_wet(LBi:,LBj:) real(r8), intent(inout) :: rmask_wet(LBi:,LBj:) real(r8), intent(inout) :: umask_wet(LBi:,LBj:) real(r8), intent(inout) :: vmask_wet(LBi:,LBj:) # ifdef SOLVE3D real(r8), intent(inout) :: rmask_wet_avg(LBi:,LBj:) # endif # endif # ifdef DIAGNOSTICS_UV real(r8), intent(inout) :: DiaU2wrk(LBi:,LBj:,:) real(r8), intent(inout) :: DiaV2wrk(LBi:,LBj:,:) real(r8), intent(inout) :: DiaRUbar(LBi:,LBj:,:,:) real(r8), intent(inout) :: DiaRVbar(LBi:,LBj:,:,:) # ifdef SOLVE3D real(r8), intent(inout) :: DiaU2int(LBi:,LBj:,:) real(r8), intent(inout) :: DiaV2int(LBi:,LBj:,:) real(r8), intent(inout) :: DiaRUfrc(LBi:,LBj:,:,:) real(r8), intent(inout) :: DiaRVfrc(LBi:,LBj:,:,:) # endif # endif real(r8), intent(inout) :: rubar(LBi:,LBj:,:) real(r8), intent(inout) :: rvbar(LBi:,LBj:,:) real(r8), intent(inout) :: rzeta(LBi:,LBj:,:) real(r8), intent(inout) :: ubar(LBi:,LBj:,:) real(r8), intent(inout) :: vbar(LBi:,LBj:,:) real(r8), intent(inout) :: zeta(LBi:,LBj:,:) # if defined NESTING && !defined SOLVE3D real(r8), intent(out ) :: DU_flux(LBi:,LBj:) real(r8), intent(out ) :: DV_flux(LBi:,LBj:) # endif #else # ifdef MASKING real(r8), intent(in ) :: pmask(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: rmask(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: vmask(LBi:UBi,LBj:UBj) # endif real(r8), intent(in ) :: fomn(LBi:UBi,LBj:UBj) # if defined SEDIMENT && defined SED_MORPH real(r8), intent(inout) :: h(LBi:UBi,LBj:UBj) # else real(r8), intent(in ) :: h(LBi:UBi,LBj:UBj) # endif real(r8), intent(in ) :: om_u(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: on_v(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: omn(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: pn(LBi:UBi,LBj:UBj) # if defined CURVGRID && defined UV_ADV real(r8), intent(in ) :: dndx(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: dmde(LBi:UBi,LBj:UBj) # endif # if defined UV_VIS2 || defined UV_VIS4 real(r8), intent(in ) :: pmon_r(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: pnom_r(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: pmon_p(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: pnom_p(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: om_r(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: on_r(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: om_p(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: on_p(LBi:UBi,LBj:UBj) # ifdef UV_VIS2 real(r8), intent(in ) :: visc2_p(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: visc2_r(LBi:UBi,LBj:UBj) # endif # ifdef UV_VIS4 real(r8), intent(in ) :: visc4_p(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: visc4_r(LBi:UBi,LBj:UBj) # endif # endif # if defined SEDIMENT && defined SED_MORPH real(r8), intent(in ) :: bed_thick(LBi:UBi,LBj:UBj,1:3) # endif # ifdef WEC # ifdef WEC_VF # ifdef WEC_ROLLER real(r8), intent(in) :: rurol2d(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rvrol2d(LBi:UBi,LBj:UBj) # endif # ifdef BOTTOM_STREAMING real(r8), intent(in) :: rubst2d(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rvbst2d(LBi:UBi,LBj:UBj) # endif # ifdef SURFACE_STREAMING real(r8), intent(in) :: russt2d(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rvsst2d(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: rubrk2d(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rvbrk2d(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rukvf2d(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rvkvf2d(LBi:UBi,LBj:UBj) real(r8), intent(in) :: bh(LBi:UBi,LBj:UBj) real(r8), intent(in) :: qsp(LBi:UBi,LBj:UBj) real(r8), intent(in) :: zetaw(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: ubar_stokes(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vbar_stokes(LBi:UBi,LBj:UBj) # endif # if defined TIDE_GENERATING_FORCES && !defined SOLVE3D real(r8), intent(in ) :: eq_tide(LBi:UBi,LBj:UBj) # endif # ifndef SOLVE3D real(r8), intent(in ) :: sustr(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: svstr(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: bustr(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: bvstr(LBi:UBi,LBj:UBj) # ifdef ATM_PRESS real(r8), intent(in ) :: Pair(LBi:UBi,LBj:UBj) # endif # else # ifdef VAR_RHO_2D real(r8), intent(in ) :: rhoA(LBi:UBi,LBj:UBj) real(r8), intent(in ) :: rhoS(LBi:UBi,LBj:UBj) # endif real(r8), intent(inout) :: DU_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: DU_avg2(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: DV_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: DV_avg2(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: Zt_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rufrc(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rvfrc(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ru(LBi:UBi,LBj:UBj,0:UBk,2) real(r8), intent(inout) :: rv(LBi:UBi,LBj:UBj,0:UBk,2) # endif # ifdef WET_DRY real(r8), intent(inout) :: pmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: umask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: vmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: pmask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rmask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: vmask_wet(LBi:UBi,LBj:UBj) # ifdef SOLVE3D real(r8), intent(inout) :: rmask_wet_avg(LBi:UBi,LBj:UBj) # endif # endif # ifdef DIAGNOSTICS_UV real(r8), intent(inout) :: DiaU2wrk(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaV2wrk(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaRUbar(LBi:UBi,LBj:UBj,2,NDM2d-1) real(r8), intent(inout) :: DiaRVbar(LBi:UBi,LBj:UBj,2,NDM2d-1) # ifdef SOLVE3D real(r8), intent(inout) :: DiaU2int(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaV2int(LBi:UBi,LBj:UBj,NDM2d) real(r8), intent(inout) :: DiaRUfrc(LBi:UBi,LBj:UBj,3,NDM2d-1) real(r8), intent(inout) :: DiaRVfrc(LBi:UBi,LBj:UBj,3,NDM2d-1) # endif # endif real(r8), intent(inout) :: rubar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: rvbar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: rzeta(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: ubar(LBi:UBi,LBj:UBj,:) real(r8), intent(inout) :: vbar(LBi:UBi,LBj:UBj,:) real(r8), intent(inout) :: zeta(LBi:UBi,LBj:UBj,:) # if defined NESTING && !defined SOLVE3D real(r8), intent(out ) :: DU_flux(LBi:UBi,LBj:UBj) real(r8), intent(out ) :: DV_flux(LBi:UBi,LBj:UBj) # endif #endif ! ! Local variable declarations. ! logical :: CORRECTOR_2D_STEP ! integer :: i, is, j, ptsk #ifdef DIAGNOSTICS_UV integer :: idiag #endif ! real(r8) :: cff, cff1, cff2, cff3, cff4, cff5, cff6, cff7 real(r8) :: fac, fac1, fac2, fac3 ! real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dgrad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dnew real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Drhs real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Drhs_p real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dstp real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DUon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DVom #ifdef WEC real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DUSon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DVSom #endif #ifdef WEC_VF real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DUSom real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DVSon #endif #ifdef UV_VIS4 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapU real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapV #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: UFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: UFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: VFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: VFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzeta2 #if defined VAR_RHO_2D && defined SOLVE3D real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzetaSA #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_ubar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_vbar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_zeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: zeta_new real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: zwrk #ifdef WET_DRY real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: wetdry #endif #ifdef DIAGNOSTICS_UV real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Uwrk real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Vwrk real(r8), dimension(IminS:ImaxS,JminS:JmaxS,NDM2d-1) :: DiaU2rhs real(r8), dimension(IminS:ImaxS,JminS:JmaxS,NDM2d-1) :: DiaV2rhs #endif #include "set_bounds.h" ! ptsk=3-kstp CORRECTOR_2D_STEP=.not.PREDICTOR_2D_STEP(ng) ! !