#include "cppdefs.h" MODULE diag_mod ! !git $Id$ !svn $Id: diag.F 1180 2023-07-13 02:42:10Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routine computes various diagnostic fields. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: diag ! CONTAINS ! !*********************************************************************** SUBROUTINE diag (ng, tile) !*********************************************************************** ! USE mod_param USE mod_grid USE mod_ocean USE mod_stepping ! #ifdef ANA_DIAG USE analytical_mod, ONLY : ana_diag #endif ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! #include "tile.h" ! #ifdef PROFILE CALL wclock_on (ng, iNLM, 7, __LINE__, MyFile) #endif CALL diag_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & #ifdef STEP2D_FB_LF_AM3 & nstp(ng), kstp(ng), & #else & nstp(ng), krhs(ng), & #endif & GRID(ng) % h, & & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % omn, & #ifdef SOLVE3D & GRID(ng) % Hz, & & GRID(ng) % z_r, & & GRID(ng) % z_w, & & OCEAN(ng) % rho, & & OCEAN(ng) % u, & & OCEAN(ng) % v, & & OCEAN(ng) % wvel, & #endif & OCEAN(ng) % ubar, & & OCEAN(ng) % vbar, & & OCEAN(ng) % zeta) #ifdef ANA_DIAG CALL ana_diag (ng, tile, iNLM) #endif #ifdef PROFILE CALL wclock_off (ng, iNLM, 7, __LINE__, MyFile) #endif ! RETURN END SUBROUTINE diag ! !*********************************************************************** SUBROUTINE diag_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nstp, krhs, & & h, pm, pn, omn, & #ifdef SOLVE3D & Hz, z_r, z_w, & & rho, u, v, wvel, & #endif & ubar, vbar, zeta) !*********************************************************************** ! USE mod_param USE mod_parallel USE mod_iounits USE mod_scalars #ifdef DISTRIBUTE ! USE distribute_mod, ONLY : mp_reduce USE distribute_mod, ONLY : mp_reduce2 #endif ! implicit none ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nstp, krhs #ifdef ASSUMED_SHAPE real(r8), intent(in) :: h(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: omn(LBi:,LBj:) # ifdef SOLVE3D real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: z_w(LBi:,LBj:,0:) real(r8), intent(in) :: rho(LBi:,LBj:,:) real(r8), intent(in) :: u(LBi:,LBj:,:,:) real(r8), intent(in) :: v(LBi:,LBj:,:,:) real(r8), intent(in) :: wvel(LBi:,LBj:,0:) # endif real(r8), intent(in) :: ubar(LBi:,LBj:,:) real(r8), intent(in) :: vbar(LBi:,LBj:,:) real(r8), intent(in) :: zeta(LBi:,LBj:,:) #else real(r8), intent(in) :: h(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: omn(LBi:UBi,LBj:UBj) # ifdef SOLVE3D real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_r(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: z_w(LBi:UBi,LBj:UBj,0:N(ng)) real(r8), intent(in) :: rho(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: u(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(in) :: v(LBi:UBi,LBj:UBj,N(ng),2) real(r8), intent(in) :: wvel(LBi:UBi,LBj:UBj,0:N(ng)) # endif real(r8), intent(in) :: ubar(LBi:UBi,LBj:UBj,:) real(r8), intent(in) :: vbar(LBi:UBi,LBj:UBj,:) real(r8), intent(in) :: zeta(LBi:UBi,LBj:UBj,:) #endif ! ! Local variable declarations. ! integer :: NSUB, i, ispace, j, k, trd integer :: idia, istep integer :: my_max_Ci, my_max_Cj, my_max_Ck #ifdef DISTRIBUTE # ifdef SOLVE3D integer, parameter :: Nreduce = 5 integer, parameter :: Ncourant = 7 # else integer, parameter :: Nreduce = 4 integer, parameter :: Ncourant = 5 # endif real(r8), dimension(Nreduce) :: rbuffer real(r8), dimension(Ncourant) :: Courant character (len=3), dimension(Nreduce) :: op_handle character (len=6), dimension(Nreduce) :: C_handle #else integer :: my_threadnum #endif ! real(r8) :: cff, my_avgke, my_avgpe, my_volume real(r8) :: my_C , my_max_C real(r8) :: my_Cu, my_max_Cu real(r8) :: my_Cv, my_max_Cv #ifdef SOLVE3D real(r8) :: my_Cw, my_max_Cw #endif real(r8) :: my_maxspeed, u2v2 #ifdef SOLVE3D real(r8) :: my_maxrho #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ke2d real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: pe2d ! character (len=8 ) :: kechar, pechar, maxvalchar character (len=22) :: DateTime character (len=60) :: frmt #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Compute and report out volume averaged kinetic, potential ! total energy, volume, Courant numbers. !