#include "cppdefs.h" MODULE my25_prestep_mod #if defined NONLINEAR && defined MY25_MIXING && defined SOLVE3D ! !git $Id$ !svn $Id: my25_prestep.F 1151 2023-02-09 03:08:53Z arango $ !======================================================================= ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md Hernan G. Arango ! !========================================== Alexander F. Shchepetkin === ! ! ! This routine perfoms the predictor step for turbulent kinetic ! ! energy prognostic variables, tke and gls. A NON-conservative, ! ! but constancy preserving, auxiliary advective substep for tke ! ! gls equations is carried out. The result of this substep will ! ! be used to compute advective terms in the corrector substep. ! ! No dissipation terms are included here. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: my25_prestep ! CONTAINS ! !*********************************************************************** SUBROUTINE my25_prestep (ng, tile) !*********************************************************************** ! USE mod_param USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! # include "tile.h" ! # ifdef PROFILE CALL wclock_on (ng, iNLM, 20, __LINE__, MyFile) # endif CALL my25_prestep_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nstp(ng), nnew(ng), & # ifdef MASKING & GRID(ng) % umask, & & GRID(ng) % vmask, & # endif & GRID(ng) % Huon, & & GRID(ng) % Hvom, & & GRID(ng) % Hz, & & GRID(ng) % pm, & & GRID(ng) % pn, & & OCEAN(ng) % W, & & MIXING(ng) % gls, & & MIXING(ng) % tke) # ifdef PROFILE CALL wclock_off (ng, iNLM, 20, __LINE__, MyFile) # endif ! RETURN END SUBROUTINE my25_prestep ! !*********************************************************************** SUBROUTINE my25_prestep_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nstp, nnew, & # ifdef MASKING & umask, vmask, & # endif & Huon, Hvom, Hz, pm, pn, W, & & gls, tke) !*********************************************************************** ! USE mod_param USE mod_ncparam USE mod_scalars ! USE exchange_3d_mod, ONLY : exchange_w3d_tile # ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : mp_exchange3d # endif USE tkebc_mod, ONLY : tkebc_tile ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nstp, nnew ! # ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif real(r8), intent(in) :: Huon(LBi:,LBj:,:) real(r8), intent(in) :: Hvom(LBi:,LBj:,:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: W(LBi:,LBj:,0:) real(r8), intent(inout) :: gls(LBi:,LBj:,0:,:) real(r8), intent(inout) :: tke(LBi:,LBj:,0:,:) # else # ifdef MASKING real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: Huon(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: Hvom(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: W(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(inout) :: gls(LBi:UBi,LBj:UBj,0:N(ng),3) real(r8), intent(inout) :: tke(LBi:UBi,LBj:UBj,0:N(ng),3) # endif ! ! Local variable declarations. ! integer :: i, indx, j, k real(r8), parameter :: Gamma = 1.0_r8/6.0_r8 real(r8) :: cff, cff1, cff2, cff3, cff4 real(r8), dimension(IminS:ImaxS,N(ng)) :: CF real(r8), dimension(IminS:ImaxS,N(ng)) :: FC real(r8), dimension(IminS:ImaxS,N(ng)) :: FCL real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: Hz_half real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: EF real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FEL real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FXL real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: XF real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gradL # include "set_bounds.h" ! !