----------------------------------------------------------------------- ! Compute total depth (m) and vertically integrated mass fluxes. !----------------------------------------------------------------------- ! #if defined DISTRIBUTE && !defined NESTING ! In distributed-memory, the I- and J-ranges are different and a ! special exchange is done to avoid having three ghost points for ! high order numerical stencils. Notice that a private array is ! passed below to the exchange routine. It also applies periodic ! boundary conditions, if appropriate and no partitions in I- or ! J-directions. ! DO j=JstrV-2,Jendp2 DO i=IstrU-2,Iendp2 Drhs(i,j)=zeta(i,j,krhs)+h(i,j) END DO END DO DO j=JstrV-2,Jendp2 DO i=IstrU-1,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) DUon(i,j)=ubar(i,j,krhs)*cff1 # ifdef WEC # ifdef WET_DRY cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,ubar_stokes(i,j))*umask_wet(i,j) cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) cff1=cff1*cff7 # endif DUSon(i,j)=ubar_stokes(i,j)*cff1 DUon(i,j)=DUon(i,j)+DUSon(i,j) # endif END DO END DO DO j=JstrV-1,Jendp2 DO i=IstrU-2,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) DVom(i,j)=vbar(i,j,krhs)*cff1 # ifdef WEC # ifdef WET_DRY cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,vbar_stokes(i,j))*vmask_wet(i,j) cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) cff1=cff1*cff7 # endif DVSom(i,j)=vbar_stokes(i,j)*cff1 DVom(i,j)=DVom(i,j)+DVSom(i,j) # endif END DO END DO #else DO j=JstrVm2-1,Jendp2 DO i=IstrUm2-1,Iendp2 Drhs(i,j)=zeta(i,j,krhs)+h(i,j) END DO END DO DO j=JstrVm2-1,Jendp2 DO i=IstrUm2,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) DUon(i,j)=ubar(i,j,krhs)*cff1 # ifdef WEC # ifdef WET_DRY cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,ubar_stokes(i,j))*umask_wet(i,j) cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) cff1=cff1*cff7 # endif DUSon(i,j)=ubar_stokes(i,j)*cff1 DUon(i,j)=DUon(i,j)+DUSon(i,j) # endif END DO END DO DO j=JstrVm2,Jendp2 DO i=IstrUm2-1,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) DVom(i,j)=vbar(i,j,krhs)*cff1 # ifdef WEC # ifdef WET_DRY cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,vbar_stokes(i,j))*vmask_wet(i,j) cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) cff1=cff1*cff7 # endif DVSom(i,j)=vbar_stokes(i,j)*cff1 DVom(i,j)=DVom(i,j)+DVSom(i,j) # endif END DO END DO #endif #ifdef DISTRIBUTE ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_u2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & DUon) CALL exchange_v2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & DVom) END IF CALL mp_exchange2d (ng, tile, iNLM, 2, & & IminS, ImaxS, JminS, JmaxS, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & DUon, DVom) #endif ! ! Set vertically integrated mass fluxes DUon and DVom along the open ! boundaries in such a way that the integral volume is conserved. ! IF (ANY(VolCons(:,ng))) THEN CALL set_DUV_bc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, & #ifdef MASKING & umask, vmask, & #endif & om_v, on_u, & & ubar, vbar, & & Drhs, DUon, DVom) END IF #ifdef SOLVE3D ! !----------------------------------------------------------------------- ! Compute time averaged fields over all short time-steps. !----------------------------------------------------------------------- ! IF (PREDICTOR_2D_STEP(ng)) THEN IF (FIRST_2D_STEP) THEN ! ! Reset arrays for 2D fields averaged within the short time-steps. ! cff2=(-1.0_r8/12.0_r8)*weight(2,iif(ng)+1,ng) DO j=JstrR,JendR DO i=IstrR,IendR Zt_avg1(i,j)=0.0_r8 END DO DO i=Istr,IendR DU_avg1(i,j)=0.0_r8 DU_avg2(i,j)=cff2*DUon(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR DV_avg1(i,j)=0.0_r8 DV_avg2(i,j)=cff2*DVom(i,j) END DO END DO ELSE ! ! Accumulate field averages of previous time-step after they are ! computed in the previous corrector step, updated their boundaries, ! and synchronized. ! cff1=weight(1,iif(ng)-1,ng) cff2=(8.0_r8/12.0_r8)*weight(2,iif(ng) ,ng)- & & (1.0_r8/12.0_r8)*weight(2,iif(ng)+1,ng) DO j=JstrR,JendR DO i=IstrR,IendR Zt_avg1(i,j)=Zt_avg1(i,j)+cff1*zeta(i,j,krhs) END DO DO i=Istr,IendR DU_avg1(i,j)=DU_avg1(i,j)+cff1*DUon(i,j) # ifdef WEC DU_avg1(i,j)=DU_avg1(i,j)-cff1*DUSon(i,j) # endif DU_avg2(i,j)=DU_avg2(i,j)+cff2*DUon(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR DV_avg1(i,j)=DV_avg1(i,j)+cff1*DVom(i,j) # ifdef WEC DV_avg1(i,j)=DV_avg1(i,j)-cff1*DVSom(i,j) # endif DV_avg2(i,j)=DV_avg2(i,j)+cff2*DVom(i,j) END DO END DO END IF ELSE IF (FIRST_2D_STEP) THEN cff2=weight(2,iif(ng),ng) ELSE cff2=(5.0_r8/12.0_r8)*weight(2,iif(ng),ng) END IF DO j=JstrR,JendR DO i=Istr,IendR DU_avg2(i,j)=DU_avg2(i,j)+cff2*DUon(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR DV_avg2(i,j)=DV_avg2(i,j)+cff2*DVom(i,j) END DO END DO END IF ! ! After all fast time steps are completed, apply boundary conditions ! to time averaged fields. # ifdef NESTING ! In nesting applications with refinement grids, we need to exchange ! the DU_avg2 and DV_avg2 fluxes boundary information for the case ! that a contact point is at a tile partition. Notice that in such ! cases, we need i+1 and j+1 values for spatial/temporal interpolation. # endif ! IF ((iif(ng).eq.(nfast(ng)+1)).and.PREDICTOR_2D_STEP(ng)) THEN IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & Zt_avg1) CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & DU_avg1) CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & DV_avg1) # ifdef NESTING CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & DU_avg2) CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & DV_avg2) # endif END IF # ifdef DISTRIBUTE CALL mp_exchange2d (ng, tile, iNLM, 3, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & Zt_avg1, DU_avg1, DV_avg1) # ifdef NESTING CALL mp_exchange2d (ng, tile, iNLM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & DU_avg2, DV_avg2) # endif # endif END IF #endif #ifdef WET_DRY ! !----------------------------------------------------------------------- ! Compute new wet/dry masks. !----------------------------------------------------------------------- ! CALL wetdry_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & # ifdef MASKING & pmask, rmask, umask, vmask, & # endif & h, zeta(:,:,kstp), & # ifdef SOLVE3D & DU_avg1, DV_avg1, & & rmask_wet_avg, & # endif & pmask_wet, pmask_full, & & rmask_wet, rmask_full, & & umask_wet, umask_full, & & vmask_wet, vmask_full) #endif ! ! Do not perform the actual time stepping during the auxiliary ! (nfast(ng)+1) time step. ! IF (iif(ng).gt.nfast(ng)) RETURN ! !======================================================================= ! Time step free-surface equation. !