----------------------------------------------------------------------- ! Predictor step for advection of turbulent kinetic energy variables. !----------------------------------------------------------------------- ! ! Start computation of auxiliary time step fields tke(:,:,:,n+1/2) and ! gls(:,:,:,n+1/2) with computation of horizontal advection terms and ! auxiliary grid-box height field Hz_new()=Hz(:,:,k+1/2,n+1/2); ! This is effectivey an LF step with subsequent interpolation of the ! result half step back, using AM3 weights. The LF step and ! interpolation are perfomed as a single operation, which results in ! weights cff1,cff2,cff3 below. ! ! Either centered fourth-order accurate or standard second order ! accurate versions are supported. ! ! At the same time prepare for corrector step for tke,gls: set tke, ! gls(:,:,:,nnew) to tke, gls(:,:,:,nstp) multiplied by the ! corresponding grid-box height. This needs done at this time because ! array Hz(:,:,:) will overwritten after 2D time stepping with the ! values computed from zeta(:,:,n+1) rather than zeta(:,:,n), so that ! the old-time-step Hz will be no longer awailable. ! DO k=1,N(ng)-1 # ifdef K_C2ADVECTION ! ! Second-order, centered differences advection. ! DO j=Jstr,Jend DO i=Istr,Iend+1 XF(i,j)=0.5_r8*(Huon(i,j,k)+Huon(i,j,k+1)) FX (i,j)=XF(i,j)* & & 0.5_r8*(tke(i,j,k,nstp)+tke(i-1,j,k,nstp)) FXL(i,j)=XF(i,j)* & & 0.5_r8*(gls(i,j,k,nstp)+gls(i-1,j,k,nstp)) END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend EF(i,j)=0.5*(Hvom(i,j,k)+Hvom(i,j,k+1)) FE (i,j)=EF(i,j)* & & 0.5*(tke(i,j,k,nstp)+tke(i,j-1,k,nstp)) FEL(i,j)=EF(i,j)* & & 0.5*(gls(i,j,k,nstp)+gls(i,j-1,k,nstp)) END DO END DO # else ! ! Fourth-order, centered differences advection. ! DO j=Jstr,Jend DO i=Istrm1,Iendp2 grad (i,j)=(tke(i,j,k,nstp)-tke(i-1,j,k,nstp)) # ifdef MASKING grad (i,j)=grad (i,j)*umask(i,j) # endif gradL(i,j)=(gls(i,j,k,nstp)-gls(i-1,j,k,nstp)) # ifdef MASKING gradL(i,j)=gradL(i,j)*umask(i,j) # endif END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend grad (Istr-1,j)=grad (Istr,j) gradL(Istr-1,j)=gradL(Istr,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend grad (Iend+2,j)=grad (Iend+1,j) gradL(Iend+2,j)=gradL(Iend+1,j) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=Jstr,Jend DO i=Istr,Iend+1 XF(i,j)=0.5_r8*(Huon(i,j,k)+Huon(i,j,k+1)) FX (i,j)=XF(i,j)* & & 0.5_r8*(tke(i-1,j,k,nstp)+tke(i,j,k,nstp)- & & cff*(grad (i+1,j)-grad (i-1,j))) FXL(i,j)=XF(i,j)* & & 0.5_r8*(gls(i-1,j,k,nstp)+gls(i,j,k,nstp)- & & cff*(gradL(i+1,j)-gradL(i-1,j))) END DO END DO ! DO j=Jstrm1,Jendp2 DO i=Istr,Iend grad (i,j)=(tke(i,j,k,nstp)-tke(i,j-1,k,nstp)) # ifdef MASKING grad (i,j)=grad (i,j)*vmask(i,j) # endif gradL(i,j)=(gls(i,j,k,nstp)-gls(i,j-1,k,nstp)) # ifdef MASKING gradL(i,j)=gradL(i,j)*vmask(i,j) # endif END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jstr-1)=grad (i,Jstr) gradL(i,Jstr-1)=gradL(i,Jstr) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jend+2)=grad (i,Jend+1) gradL(i,Jend+2)=gradL(i,Jend+1) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=Jstr,Jend+1 DO i=Istr,Iend EF(i,j)=0.5_r8*(Hvom(i,j,k)+Hvom(i,j,k+1)) FE (i,j)=EF(i,j)* & & 0.5_r8*(tke(i,j-1,k,nstp)+tke(i,j,k,nstp)- & & cff*(grad (i,j+1)-grad (i,j-1))) FEL(i,j)=EF(i,j)* & & 0.5_r8*(gls(i,j-1,k,nstp)+gls(i,j,k,nstp)- & & cff*(gradL(i,j+1)-gradL(i,j-1))) END DO END DO # endif ! ! Time-step horizontal advection. ! IF (iic(ng).eq.ntfirst(ng)) THEN cff1=1.0_r8 cff2=0.0_r8 cff3=0.5_r8*dt(ng) indx=nstp ELSE cff1=0.5_r8+Gamma cff2=0.5_r8-Gamma cff3=(1.0_r8-Gamma)*dt(ng) indx=3-nstp END IF DO j=Jstr,Jend DO i=Istr,Iend cff=0.5_r8*(Hz(i,j,k)+Hz(i,j,k+1)) cff4=cff3*pm(i,j)*pn(i,j) Hz_half(i,j,k)=cff-cff4*(XF(i+1,j)-XF(i,j)+ & & EF(i,j+1)-EF(i,j)) tke(i,j,k,3)=cff*(cff1*tke(i,j,k,nstp)+ & & cff2*tke(i,j,k,indx))- & & cff4*(FX (i+1,j)-FX (i,j)+ & & FE (i,j+1)-FE (i,j)) gls(i,j,k,3)=cff*(cff1*gls(i,j,k,nstp)+ & & cff2*gls(i,j,k,indx))- & & cff4*(FXL(i+1,j)-FXL(i,j)+ & & FEL(i,j+1)-FEL(i,j)) tke(i,j,k,nnew)=cff*tke(i,j,k,nstp) gls(i,j,k,nnew)=cff*gls(i,j,k,nstp) END DO END DO END DO ! ! Compute vertical advection term. ! DO j=Jstr,Jend # ifdef K_C2ADVECTION DO k=1,N(ng) DO i=Istr,Iend CF(i,k)=0.5_r8*(W(i,j,k)+W(i,j,k-1)) FC (i,k)=CF(i,k)* & & 0.5_r8*(tke(i,j,k-1,nstp)+tke(i,j,k,nstp)) FCL(i,k)=CF(i,k)* & & 0.5_r8*(gls(i,j,k-1,nstp)+gls(i,j,k,nstp)) END DO END DO # else cff1=7.0_r8/12.0_r8 cff2=1.0_r8/12.0_r8 DO k=2,N(ng)-1 DO i=Istr,Iend CF(i,k)=0.5_r8*(W(i,j,k)+W(i,j,k-1)) FC (i,k)=CF(i,k)*(cff1*(tke(i,j,k-1,nstp)+ & & tke(i,j,k ,nstp))- & & cff2*(tke(i,j,k-2,nstp)+ & & tke(i,j,k+1,nstp))) FCL(i,k)=CF(i,k)*(cff1*(gls(i,j,k-1,nstp)+ & & gls(i,j,k ,nstp))- & & cff2*(gls(i,j,k-2,nstp)+ & & gls(i,j,k+1,nstp))) END DO END DO cff1=1.0_r8/3.0_r8 cff2=5.0_r8/6.0_r8 cff3=1.0_r8/6.0_r8 DO i=Istr,Iend CF(i,1)=0.5*(W(i,j,0)+W(i,j,1)) FC (i,1)=CF(i,1)*(cff1*tke(i,j,0,nstp)+ & & cff2*tke(i,j,1,nstp)- & & cff3*tke(i,j,2,nstp)) FCL(i,1)=CF(i,1)*(cff1*gls(i,j,0,nstp)+ & & cff2*gls(i,j,1,nstp)- & & cff3*gls(i,j,2,nstp)) CF(i,N(ng))=0.5*(W(i,j,N(ng))+W(i,j,N(ng)-1)) FC (i,N(ng))=CF(i,N(ng))*(cff1*tke(i,j,N(ng) ,nstp)+ & & cff2*tke(i,j,N(ng)-1,nstp)- & & cff3*tke(i,j,N(ng)-2,nstp)) FCL(i,N(ng))=CF(i,N(ng))*(cff1*gls(i,j,N(ng) ,nstp)+ & & cff2*gls(i,j,N(ng)-1,nstp)- & & cff3*gls(i,j,N(ng)-2,nstp)) END DO # endif ! ! Time-step vertical advection term. ! IF (iic(ng).eq.ntfirst(ng)) THEN cff3=0.5_r8*dt(ng) ELSE cff3=(1.0_r8-Gamma)*dt(ng) END IF DO k=1,N(ng)-1 DO i=Istr,Iend cff4=cff3*pm(i,j)*pn(i,j) Hz_half(i,j,k)=Hz_half(i,j,k)-cff4*(CF(i,k+1)-CF(i,k)) cff1=1.0_r8/Hz_half(i,j,k) tke(i,j,k,3)=cff1*(tke(i,j,k,3)- & & cff4*(FC (i,k+1)-FC (i,k))) gls(i,j,k,3)=cff1*(gls(i,j,k,3)- & & cff4*(FCL(i,k+1)-FCL(i,k))) END DO END DO END DO ! ! Apply lateral boundary conditions. ! CALL tkebc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & 3, nstp, & & gls, tke) ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & tke(:,:,:,3)) CALL exchange_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & gls(:,:,:,3)) END IF # ifdef DISTRIBUTE CALL mp_exchange3d (ng, tile, iNLM, 2, & & LBi, UBi, LBj, UBj, 0, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tke(:,:,:,3), & & gls(:,:,:,3)) # endif ! RETURN END SUBROUTINE my25_prestep_tile #endif END MODULE my25_prestep_mod