======================================================================= ! ! During the first time-step, the predictor step is Forward-Euler ! and the corrector step is Backward-Euler. Otherwise, the predictor ! step is Leap-frog and the corrector step is Adams-Moulton. #if defined VAR_RHO_2D && defined SOLVE3D ! Recall that the vertical averaged density (rhoA) and density ! pertubation (rhoS) are nondimensional quantities. ! fac=1000.0_r8/rho0 ! nondimensional #endif ! IF (FIRST_2D_STEP) THEN cff1=dtfast(ng) DO j=JstrV-1,Jend DO i=IstrU-1,Iend rhs_zeta(i,j)=(DUon(i,j)-DUon(i+1,j))+ & & (DVom(i,j)-DVom(i,j+1)) zeta_new(i,j)=zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*cff1*rhs_zeta(i,j) #ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) #endif Dnew(i,j)=zeta_new(i,j)+h(i,j) ! zwrk(i,j)=0.5_r8*(zeta(i,j,kstp)+zeta_new(i,j)) #if defined VAR_RHO_2D && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) #else gzeta(i,j)=zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) #endif END DO END DO ELSE IF (PREDICTOR_2D_STEP(ng)) THEN cff1=2.0_r8*dtfast(ng) cff4=4.0_r8/25.0_r8 cff5=1.0_r8-2.0_r8*cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend rhs_zeta(i,j)=(DUon(i,j)-DUon(i+1,j))+ & & (DVom(i,j)-DVom(i,j+1)) zeta_new(i,j)=zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*cff1*rhs_zeta(i,j) #ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) #endif Dnew(i,j)=zeta_new(i,j)+h(i,j) ! zwrk(i,j)=cff5*zeta(i,j,krhs)+ & & cff4*(zeta(i,j,kstp)+zeta_new(i,j)) #if defined VAR_RHO_2D && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) #else gzeta(i,j)=zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) #endif END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=dtfast(ng)*5.0_r8/12.0_r8 cff2=dtfast(ng)*8.0_r8/12.0_r8 cff3=dtfast(ng)*1.0_r8/12.0_r8 cff4=2.0_r8/5.0_r8 cff5=1.0_r8-cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=cff1*((DUon(i,j)-DUon(i+1,j))+ & & (DVom(i,j)-DVom(i,j+1))) zeta_new(i,j)=zeta(i,j,kstp)+ & & pm(i,j)*pn(i,j)*(cff+ & & cff2*rzeta(i,j,kstp)- & & cff3*rzeta(i,j,ptsk)) #ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) #endif Dnew(i,j)=zeta_new(i,j)+h(i,j) ! zwrk(i,j)=cff5*zeta_new(i,j)+cff4*zeta(i,j,krhs) #if defined VAR_RHO_2D && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) #else gzeta(i,j)=zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) #endif END DO END DO END IF ! ! Load new free-surface values into shared array at both predictor ! and corrector steps. #ifdef WET_DRY ! Modify new free-surface to Ensure that depth is > Dcrit for masked ! cells. #endif ! DO j=Jstr,Jend DO i=Istr,Iend zeta(i,j,knew)=zeta_new(i,j) #if defined WET_DRY && defined MASKING zeta(i,j,knew)=zeta(i,j,knew)+ & & (Dcrit(ng)-h(i,j))*(1.0_r8-rmask(i,j)) #endif END DO END DO ! ! If predictor step, load right-side-term into shared array. ! IF (PREDICTOR_2D_STEP(ng)) THEN DO j=Jstr,Jend DO i=Istr,Iend rzeta(i,j,krhs)=rhs_zeta(i,j) END DO END DO IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & rzeta(:,:,krhs)) END IF #ifdef DISTRIBUTE CALL mp_exchange2d (ng, tile, iNLM, 1, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & rzeta(:,:,krhs)) #endif END IF ! ! Apply mass point sources (volume vertical influx), if any. ! ! Dsrc(is) = 2, flow across grid cell w-face (positive or negative) ! IF (LwSrc(ng)) THEN DO is=1,Nsrc(ng) IF (INT(SOURCES(ng)%Dsrc(is)).eq.2) THEN i=SOURCES(ng)%Isrc(is) j=SOURCES(ng)%Jsrc(is) IF (((IstrR.le.i).and.(i.le.IendR)).and. & & ((JstrR.le.j).and.(j.le.JendR))) THEN zeta(i,j,knew)=zeta(i,j,knew)+ & & SOURCES(ng)%Qbar(is)* & & pm(i,j)*pn(i,j)*dtfast(ng) END IF END IF END DO END IF #if defined SEDIMENT && defined SED_MORPH ! ! Scale the bed change with the fast time stepping. The half is ! becasue we do predictor and corrector. The "ndtfast/nfast" is ! becasue we do "nfast" steps to here. ! fac=0.5_r8*dtfast(ng)*ndtfast(ng)/(nfast(ng)*dt(ng)) DO j=Jstr,Jend DO i=Istr,Iend cff=fac*(bed_thick(i,j,nstp)-bed_thick(i,j,nnew)) h(i,j)=h(i,j)-cff END DO END DO #endif ! ! Set free-surface lateral boundary conditions. ! CALL zetabc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & zeta) IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & zeta(:,:,knew)) END IF #ifdef DISTRIBUTE CALL mp_exchange2d (ng, tile, iNLM, 1, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & zeta(:,:,knew)) #endif ! !======================================================================= ! Compute right-hand-side for the 2D momentum equations. !======================================================================= ! !----------------------------------------------------------------------- ! Compute pressure gradient terms. !----------------------------------------------------------------------- ! cff1=0.5_r8*g cff2=1.0_r8/3.0_r8 #if !defined SOLVE3D && defined ATM_PRESS fac3=0.5_r8*100.0_r8/rho0 #endif DO j=Jstr,Jend DO i=IstrU,Iend rhs_ubar(i,j)=cff1*on_u(i,j)* & & ((h(i-1,j)+ & & h(i ,j))* & & (gzeta(i-1,j)- & & gzeta(i ,j))+ & #if defined VAR_RHO_2D && defined SOLVE3D & (h(i-1,j)- & & h(i ,j))* & & (gzetaSA(i-1,j)+ & & gzetaSA(i ,j)+ & & cff2*(rhoA(i-1,j)- & & rhoA(i ,j))* & & (zwrk(i-1,j)- & & zwrk(i ,j)))+ & #endif & (gzeta2(i-1,j)- & & gzeta2(i ,j))) #if defined ATM_PRESS && !defined SOLVE3D rhs_ubar(i,j)=rhs_ubar(i,j)- & & fac3*on_u(i,j)* & & (h(i-1,j)+h(i,j)+ & & gzeta(i-1,j)+gzeta(i,j))* & & (Pair(i,j)-Pair(i-1,j)) #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D rhs_ubar(i,j)=rhs_ubar(i,j)- & & cff1*on_u(i,j)* & & (h(i-1,j)+h(i,j)+ & & gzeta(i-1,j)+gzeta(i,j))* & & (eq_tide(i,j)-eq_tide(i-1,j)) #endif #ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2pgrd)=rhs_ubar(i,j) #endif #if defined WEC_VF cff3=0.5_r8*on_u(i,j)* & & (h(i-1,j)+h(i,j)+ & & gzeta(i-1,j)+gzeta(i,j)) cff4=cff3*g*(zetaw(i-1,j)-zetaw(i,j)) cff5=cff3*g*(qsp(i-1,j)-qsp(i,j)) cff6=cff3*(bh(i-1,j)-bh(i,j)) cff7=rukvf2d(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)-cff4-cff5+cff6+cff7 # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2zeta)=DiaU2rhs(i,j,M2pgrd) DiaU2rhs(i,j,M2pgrd)=DiaU2rhs(i,j,M2pgrd)-cff4-cff5+cff6 DiaU2rhs(i,j,M2zetw)=-cff4 DiaU2rhs(i,j,M2zqsp)=-cff5 DiaU2rhs(i,j,M2zbeh)=cff6 DiaU2rhs(i,j,M2kvrf)=cff7 # ifndef UV_ADV DiaU2rhs(i,j,M2hjvf)=0.0_r8 # endif # endif #endif END DO IF (j.ge.JstrV) THEN DO i=Istr,Iend rhs_vbar(i,j)=cff1*om_v(i,j)* & & ((h(i,j-1)+ & & h(i,j ))* & & (gzeta(i,j-1)- & & gzeta(i,j ))+ & #if defined VAR_RHO_2D && defined SOLVE3D & (h(i,j-1)- & & h(i,j ))* & & (gzetaSA(i,j-1)+ & & gzetaSA(i,j )+ & & cff2*(rhoA(i,j-1)- & & rhoA(i,j ))* & & (zwrk(i,j-1)- & & zwrk(i,j )))+ & #endif & (gzeta2(i,j-1)- & & gzeta2(i,j ))) #if defined ATM_PRESS && !defined SOLVE3D rhs_vbar(i,j)=rhs_vbar(i,j)- & & fac3*om_v(i,j)* & & (h(i,j-1)+h(i,j)+ & & gzeta(i,j-1)+gzeta(i,j))* & & (Pair(i,j)-Pair(i,j-1)) #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D rhs_vbar(i,j)=rhs_vbar(i,j)- & & cff1*om_v(i,j)* & & (h(i,j-1)+h(i,j)+ & & gzeta(i,j-1)+gzeta(i,j))* & & (eq_tide(i,j)-eq_tide(i,j-1)) #endif #ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2pgrd)=rhs_vbar(i,j) #endif #if defined WEC_VF cff3=0.5_r8*om_v(i,j)* & & (h(i,j-1)+h(i,j)+ & & gzeta(i,j-1)+gzeta(i,j)) cff4=cff3*g*(zetaw(i,j-1)-zetaw(i,j)) cff5=cff3*g*(qsp(i,j-1)-qsp(i,j)) cff6=cff3*(bh(i,j-1)-bh(i,j)) cff7=rvkvf2d(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)-cff4-cff5+cff6+cff7 # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2zeta)=DiaV2rhs(i,j,M2pgrd) DiaV2rhs(i,j,M2pgrd)=DiaV2rhs(i,j,M2pgrd)-cff4-cff5+cff6 DiaV2rhs(i,j,M2zetw)=-cff4 DiaV2rhs(i,j,M2zqsp)=-cff5 DiaV2rhs(i,j,M2zbeh)=cff6 DiaV2rhs(i,j,M2kvrf)=cff7 # ifndef UV_ADV DiaV2rhs(i,j,M2hjvf)=0.0_r8 # endif # endif #endif END DO END IF END DO #ifdef UV_ADV ! !----------------------------------------------------------------------- ! Add in horizontal advection of momentum. !----------------------------------------------------------------------- # ifdef UV_C2ADVECTION ! ! Second-order, centered differences advection fluxes. ! DO j=Jstr,Jend DO i=IstrU-1,Iend UFx(i,j)=0.25_r8*(DUon(i,j)+DUon(i+1,j))* & & (ubar(i ,j,krhs)+ & & ubar(i+1,j,krhs)) END DO END DO ! DO j=Jstr,Jend+1 DO i=IstrU,Iend UFe(i,j)=0.25_r8*(DVom(i,j)+DVom(i-1,j))* & & (ubar(i,j ,krhs)+ & & ubar(i,j-1,krhs)) END DO END DO ! DO j=JstrV,Jend DO i=Istr,Iend+1 VFx(i,j)=0.25_r8*(DUon(i,j)+DUon(i,j-1))* & & (vbar(i ,j,krhs)+ & & vbar(i-1,j,krhs)) END DO END DO ! DO j=JstrV-1,Jend DO i=Istr,Iend VFe(i,j)=0.25_r8*(DVom(i,j)+DVom(i,j+1))* & & (vbar(i,j ,krhs)+ & & vbar(i,j+1,krhs)) END DO END DO # else ! ! Fourth-order, centered differences advection fluxes. ! DO j=Jstr,Jend DO i=IstrUm1,Iendp1 grad (i,j)=ubar(i-1,j,krhs)-2.0_r8*ubar(i,j,krhs)+ & & ubar(i+1,j,krhs) Dgrad(i,j)=DUon(i-1,j)-2.0_r8*DUon(i,j)+DUon(i+1,j) END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend grad (Istr,j)=grad (Istr+1,j) Dgrad(Istr,j)=Dgrad(Istr+1,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend grad (Iend+1,j)=grad (Iend,j) Dgrad(Iend+1,j)=Dgrad(Iend,j) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=Jstr,Jend DO i=IstrU-1,Iend UFx(i,j)=0.25_r8*(ubar(i ,j,krhs)+ & & ubar(i+1,j,krhs)- & & cff*(grad (i,j)+grad (i+1,j)))* & & (DUon(i,j)+DUon(i+1,j)- & & cff*(Dgrad(i,j)+Dgrad(i+1,j))) END DO END DO ! DO j=Jstrm1,Jendp1 DO i=IstrU,Iend grad(i,j)=ubar(i,j-1,krhs)-2.0_r8*ubar(i,j,krhs)+ & & ubar(i,j+1,krhs) END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=IstrU,Iend grad(i,Jstr-1)=grad(i,Jstr) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=IstrU,Iend grad(i,Jend+1)=grad(i,Jend) END DO END IF END IF DO j=Jstr,Jend+1 DO i=IstrU-1,Iend Dgrad(i,j)=DVom(i-1,j)-2.0_r8*DVom(i,j)+DVom(i+1,j) END DO END DO cff=1.0_r8/6.0_r8 DO j=Jstr,Jend+1 DO i=IstrU,Iend UFe(i,j)=0.25_r8*(ubar(i,j ,krhs)+ & & ubar(i,j-1,krhs)- & & cff*(grad (i,j)+grad (i,j-1)))* & & (DVom(i,j)+DVom(i-1,j)- & & cff*(Dgrad(i,j)+Dgrad(i-1,j))) END DO END DO ! DO j=JstrV,Jend DO i=Istrm1,Iendp1 grad(i,j)=vbar(i-1,j,krhs)-2.0_r8*vbar(i,j,krhs)+ & & vbar(i+1,j,krhs) END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=JstrV,Jend grad(Istr-1,j)=grad(Istr,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=JstrV,Jend grad(Iend+1,j)=grad(Iend,j) END DO END IF END IF DO j=JstrV-1,Jend DO i=Istr,Iend+1 Dgrad(i,j)=DUon(i,j-1)-2.0_r8*DUon(i,j)+DUon(i,j+1) END DO END DO cff=1.0_r8/6.0_r8 DO j=JstrV,Jend DO i=Istr,Iend+1 VFx(i,j)=0.25_r8*(vbar(i ,j,krhs)+ & & vbar(i-1,j,krhs)- & & cff*(grad (i,j)+grad (i-1,j)))* & & (DUon(i,j)+DUon(i,j-1)- & & cff*(Dgrad(i,j)+Dgrad(i,j-1))) END DO END DO ! DO j=JstrVm1,Jendp1 DO i=Istr,Iend grad(i,j)=vbar(i,j-1,krhs)-2.0_r8*vbar(i,j,krhs)+ & & vbar(i,j+1,krhs) Dgrad(i,j)=DVom(i,j-1)-2.0_r8*DVom(i,j)+DVom(i,j+1) END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jstr)=grad (i,Jstr+1) Dgrad(i,Jstr)=Dgrad(i,Jstr+1) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jend+1)=grad (i,Jend) Dgrad(i,Jend+1)=Dgrad(i,Jend) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=JstrV-1,Jend DO i=Istr,Iend VFe(i,j)=0.25_r8*(vbar(i,j ,krhs)+ & & vbar(i,j+1,krhs)- & & cff*(grad (i,j)+grad (i,j+1)))* & & (DVom(i,j)+DVom(i,j+1)- & & cff*(Dgrad(i,j)+Dgrad(i,j+1))) END DO END DO # endif ! ! Add advection to RHS terms. ! DO j=Jstr,Jend DO i=IstrU,Iend cff1=UFx(i,j)-UFx(i-1,j) cff2=UFe(i,j+1)-UFe(i,j) fac=cff1+cff2 rhs_ubar(i,j)=rhs_ubar(i,j)-fac # if defined DIAGNOSTICS_UV DiaU2rhs(i,j,M2xadv)=-cff1 DiaU2rhs(i,j,M2yadv)=-cff2 DiaU2rhs(i,j,M2hadv)=-fac # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff1=VFx(i+1,j)-VFx(i,j) cff2=VFe(i,j)-VFe(i,j-1) fac=cff1+cff2 rhs_vbar(i,j)=rhs_vbar(i,j)-fac # if defined DIAGNOSTICS_UV DiaV2rhs(i,j,M2xadv)=-cff1 DiaV2rhs(i,j,M2yadv)=-cff2 DiaV2rhs(i,j,M2hadv)=-fac # endif END DO END DO #endif #ifdef UV_COR ! !----------------------------------------------------------------------- ! Add in Coriolis term. !----------------------------------------------------------------------- ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=0.5_r8*Drhs(i,j)*fomn(i,j) UFx(i,j)=cff*(vbar(i,j ,krhs)+ & & vbar(i,j+1,krhs)) VFe(i,j)=cff*(ubar(i ,j,krhs)+ & & ubar(i+1,j,krhs)) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend fac1=0.5_r8*(UFx(i,j)+UFx(i-1,j)) rhs_ubar(i,j)=rhs_ubar(i,j)+fac1 # if defined DIAGNOSTICS_UV DiaU2rhs(i,j,M2fcor)=fac1 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend fac1=0.5_r8*(VFe(i,j)+VFe(i,j-1)) rhs_vbar(i,j)=rhs_vbar(i,j)-fac1 # if defined DIAGNOSTICS_UV DiaV2rhs(i,j,M2fcor)=-fac1 # endif END DO END DO ! # ifdef WEC DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=0.5_r8*Drhs(i,j)*fomn(i,j) UFx(i,j)=cff*(vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)) VFe(i,j)=cff*(ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend fac1=0.5_r8*(UFx(i,j)+UFx(i-1,j)) rhs_ubar(i,j)=rhs_ubar(i,j)+fac1 # if defined DIAGNOSTICS_UV DiaU2rhs(i,j,M2fsco)=fac1 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend fac1=0.5_r8*(VFe(i,j)+VFe(i,j-1)) rhs_vbar(i,j)=rhs_vbar(i,j)-fac1 # if defined DIAGNOSTICS_UV DiaV2rhs(i,j,M2fsco)=-fac1 # endif END DO END DO # endif #endif #if defined CURVGRID && defined UV_ADV ! !----------------------------------------------------------------------- ! Add in curvilinear transformation terms. !----------------------------------------------------------------------- ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff1=0.5_r8*(vbar(i,j ,krhs)+ & # ifdef WEC & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)) cff2=0.5_r8*(ubar(i ,j,krhs)+ & # ifdef WEC & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)) cff3=cff1*dndx(i,j) cff4=cff2*dmde(i,j) # ifdef WEC_VF cff5=0.5_r8*(vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)) cff6=0.5_r8*(ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)) cff7=cff5*dndx(i,j) cff8=cff6*dmde(i,j) # endif cff=Drhs(i,j)*(cff3-cff4) UFx(i,j)=cff*cff1 VFe(i,j)=cff*cff2 # ifdef WEC_VF UFx(i,j)=UFx(i,j)-(cff5*Drhs(i,j)*(cff7-cff8)) VFe(i,j)=VFe(i,j)-(cff6*Drhs(i,j)*(cff7-cff8)) # endif # if defined DIAGNOSTICS_UV cff=Drhs(i,j)*cff4 Uwrk(i,j)=-cff*cff1 ! ubar equation, ETA-term Vwrk(i,j)=-cff*cff2 ! vbar equation, ETA-term # ifdef WEC_VF Uwrk(i,j)=Uwrk(i,j)+Drhs(i,j)*cff5*cff8 Vwrk(i,j)=Vwrk(i,j)-Drhs(i,j)*cff6*cff8 # endif # endif END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend fac1=0.5_r8*(UFx(i,j)+UFx(i-1,j)) rhs_ubar(i,j)=rhs_ubar(i,j)+fac1 # if defined DIAGNOSTICS_UV fac2=0.5_r8*(Uwrk(i,j)+Uwrk(i-1,j)) DiaU2rhs(i,j,M2xadv)=DiaU2rhs(i,j,M2xadv)+fac1-fac2 DiaU2rhs(i,j,M2yadv)=DiaU2rhs(i,j,M2yadv)+fac2 DiaU2rhs(i,j,M2hadv)=DiaU2rhs(i,j,M2hadv)+fac1 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend fac1=0.5_r8*(VFe(i,j)+VFe(i,j-1)) rhs_vbar(i,j)=rhs_vbar(i,j)-fac1 # if defined DIAGNOSTICS_UV fac2=0.5_r8*(Vwrk(i,j)+Vwrk(i,j-1)) DiaV2rhs(i,j,M2xadv)=DiaV2rhs(i,j,M2xadv)-fac1+fac2 DiaV2rhs(i,j,M2yadv)=DiaV2rhs(i,j,M2yadv)-fac2 DiaV2rhs(i,j,M2hadv)=DiaV2rhs(i,j,M2hadv)-fac1 # endif END DO END DO #endif #if defined UV_VIS2 || defined UV_VIS4 ! !----------------------------------------------------------------------- ! If horizontal mixing, compute total depth at PSI-points. !----------------------------------------------------------------------- ! # ifdef UV_VIS4 DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 # else DO j=Jstr,Jend+1 DO i=Istr,Iend+1 # endif Drhs_p(i,j)=0.25_r8*(Drhs(i,j )+Drhs(i-1,j )+ & & Drhs(i,j-1)+Drhs(i-1,j-1)) END DO END DO #endif #ifdef UV_VIS2 ! !----------------------------------------------------------------------- ! Add in horizontal harmonic viscosity. !----------------------------------------------------------------------- ! ! Compute flux-components of the horizontal divergence of the stress ! tensor (m5/s2) in XI- and ETA-directions. ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=visc2_r(i,j)*Drhs(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs))) UFx(i,j)=on_r(i,j)*on_r(i,j)*cff VFe(i,j)=om_r(i,j)*om_r(i,j)*cff END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend+1 cff=visc2_p(i,j)*Drhs_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs))) # ifdef MASKING cff=cff*pmask(i,j) # endif # ifdef WET_DRY cff=cff*pmask_wet(i,j) # endif UFe(i,j)=om_p(i,j)*om_p(i,j)*cff VFx(i,j)=on_p(i,j)*on_p(i,j)*cff END DO END DO ! ! Add in harmonic viscosity. ! DO j=Jstr,Jend DO i=IstrU,Iend cff1=0.5_r8*(pn(i-1,j)+pn(i,j))*(UFx(i,j )-UFx(i-1,j)) cff2=0.5_r8*(pm(i-1,j)+pm(i,j))*(UFe(i,j+1)-UFe(i ,j)) fac=cff1+cff2 rhs_ubar(i,j)=rhs_ubar(i,j)+fac # if defined DIAGNOSTICS_UV DiaU2rhs(i,j,M2hvis)=fac DiaU2rhs(i,j,M2xvis)=cff1 DiaU2rhs(i,j,M2yvis)=cff2 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff1=0.5_r8*(pn(i,j-1)+pn(i,j))*(VFx(i+1,j)-VFx(i,j )) cff2=0.5_r8*(pm(i,j-1)+pm(i,j))*(VFe(i ,j)-VFe(i,j-1)) fac=cff1-cff2 rhs_vbar(i,j)=rhs_vbar(i,j)+fac # if defined DIAGNOSTICS_UV DiaV2rhs(i,j,M2hvis)=fac DiaV2rhs(i,j,M2xvis)= cff1 DiaV2rhs(i,j,M2yvis)=-cff2 # endif END DO END DO #endif #ifdef UV_VIS4 ! !----------------------------------------------------------------------- ! Add in horizontal biharmonic viscosity. The biharmonic operator ! is computed by applying the harmonic operator twice. !----------------------------------------------------------------------- ! ! Compute flux-components of the horizontal divergence of the stress ! tensor (m4 s^-3/2) in XI- and ETA-directions. It is assumed here ! that "visc4_r" and "visc4_p" are the squared root of the biharmonic ! viscosity coefficient. For momentum balance purposes, the total ! thickness "D" appears only when computing the second harmonic ! operator. ! DO j=JstrVm2,Jendp1 DO i=IstrUm2,Iendp1 cff=visc4_r(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs))) UFx(i,j)=on_r(i,j)*on_r(i,j)*cff VFe(i,j)=om_r(i,j)*om_r(i,j)*cff END DO END DO DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 cff=visc4_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs))) # ifdef MASKING cff=cff*pmask(i,j) # endif # ifdef WET_DRY cff=cff*pmask_wet(i,j) # endif UFe(i,j)=om_p(i,j)*om_p(i,j)*cff VFx(i,j)=on_p(i,j)*on_p(i,j)*cff END DO END DO ! ! Compute first harmonic operator (m s^-3/2). ! DO j=Jstrm1,Jendp1 DO i=IstrUm1,Iendp1 LapU(i,j)=0.125_r8* & & (pm(i-1,j)+pm(i,j))*(pn(i-1,j)+pn(i,j))* & & ((pn(i-1,j)+pn(i,j))* & & (UFx(i,j )-UFx(i-1,j))+ & & (pm(i-1,j)+pm(i,j))* & & (UFe(i,j+1)-UFe(i ,j))) END DO END DO DO j=JstrVm1,Jendp1 DO i=Istrm1,Iendp1 LapV(i,j)=0.125_r8* & & (pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1))* & & ((pn(i,j-1)+pn(i,j))* & & (VFx(i+1,j)-VFx(i,j ))- & & (pm(i,j-1)+pm(i,j))* & & (VFe(i ,j)-VFe(i,j-1))) END DO END DO ! ! Apply boundary conditions (other than periodic) to the first ! harmonic operator. These are gradient or closed (free slip or ! no slip) boundary conditions. ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN IF (LBC(iwest,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 LapU(IstrU-1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 LapU(IstrU-1,j)=LapU(IstrU,j) END DO END IF IF (LBC(iwest,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 LapV(Istr-1,j)=gamma2(ng)*LapV(Istr,j) END DO ELSE DO j=JstrVm1,Jendp1 LapV(Istr-1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN IF (LBC(ieast,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 LapU(Iend+1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 LapU(Iend+1,j)=LapU(Iend,j) END DO END IF IF (LBC(ieast,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 LapV(Iend+1,j)=gamma2(ng)*LapV(Iend,j) END DO ELSE DO j=JstrVm1,Jendp1 LapV(Iend+1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN IF (LBC(isouth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 LapU(i,Jstr-1)=gamma2(ng)*LapU(i,Jstr) END DO ELSE DO i=IstrUm1,Iendp1 LapU(i,Jstr-1)=0.0_r8 END DO END IF IF (LBC(isouth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 LapV(i,JstrV-1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 LapV(i,JstrV-1)=LapV(i,JstrV) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN IF (LBC(inorth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 LapU(i,Jend+1)=gamma2(ng)*LapU(i,Jend) END DO ELSE DO i=IstrUm1,Iendp1 LapU(i,Jend+1)=0.0_r8 END DO END IF IF (LBC(inorth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 LapV(i,Jend+1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 LapV(i,Jend+1)=LapV(i,Jend) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN LapU(Istr ,Jstr-1)=0.5_r8*(LapU(Istr+1,Jstr-1)+ & & LapU(Istr ,Jstr )) LapV(Istr-1,Jstr )=0.5_r8*(LapV(Istr-1,Jstr+1)+ & & LapV(Istr ,Jstr )) END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN LapU(Iend+1,Jstr-1)=0.5_r8*(LapU(Iend ,Jstr-1)+ & & LapU(Iend+1,Jstr )) LapV(Iend+1,Jstr )=0.5_r8*(LapV(Iend ,Jstr )+ & & LapV(Iend+1,Jstr+1)) END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN LapU(Istr ,Jend+1)=0.5_r8*(LapU(Istr+1,Jend+1)+ & & LapU(Istr ,Jend )) LapV(Istr-1,Jend+1)=0.5_r8*(LapV(Istr ,Jend+1)+ & & LapV(Istr-1,Jend )) END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN LapU(Iend+1,Jend+1)=0.5_r8*(LapU(Iend ,Jend+1)+ & & LapU(Iend+1,Jend )) LapV(Iend+1,Jend+1)=0.5_r8*(LapV(Iend ,Jend+1)+ & & LapV(Iend+1,Jend )) END IF END IF ! ! Compute flux-components of the horizontal divergence of the ! biharmonic stress tensor (m4/s2) in XI- and ETA-directions. ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=visc4_r(i,j)*Drhs(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*LapU(i+1,j)- & & (pn(i-1,j)+pn(i ,j))*LapU(i ,j))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*LapV(i,j+1)- & & (pm(i,j-1)+pm(i,j ))*LapV(i,j ))) UFx(i,j)=on_r(i,j)*on_r(i,j)*cff VFe(i,j)=om_r(i,j)*om_r(i,j)*cff END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend+1 cff=visc4_p(i,j)*Drhs_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*LapV(i ,j)- & & (pn(i-1,j-1)+pn(i-1,j))*LapV(i-1,j))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*LapU(i,j )- & & (pm(i-1,j-1)+pm(i,j-1))*LapU(i,j-1))) # ifdef MASKING cff=cff*pmask(i,j) # endif # ifdef WET_DRY cff=cff*pmask_wet(i,j) # endif UFe(i,j)=om_p(i,j)*om_p(i,j)*cff VFx(i,j)=on_p(i,j)*on_p(i,j)*cff END DO END DO ! ! Add in biharmonic viscosity. ! DO j=Jstr,Jend DO i=IstrU,Iend cff1=0.5_r8*(pn(i-1,j)+pn(i,j))*(UFx(i,j )-UFx(i-1,j)) cff2=0.5_r8*(pm(i-1,j)+pm(i,j))*(UFe(i,j+1)-UFe(i ,j)) fac=cff1+cff2 rhs_ubar(i,j)=rhs_ubar(i,j)-fac # if defined DIAGNOSTICS_UV DiaU2rhs(i,j,M2hvis)=-fac DiaU2rhs(i,j,M2xvis)=-cff1 DiaU2rhs(i,j,M2yvis)=-cff2 # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff1=0.5_r8*(pn(i,j-1)+pn(i,j))*(VFx(i+1,j)-VFx(i,j )) cff2=0.5_r8*(pm(i,j-1)+pm(i,j))*(VFe(i ,j)-VFe(i,j-1)) fac=cff1-cff2 rhs_vbar(i,j)=rhs_vbar(i,j)-fac # if defined DIAGNOSTICS_UV DiaV2rhs(i,j,M2hvis)=-fac DiaV2rhs(i,j,M2xvis)=-cff1 DiaV2rhs(i,j,M2yvis)= cff2 # endif END DO END DO #endif #if defined WEC_VF && defined SOLVE3D ! !----------------------------------------------------------------------- ! Add in non-conservative roller terms. !----------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend cff1=rubrk2d(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2wbrk)=cff1 # endif # ifdef WEC_ROLLER cff1=rurol2d(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2wrol)=cff1 # endif # else # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2wrol)=0.0_r8 # endif # endif # ifdef BOTTOM_STREAMING cff1=rubst2d(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2bstm)=cff1 # endif # endif # ifdef SURFACE_STREAMING cff1=russt2d(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2sstm)=cff1 # endif # endif END DO IF (j.ge.JstrV) THEN DO i=Istr,Iend cff1=rvbrk2d(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2wbrk)=cff1 # endif # ifdef WEC_ROLLER cff1=rvrol2d(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2wrol)=cff1 # endif # else # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2wrol)=0.0_r8 # endif # endif # ifdef BOTTOM_STREAMING cff1=rvbst2d(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2bstm)=cff1 # endif # endif # ifdef SURFACE_STREAMING cff1=rvsst2d(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+cff1 # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2sstm)=cff1 # endif # endif END DO END IF END DO # ifdef UV_ADV # ifdef DIAGNOSTICS_UV ! !--------------------------------------------------------------------------- ! To obtain the full horizotal 'J' vortex force term: ! Compute term for diagnostics only. Subtract from hadv and add to vorf. !--------------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend cff=0.5_r8*(Drhs(i-1,j)+Drhs(i,j)) DVSom(i,j)=0.25_r8*cff*om_u(i,j)* & & (vbar_stokes(i ,j )+ & & vbar_stokes(i ,j+1)+ & & vbar_stokes(i-1,j )+ & & vbar_stokes(i-1,j+1)) END DO END DO DO j=Jstr,Jend+1 DO i=IstrU,Iend UFx(i,j)=0.5_r8*(ubar(i ,j-1,krhs)+ & ubar(i ,j ,krhs)) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend cff1=UFx(i,j+1)-UFx(i,j) cff=cff1*DVSom(i,j) DiaU2rhs(i,j,M2xadv)=DiaU2rhs(i,j,M2xadv)+cff DiaU2rhs(i,j,M2hadv)=DiaU2rhs(i,j,M2hadv)+cff DiaU2rhs(i,j,M2hjvf)=-cff END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=0.5_r8*(Drhs(i,j)+Drhs(i,j-1)) DUSon(i,j)=cff*0.25_r8*on_v(i,j)* & & (ubar_stokes(i ,j )+ & & ubar_stokes(i+1,j )+ & & ubar_stokes(i ,j-1)+ & & ubar_stokes(i+1,j-1)) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend+1 VFe(i,j)=0.5_r8*(vbar(i-1,j ,krhs)+ & & vbar(i ,j ,krhs)) END DO END DO DO i=Istr,Iend DO j=JstrV,Jend cff2=VFe(i+1,j)-VFe(i,j) cff=cff2*DUSon(i,j) DiaV2rhs(i,j,M2yadv)=DiaV2rhs(i,j,M2yadv)+cff DiaV2rhs(i,j,M2hadv)=DiaV2rhs(i,j,M2hadv)+cff DiaV2rhs(i,j,M2hjvf)=-cff END DO END DO # endif ! !--------------------------------------------------------------------------- ! Contribution of a term corresponding to product of ! Stokes and Eulerian Velocity Eqn. 26 and 27. ! This removes terms that were unneccessarily added in flux form. !--------------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend cff=0.5_r8*(Drhs(i-1,j)+Drhs(i,j)) DUSon(i,j)=cff*on_u(i,j)*ubar_stokes(i,j) DVSon(i,j)=0.25_r8*cff*on_u(i,j)* & & (vbar_stokes(i ,j )+ & & vbar_stokes(i ,j+1)+ & & vbar_stokes(i-1,j )+ & & vbar_stokes(i-1,j+1)) END DO DO i=IstrU-1,Iend UFx(i,j)=0.5_r8*(ubar(i ,j ,krhs)+ & ubar(i+1,j ,krhs)) VFx(i,j)=0.5_r8*(vbar(i ,j ,krhs)+ & & vbar(i ,j+1,krhs)) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=0.5_r8*(Drhs(i,j)+Drhs(i,j-1)) DUSom(i,j)=cff*0.25_r8*om_v(i,j)* & & (ubar_stokes(i ,j )+ & & ubar_stokes(i+1,j )+ & & ubar_stokes(i ,j-1)+ & & ubar_stokes(i+1,j-1)) DVSom(i,j)=cff*om_v(i,j)*vbar_stokes(i,j) END DO END DO DO j=JstrV-1,Jend DO i=Istr,Iend cff=0.5_r8*(Drhs(i,j)+Drhs(i,j-1)) UFe(i,j)=0.5_r8*(ubar(i+1,j ,krhs)+ & & ubar(i ,j ,krhs)) VFe(i,j)=0.5_r8*(vbar(i ,j ,krhs)+ & & vbar(i ,j+1,krhs)) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend cff1=UFx(i,j)-UFx(i-1,j) cff2=VFx(i,j)-VFx(i-1,j) cff3=DUSon(i,j)*cff1 cff4=DVSon(i,j)*cff2 rhs_ubar(i,j)=rhs_ubar(i,j)+cff3+cff4 ! rustr2d(i,j)=rustr2d(i,j)-cff3-cff4 # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2xadv)=DiaU2rhs(i,j,M2xadv)+cff3 DiaU2rhs(i,j,M2hadv)=DiaU2rhs(i,j,M2hadv)+cff3 DiaU2rhs(i,j,M2hjvf)=DiaU2rhs(i,j,M2hjvf)+cff4 # endif END DO END DO DO i=Istr,Iend DO j=JstrV,Jend cff1=UFe(i,j)-UFe(i,j-1) cff2=VFe(i,j)-VFe(i,j-1) cff3=DUSom(i,j)*cff1 cff4=DVSom(i,j)*cff2 rhs_vbar(i,j)=rhs_vbar(i,j)+cff3+cff4 ! rvstr2d(i,j)=rvstr2d(i,j,k)-cff3-cff4 # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2yadv)=DiaV2rhs(i,j,M2yadv)+cff4 DiaV2rhs(i,j,M2hadv)=DiaV2rhs(i,j,M2hadv)+cff4 DiaV2rhs(i,j,M2hjvf)=DiaV2rhs(i,j,M2hjvf)+cff3 # endif END DO END DO # endif #endif #ifndef SOLVE3D ! !----------------------------------------------------------------------- ! Add in bottom stress. !----------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend fac=bustr(i,j)*om_u(i,j)*on_u(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)-fac # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2bstr)=-fac # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend fac=bvstr(i,j)*om_v(i,j)*on_v(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)-fac # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2bstr)=-fac # endif END DO END DO #else # ifdef DIAGNOSTICS_UV ! ! Initialize the stress term if no bottom friction is defined. ! DO j=Jstr,Jend DO i=IstrU,Iend DiaU2rhs(i,j,M2bstr)=0.0_r8 END DO END DO DO j=JstrV,Jend DO i=Istr,Iend DiaV2rhs(i,j,M2bstr)=0.0_r8 END DO END DO # endif #endif ! !----------------------------------------------------------------------- ! Add in nudging of 2D momentum climatology. !----------------------------------------------------------------------- ! IF (LnudgeM2CLM(ng)) THEN DO j=Jstr,Jend DO i=IstrU,Iend cff=0.25_r8*(CLIMA(ng)%M2nudgcof(i-1,j)+ & & CLIMA(ng)%M2nudgcof(i ,j))* & & om_u(i,j)*on_u(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+ & & cff*(Drhs(i-1,j)+Drhs(i,j))* & & (CLIMA(ng)%ubarclm(i,j)- & & ubar(i,j,krhs)) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=0.25_r8*(CLIMA(ng)%M2nudgcof(i,j-1)+ & & CLIMA(ng)%M2nudgcof(i,j ))* & & om_v(i,j)*on_v(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+ & & cff*(Drhs(i,j-1)+Drhs(i,j))* & & (CLIMA(ng)%vbarclm(i,j)- & & vbar(i,j,krhs)) END DO END DO END IF #ifdef SOLVE3D # ifdef WET_DRY DO j=Jstr,Jend DO i=IstrU,Iend cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,rhs_ubar(i,j))*umask_wet(i,j) cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) rhs_ubar(i,j)=rhs_ubar(i,j)*cff7 END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,rhs_vbar(i,j))*vmask_wet(i,j) cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) rhs_vbar(i,j)=rhs_vbar(i,j)*cff7 END DO END DO # endif ! !----------------------------------------------------------------------- ! Coupling between 2D and 3D equations. !----------------------------------------------------------------------- ! ! Before the predictor step of the first barotropic time-step, ! arrays "rufrc" and "rvfrc" contain the vertical integrals of ! the 3D right-hand-side terms for momentum equations (including ! surface and bottom stresses, if so prescribed). ! ! Convert them into forcing terms by subtracting the fast time ! "rhs_ubar" and "rhs_vbar" from them; Also, immediately apply ! these forcing terms "rhs_ubar" and "rhs_vbar". ! ! From now on, these newly computed forcing terms will remain ! constant during the fast time stepping and will added to ! "rhs_ubar" and "rhs_vbar" during all subsequent time steps. ! IF (FIRST_2D_STEP.and.PREDICTOR_2D_STEP(ng)) THEN IF (iic(ng).eq.ntfirst(ng)) THEN DO j=Jstr,Jend DO i=IstrU,Iend rufrc(i,j)=rufrc(i,j)-rhs_ubar(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+rufrc(i,j) ru(i,j,0,nstp)=rufrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & & DiaU2rhs(i,j,idiag) DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & & DiaRUfrc(i,j,3,idiag) DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) END DO DiaU2rhs(i,j,M2sstr)=DiaRUfrc(i,j,3,M2sstr) DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) DiaU2rhs(i,j,M2bstr)=DiaRUfrc(i,j,3,M2bstr) DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaU2rhs(i,j,M2zeta)=DiaU2rhs(i,j,M2zeta)+ & & DiaRUfrc(i,j,3,M2pgrd) # endif # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend rvfrc(i,j)=rvfrc(i,j)-rhs_vbar(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+rvfrc(i,j) rv(i,j,0,nstp)=rvfrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & & DiaV2rhs(i,j,idiag) DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & & DiaRVfrc(i,j,3,idiag) DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) END DO DiaV2rhs(i,j,M2sstr)=DiaRVfrc(i,j,3,M2sstr) DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) DiaV2rhs(i,j,M2bstr)=DiaRVfrc(i,j,3,M2bstr) DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaV2rhs(i,j,M2zeta)=DiaV2rhs(i,j,M2zeta)+ & & DiaRVfrc(i,j,3,M2pgrd) # endif # endif END DO END DO ELSE IF (iic(ng).eq.(ntfirst(ng)+1)) THEN DO j=Jstr,Jend DO i=IstrU,Iend rufrc(i,j)=rufrc(i,j)-rhs_ubar(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+ & & 1.5_r8*rufrc(i,j)-0.5_r8*ru(i,j,0,nnew) ru(i,j,0,nstp)=rufrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & & DiaU2rhs(i,j,idiag) DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & & 1.5_r8*DiaRUfrc(i,j,3,idiag)- & & 0.5_r8*DiaRUfrc(i,j,nnew,idiag) DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) END DO DiaU2rhs(i,j,M2sstr)=1.5_r8*DiaRUfrc(i,j,3,M2sstr)- & & 0.5_r8*DiaRUfrc(i,j,nnew,M2sstr) DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) DiaU2rhs(i,j,M2bstr)=1.5_r8*DiaRUfrc(i,j,3,M2bstr)- & & 0.5_r8*DiaRUfrc(i,j,nnew,M2bstr) DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaU2rhs(i,j,M2zeta)=DiaU2rhs(i,j,M2zeta)+ & & 1.5_r8*DiaRUfrc(i,j,3,M2pgrd)- & & 0.5_r8*DiaRUfrc(i,j,nnew,M2pgrd) # endif # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend rvfrc(i,j)=rvfrc(i,j)-rhs_vbar(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+ & & 1.5_r8*rvfrc(i,j)-0.5_r8*rv(i,j,0,nnew) rv(i,j,0,nstp)=rvfrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & & DiaV2rhs(i,j,idiag) DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & & 1.5_r8*DiaRVfrc(i,j,3,idiag)- & & 0.5_r8*DiaRVfrc(i,j,nnew,idiag) DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) END DO DiaV2rhs(i,j,M2sstr)=1.5_r8*DiaRVfrc(i,j,3,M2sstr)- & & 0.5_r8*DiaRVfrc(i,j,nnew,M2sstr) DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) DiaV2rhs(i,j,M2bstr)=1.5_r8*DiaRVfrc(i,j,3,M2bstr)- & & 0.5_r8*DiaRVfrc(i,j,nnew,M2bstr) DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaV2rhs(i,j,M2zeta)=DiaV2rhs(i,j,M2zeta)+ & & 1.5_r8*DiaRVfrc(i,j,3,M2pgrd)- & & 0.5_r8*DiaRVfrc(i,j,nnew,M2pgrd) # endif # endif END DO END DO ELSE cff1=23.0_r8/12.0_r8 cff2=16.0_r8/12.0_r8 cff3= 5.0_r8/12.0_r8 DO j=Jstr,Jend DO i=IstrU,Iend rufrc(i,j)=rufrc(i,j)-rhs_ubar(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+ & & cff1*rufrc(i,j)- & & cff2*ru(i,j,0,nnew)+ & & cff3*ru(i,j,0,nstp) ru(i,j,0,nstp)=rufrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & & DiaU2rhs(i,j,idiag) DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & & cff1*DiaRUfrc(i,j,3,idiag)- & & cff2*DiaRUfrc(i,j,nnew,idiag)+ & & cff3*DiaRUfrc(i,j,nstp,idiag) DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) END DO DiaU2rhs(i,j,M2sstr)=cff1*DiaRUfrc(i,j,3,M2sstr)- & & cff2*DiaRUfrc(i,j,nnew,M2sstr)+ & & cff3*DiaRUfrc(i,j,nstp,M2sstr) DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) DiaU2rhs(i,j,M2bstr)=cff1*DiaRUfrc(i,j,3,M2bstr)- & & cff2*DiaRUfrc(i,j,nnew,M2bstr)+ & & cff3*DiaRUfrc(i,j,nstp,M2bstr) DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaU2rhs(i,j,M2zeta)=DiaU2rhs(i,j,M2zeta)+ & & cff1*DiaRUfrc(i,j,3,M2pgrd)- & & cff2*DiaRUfrc(i,j,nnew,M2pgrd)+ & & cff3*DiaRUfrc(i,j,nstp,M2pgrd) # endif # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend rvfrc(i,j)=rvfrc(i,j)-rhs_vbar(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+ & & cff1*rvfrc(i,j)- & & cff2*rv(i,j,0,nnew)+ & & cff3*rv(i,j,0,nstp) rv(i,j,0,nstp)=rvfrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & & DiaV2rhs(i,j,idiag) DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & & cff1*DiaRVfrc(i,j,3,idiag)- & & cff2*DiaRVfrc(i,j,nnew,idiag)+ & & cff3*DiaRVfrc(i,j,nstp,idiag) DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) END DO DiaV2rhs(i,j,M2sstr)=cff1*DiaRVfrc(i,j,3,M2sstr)- & & cff2*DiaRVfrc(i,j,nnew,M2sstr)+ & & cff3*DiaRVfrc(i,j,nstp,M2sstr) DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) DiaV2rhs(i,j,M2bstr)=cff1*DiaRVfrc(i,j,3,M2bstr)- & & cff2*DiaRVfrc(i,j,nnew,M2bstr)+ & & cff3*DiaRVfrc(i,j,nstp,M2bstr) DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaV2rhs(i,j,M2zeta)=DiaV2rhs(i,j,M2zeta)+ & & cff1*DiaRVfrc(i,j,3,M2pgrd)- & & cff2*DiaRVfrc(i,j,nnew,M2pgrd)+ & & cff3*DiaRVfrc(i,j,nstp,M2pgrd) # endif # endif END DO END DO END IF ELSE DO j=Jstr,Jend DO i=IstrU,Iend rhs_ubar(i,j)=rhs_ubar(i,j)+rufrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & & DiaRUfrc(i,j,3,idiag) END DO DiaU2rhs(i,j,M2sstr)=DiaRUfrc(i,j,3,M2sstr) DiaU2rhs(i,j,M2bstr)=DiaRUfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaU2rhs(i,j,M2zeta)=DiaU2rhs(i,j,M2zeta)+ & & DiaRUfrc(i,j,3,M2pgrd) # endif # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend rhs_vbar(i,j)=rhs_vbar(i,j)+rvfrc(i,j) # ifdef DIAGNOSTICS_UV DO idiag=1,M2pgrd DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & & DiaRVfrc(i,j,3,idiag) END DO DiaV2rhs(i,j,M2sstr)=DiaRVfrc(i,j,3,M2sstr) DiaV2rhs(i,j,M2bstr)=DiaRVfrc(i,j,3,M2bstr) # ifdef WEC_VF DiaV2rhs(i,j,M2zeta)=DiaV2rhs(i,j,M2zeta)+ & & DiaRVfrc(i,j,3,M2pgrd) # endif # endif END DO END DO END IF #else ! !----------------------------------------------------------------------- ! Add in surface momentum stress. !----------------------------------------------------------------------- ! DO j=Jstr,Jend DO i=IstrU,Iend fac=sustr(i,j)*om_u(i,j)*on_u(i,j) rhs_ubar(i,j)=rhs_ubar(i,j)+fac # ifdef DIAGNOSTICS_UV DiaU2rhs(i,j,M2sstr)=fac # endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend fac=svstr(i,j)*om_v(i,j)*on_v(i,j) rhs_vbar(i,j)=rhs_vbar(i,j)+fac # ifdef DIAGNOSTICS_UV DiaV2rhs(i,j,M2sstr)=fac # endif END DO END DO #endif ! !======================================================================= ! Time step 2D momentum equations. !======================================================================= ! ! Compute total water column depth. ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend Dstp(i,j)=zeta(i,j,kstp)+h(i,j) END DO END DO ! ! During the first time-step, the predictor step is Forward-Euler ! and the corrector step is Backward-Euler. Otherwise, the predictor ! step is Leap-frog and the corrector step is Adams-Moulton. ! IF (FIRST_2D_STEP) THEN cff1=0.5_r8*dtfast(ng) #ifdef WET_DRY cff2=1.0_r8/cff1 #endif DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) ubar(i,j,knew)=(ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*fac #ifdef MASKING ubar(i,j,knew)=ubar(i,j,knew)*umask(i,j) #endif #ifdef WET_DRY cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) ubar(i,j,knew)=ubar(i,j,knew)*cff7 rhs_ubar(i,j)=rhs_ubar(i,j)*cff7 # ifdef SOLVE3D IF (PREDICTOR_2D_STEP(ng)) THEN rufrc(i,j)=rufrc(i,j)*cff7 ru(i,j,0,nstp)=rufrc(i,j) END IF # endif #endif #if defined NESTING && !defined SOLVE3D DU_flux(i,j)=ubar(i,j,knew)* & & 0.5_r8*(Dnew(i,j)+Dnew(i-1,j))*on_u(i,j) #endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) vbar(i,j,knew)=(vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*fac #ifdef MASKING vbar(i,j,knew)=vbar(i,j,knew)*vmask(i,j) #endif #ifdef WET_DRY cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) vbar(i,j,knew)=vbar(i,j,knew)*cff7 rhs_vbar(i,j)=rhs_vbar(i,j)*cff7 # ifdef SOLVE3D IF (PREDICTOR_2D_STEP(ng)) THEN rvfrc(i,j)=rvfrc(i,j)*cff7 rv(i,j,0,nstp)=rvfrc(i,j) END IF # endif #endif #if defined NESTING && !defined SOLVE3D DV_flux(i,j)=vbar(i,j,knew)* & & 0.5_r8*(Dnew(i,j)+Dnew(i,j-1))*om_v(i,j) #endif END DO END DO ELSE IF (PREDICTOR_2D_STEP(ng)) THEN cff1=dtfast(ng) #ifdef WET_DRY cff2=1.0_r8/cff1 #endif DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) ubar(i,j,knew)=(ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*fac #ifdef MASKING ubar(i,j,knew)=ubar(i,j,knew)*umask(i,j) #endif #ifdef WET_DRY cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) ubar(i,j,knew)=ubar(i,j,knew)*cff7 rhs_ubar(i,j)=rhs_ubar(i,j)*cff7 #endif #if defined NESTING && !defined SOLVE3D DU_flux(i,j)=ubar(i,j,knew)* & & 0.5_r8*(Dnew(i,j)+Dnew(i-1,j))*on_u(i,j) #endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) vbar(i,j,knew)=(vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*fac #ifdef MASKING vbar(i,j,knew)=vbar(i,j,knew)*vmask(i,j) #endif #ifdef WET_DRY cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) vbar(i,j,knew)=vbar(i,j,knew)*cff7 rhs_vbar(i,j)=rhs_vbar(i,j)*cff7 #endif #if defined NESTING && !defined SOLVE3D DV_flux(i,j)=vbar(i,j,knew)* & & 0.5_r8*(Dnew(i,j)+Dnew(i,j-1))*om_v(i,j) #endif END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 #ifdef WET_DRY cff4=1.0_r8/cff1 #endif DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) ubar(i,j,knew)=(ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))+ & & cff*(cff1*rhs_ubar(i,j)+ & & cff2*rubar(i,j,kstp)- & & cff3*rubar(i,j,ptsk)))*fac #ifdef MASKING ubar(i,j,knew)=ubar(i,j,knew)*umask(i,j) #endif #ifdef WET_DRY cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) ubar(i,j,knew)=ubar(i,j,knew)*cff7 rhs_ubar(i,j)=rhs_ubar(i,j)*cff7 #endif #if defined NESTING && !defined SOLVE3D DU_flux(i,j)=ubar(i,j,knew)* & & 0.5_r8*(Dnew(i,j)+Dnew(i-1,j))*on_u(i,j) #endif END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) vbar(i,j,knew)=(vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))+ & & cff*(cff1*rhs_vbar(i,j)+ & & cff2*rvbar(i,j,kstp)- & & cff3*rvbar(i,j,ptsk)))*fac #ifdef MASKING vbar(i,j,knew)=vbar(i,j,knew)*vmask(i,j) #endif #ifdef WET_DRY cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) vbar(i,j,knew)=vbar(i,j,knew)*cff7 rhs_vbar(i,j)=rhs_vbar(i,j)*cff7 #endif #if defined NESTING && !defined SOLVE3D DV_flux(i,j)=vbar(i,j,knew)* & & 0.5_r8*(Dnew(i,j)+Dnew(i,j-1))*om_v(i,j) #endif END DO END DO END IF #ifdef DIAGNOSTICS_UV ! !----------------------------------------------------------------------- ! Time step 2D momentum diagnostic terms. !----------------------------------------------------------------------- # ifdef MASKING ! ! Apply land/sea mask. ! DO idiag=1,NDM2d-1 DO j=Jstr,Jend DO i=IstrU,Iend DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)*umask(i,j) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)*vmask(i,j) END DO END DO END DO # endif # ifdef SOLVE3D ! ! The arrays "DiaU2rhs" and "DiaV2rhs" contain the contributions of ! each of the 2D right-hand-side terms for the momentum equations. ! ! These values are integrated, time-stepped and converted to mass flux ! units (m3 s-1) for coupling with the 3D diagnostic terms. ! fac=weight(1,iif(ng),ng) IF (FIRST_2D_STEP.and.CORRECTOR_2D_STEP) THEN cff1=0.5_r8*dtfast(ng) DO idiag=1,NDM2d-1 DO j=Jstr,Jend DO i=IstrU,Iend DiaU2int(i,j,idiag)=cff1*DiaU2rhs(i,j,idiag) DiaU2wrk(i,j,idiag)=DiaU2int(i,j,idiag)* & & (pm(i-1,j)+pm(i,j))*fac END DO END DO DO j=JstrV,Jend DO i=Istr,Iend DiaV2int(i,j,idiag)=cff1*DiaV2rhs(i,j,idiag) DiaV2wrk(i,j,idiag)=DiaV2int(i,j,idiag)* & & (pn(i,j)+pn(i,j-1))*fac END DO END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 DO idiag=1,NDM2d-1 DO j=Jstr,Jend DO i=IstrU,Iend DiaU2int(i,j,idiag)=DiaU2int(i,j,idiag)+ & & (cff1*DiaU2rhs(i,j,idiag)+ & & cff2*DiaRUbar(i,j,kstp,idiag)- & & cff3*DiaRUbar(i,j,ptsk,idiag)) DiaU2wrk(i,j,idiag)=DiaU2wrk(i,j,idiag)+ & & DiaU2int(i,j,idiag)* & & (pm(i-1,j)+pm(i,j))*fac END DO END DO DO j=JstrV,Jend DO i=Istr,Iend DiaV2int(i,j,idiag)=DiaV2int(i,j,idiag)+ & & (cff1*DiaV2rhs(i,j,idiag)+ & & cff2*DiaRVbar(i,j,kstp,idiag)- & & cff3*DiaRVbar(i,j,ptsk,idiag)) DiaV2wrk(i,j,idiag)=DiaV2wrk(i,j,idiag)+ & & DiaV2int(i,j,idiag)* & & (pn(i,j)+pn(i,j-1))*fac END DO END DO END DO END IF # else ! ! Time-step the diagnostic terms. ! IF (FIRST_2D_STEP.and.CORRECTOR_2D_STEP) THEN cff1=0.5_r8*dtfast(ng) DO idiag=1,NDM2d-1 DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) DiaU2wrk(i,j,idiag)=cff*cff1*DiaU2rhs(i,j,idiag)*fac END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) DiaV2wrk(i,j,idiag)=cff*cff1*DiaV2rhs(i,j,idiag)*fac END DO END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) DiaU2wrk(i,j,M2rate)=ubar(i,j,knew)-ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))*fac END DO END DO DO j=JstrV,Jend DO i=Istr,Iend fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) DiaV2wrk(i,j,M2rate)=vbar(i,j,knew)-vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))*fac END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 DO idiag=1,NDM2d-1 DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) DiaU2wrk(i,j,idiag)=cff*(cff1*DiaU2rhs(i,j,idiag)+ & & cff2*DiaRUbar(i,j,kstp,idiag)- & & cff3*DiaRUbar(i,j,ptsk,idiag))* & & fac END DO END DO DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) DiaV2wrk(i,j,idiag)=cff*(cff1*DiaV2rhs(i,j,idiag)+ & & cff2*DiaRVbar(i,j,kstp,idiag)- & & cff3*DiaRVbar(i,j,ptsk,idiag))* & & fac END DO END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) DiaU2wrk(i,j,M2rate)=ubar(i,j,knew)- & & ubar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i-1,j))*fac END DO END DO DO j=JstrV,Jend DO i=Istr,Iend fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) DiaV2wrk(i,j,M2rate)=vbar(i,j,knew)- & & vbar(i,j,kstp)* & & (Dstp(i,j)+Dstp(i,j-1))*fac END DO END DO END IF # endif #endif ! ! If predictor step, load right-side-term into shared arrays for ! future use during the subsequent corrector step. ! IF (PREDICTOR_2D_STEP(ng)) THEN DO j=Jstr,Jend DO i=IstrU,Iend rubar(i,j,krhs)=rhs_ubar(i,j) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend rvbar(i,j,krhs)=rhs_vbar(i,j) END DO END DO #ifdef DIAGNOSTICS_UV DO idiag=1,NDM2d-1 DO j=Jstr,Jend DO i=IstrU,Iend DiaRUbar(i,j,krhs,idiag)=DiaU2rhs(i,j,idiag) END DO END DO DO j=JstrV,Jend DO i=Istr,Iend DiaRVbar(i,j,krhs,idiag)=DiaV2rhs(i,j,idiag) END DO END DO END DO #endif END IF ! !----------------------------------------------------------------------- ! Apply lateral boundary conditions. !----------------------------------------------------------------------- ! CALL u2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & ubar, vbar, zeta) CALL v2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & ubar, vbar, zeta) ! ! Compute integral mass flux across open boundaries and adjust ! for volume conservation. ! IF (ANY(VolCons(:,ng))) THEN CALL obc_flux_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & knew, & #ifdef MASKING & umask, vmask, & #endif & h, om_v, on_u, & & ubar, vbar, zeta) END IF #if defined NESTING && !defined SOLVE3D ! !----------------------------------------------------------------------- ! Set barotropic fluxes along physical boundaries. !----------------------------------------------------------------------- ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr-1,JendR Dnew(Istr-1,j)=h(Istr-1,j)+zeta_new(Istr-1,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr-1,JendR Dnew(Iend+1,j)=h(Iend+1,j)+zeta_new(Iend+1,j) END DO END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr-1,IendR Dnew(i,Jstr-1)=h(i,Jstr-1)+zeta_new(i,Jstr-1) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr-1,IendR Dnew(i,Jend+1)=h(i,Jend+1)+zeta_new(i,Jend+1) END DO END IF END IF ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=JstrR,JendR DU_flux(IstrU-1,j)=ubar(IstrU-1,j,knew)*on_u(IstrU-1,j)* & & 0.5_r8*(Dnew(IstrU-1,j)+Dnew(IstrU-2,j)) END DO DO j=JstrV,Jend DV_flux(Istr-1,j)=vbar(Istr-1,j,knew)*om_v(Istr-1,j)* & & 0.5_r8*(Dnew(Istr-1,j)+Dnew(Istr-1,j-1)) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=JstrR,JendR DU_flux(Iend+1,j)=ubar(Iend+1,j,knew)*on_u(iend+1,j)* & & 0.5_r8*(Dnew(Iend+1,j)+Dnew(Iend,j)) END DO DO j=JstrV,Jend DV_flux(Iend+1,j)=vbar(Iend+1,j,knew)*om_v(Iend+1,j)* & & 0.5_r8*(Dnew(iend+1,j)+Dnew(iend+1,j-1)) END DO END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=IstrU,Iend DU_flux(i,Jstr-1)=ubar(i,Jstr-1,knew)*on_u(i,Jstr-1)* & & 0.5_r8*(Dnew(i,Jstr-1)+Dnew(i-1,Jstr-1)) END DO DO i=IstrR,IendR DV_flux(i,JstrV-1)=vbar(i,JstrV-1,knew)*om_v(i,JstrV-1)* & & 0.5_r8*(Dnew(i,JstrV-1)+Dnew(i,JstrV-2)) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=IstrU,Iend DU_flux(i,Jend+1)=ubar(i,Jend+1,knew)*on_u(i,Jend+1)* & & 0.5_r8*(Dnew(i,Jend+1)+Dnew(i-1,Jend+1)) END DO DO i=IstrR,IendR DV_flux(i,Jend+1)=vbar(i,Jend+1,knew)*om_v(i,Jend+1)* & & 0.5_r8*(Dnew(i,Jend+1)+Dnew(i,Jend)) END DO END IF END IF #endif ! !----------------------------------------------------------------------- ! Apply momentum transport point sources (like river runoff), if any. ! ! Dsrc(is) = 0, flow across grid cell u-face (positive or negative) ! Dsrc(is) = 1, flow across grid cell v-face (positive or negative) !----------------------------------------------------------------------- ! IF (LuvSrc(ng)) THEN DO is=1,Nsrc(ng) i=SOURCES(ng)%Isrc(is) j=SOURCES(ng)%Jsrc(is) IF (((IstrR.le.i).and.(i.le.IendR)).and. & & ((JstrR.le.j).and.(j.le.JendR))) THEN IF (INT(SOURCES(ng)%Dsrc(is)).eq.0) THEN cff=1.0_r8/(on_u(i,j)* & & 0.5_r8*(zeta(i-1,j,knew)+h(i-1,j)+ & & zeta(i ,j,knew)+h(i ,j))) ubar(i,j,knew)=SOURCES(ng)%Qbar(is)*cff #if defined NESTING && !defined SOLVE3D DU_flux(i,j)=SOURCES(ng)%Qbar(is) #endif ELSE IF (INT(SOURCES(ng)%Dsrc(is)).eq.1) THEN cff=1.0_r8/(om_v(i,j)* & & 0.5_r8*(zeta(i,j-1,knew)+h(i,j-1)+ & & zeta(i,j ,knew)+h(i,j ))) vbar(i,j,knew)=SOURCES(ng)%Qbar(is)*cff #if defined NESTING && !defined SOLVE3D DV_flux(i,j)=SOURCES(ng)%Qbar(is) #endif END IF END IF END DO END IF ! !----------------------------------------------------------------------- ! Exchange boundary information. !----------------------------------------------------------------------- ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ubar(:,:,knew)) CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & vbar(:,:,knew)) #if defined NESTING && !defined SOLVE3D CALL exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & DU_flux) CALL exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & DV_flux) #endif END IF #ifdef DISTRIBUTE ! # if defined NESTING && !defined SOLVE3D CALL mp_exchange2d (ng, tile, iNLM, 4, & # else CALL mp_exchange2d (ng, tile, iNLM, 2, & # endif & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & # if defined NESTING && !defined SOLVE3D & DU_flux, DV_flux, & # endif & ubar(:,:,knew), & & vbar(:,:,knew)) #endif ! RETURN END SUBROUTINE step2d_tile ! END MODULE step2d_mod