----------------------------------------------------------------------- ! ! Set time timestep counter and time level indices to process. Restart ! counter after 10 billion steps. ! istep=INT(MOD(REAL(iic(ng)-1,r8),1.0E+10_r8)) #ifdef SOLVE3D idia=nstp #else idia=krhs #endif DateTime=time_code(ng) ! ! Compute kinetic and potential energy. ! IF (MOD(iic(ng)-1,ninfo(ng)).eq.0) THEN my_max_C =0.0_r8 my_max_Cu=0.0_r8 my_max_Cv=0.0_r8 #ifdef SOLVE3D my_max_Cw=0.0_r8 #endif my_max_Ci=0 my_max_Cj=0 my_max_Ck=0 my_maxspeed=0.0_r8 #ifdef SOLVE3D my_maxrho=-spval #endif DO j=Jstr,Jend #ifdef SOLVE3D DO i=Istr,Iend ke2d(i,j)=0.0_r8 pe2d(i,j)=0.5_r8*g*z_w(i,j,N(ng))*z_w(i,j,N(ng)) END DO cff=g/rho0 DO k=N(ng),1,-1 DO i=Istr,Iend u2v2=u(i ,j,k,idia)*u(i ,j,k,idia)+ & & u(i+1,j,k,idia)*u(i+1,j,k,idia)+ & & v(i,j ,k,idia)*v(i,j ,k,idia)+ & & v(i,j+1,k,idia)*v(i,j+1,k,idia) ke2d(i,j)=ke2d(i,j)+ & & Hz(i,j,k)*0.25_r8*u2v2 pe2d(i,j)=pe2d(i,j)+ & & cff*Hz(i,j,k)*(rho(i,j,k)+1000.0_r8)* & & (z_r(i,j,k)-z_w(i,j,0)) my_Cu=0.5_r8*ABS(u(i,j,k,idia)+u(i+1,j,k,idia))* & & dt(ng)*pm(i,j) my_Cv=0.5_r8*ABS(v(i,j,k,idia)+v(i,j+1,k,idia))* & & dt(ng)*pn(i,j) my_Cw=0.5_r8*ABS(wvel(i,j,k-1)+wvel(i,j,k))* & & dt(ng)/Hz(i,j,k) my_C=my_Cu+my_Cv+my_Cw IF (my_C.gt.my_max_C) THEN my_max_C =my_C my_max_Cu=my_Cu my_max_Cv=my_Cv my_max_Cw=my_Cw my_max_Ci=i my_max_Cj=j my_max_Ck=k END IF my_maxspeed=MAX(my_maxspeed,SQRT(0.5_r8*u2v2)) my_maxrho=MAX(my_maxrho,rho(i,j,k)) END DO END DO #else cff=0.5_r8*g DO i=Istr,Iend u2v2=ubar(i ,j,idia)*ubar(i ,j,idia)+ & & ubar(i+1,j,idia)*ubar(i+1,j,idia)+ & & vbar(i,j ,idia)*vbar(i,j ,idia)+ & & vbar(i,j+1,idia)*vbar(i,j+1,idia) ke2d(i,j)=(zeta(i,j,idia)+h(i,j))*0.25_r8*u2v2 pe2d(i,j)=cff*zeta(i,j,idia)*zeta(i,j,idia) my_Cu=0.5_r8*ABS(ubar(i,j,idia)+ubar(i+1,j,idia))* & & dt(ng)*pn(i,j) my_Cv=0.5_r8*ABS(vbar(i,j,idia)+vbar(i,j+1,idia))* & & dt(ng)*pn(i,j) my_C=my_Cu+my_Cv IF (my_C.gt.my_max_C) THEN my_max_C =my_C my_max_Cu=my_Cu my_max_Cv=my_Cv my_max_Ci=i my_max_Cj=j END IF my_maxspeed=MAX(my_maxspeed,SQRT(0.5_r8*u2v2)) END DO #endif END DO ! ! Integrate horizontally within one tile. In order to reduce the ! round-off errors, the summation is performed in two stages. First, ! the index j is collapsed and then the accumulation is carried out ! along index i. In this order, the partial sums consist on much ! fewer number of terms than in a straightforward two-dimensional ! summation. Thus, adding numbers which are orders of magnitude ! apart is avoided. ! DO i=Istr,Iend pe2d(i,Jend+1)=0.0_r8 pe2d(i,Jstr-1)=0.0_r8 ke2d(i,Jstr-1)=0.0_r8 END DO DO j=Jstr,Jend DO i=Istr,Iend #ifdef SOLVE3D pe2d(i,Jend+1)=pe2d(i,Jend+1)+ & & omn(i,j)*(z_w(i,j,N(ng))-z_w(i,j,0)) #else pe2d(i,Jend+1)=pe2d(i,Jend+1)+ & & omn(i,j)*(zeta(i,j,idia)+h(i,j)) #endif pe2d(i,Jstr-1)=pe2d(i,Jstr-1)+omn(i,j)*pe2d(i,j) ke2d(i,Jstr-1)=ke2d(i,Jstr-1)+omn(i,j)*ke2d(i,j) END DO END DO my_volume=0.0_r8 my_avgpe=0.0_r8 my_avgke=0.0_r8 DO i=Istr,Iend my_volume=my_volume+pe2d(i,Jend+1) my_avgpe =my_avgpe +pe2d(i,Jstr-1) my_avgke =my_avgke +ke2d(i,Jstr-1) END DO ! ! Perform global summation: whoever gets first to the critical region ! resets global sums before global summation starts; after the global ! summation is completed, thread, which is the last one to enter the ! critical region, finalizes the computation of diagnostics and prints ! them out. ! #ifdef DISTRIBUTE NSUB=1 ! distributed-memory #else IF (DOMAIN(ng)%SouthWest_Corner(tile).and. & & DOMAIN(ng)%NorthEast_Corner(tile)) THEN NSUB=1 ! non-tiled application ELSE NSUB=NtileX(ng)*NtileE(ng) ! tiled application END IF #endif !$OMP CRITICAL (NL_DIAGNOSTICS) !! IF (tile_count.eq.0) THEN !! volume=0.0_r8 !! avgke=0.0_r8 !! avgpe=0.0_r8 !! maxspeed(ng)=0.0_r8 #ifdef SOLVE3D !! maxrho(ng)=-spval #endif !! max_C =0.0_r8 !! max_Cu=0.0_r8 !! max_Cv=0.0_r8 #ifdef SOLVE3D !! max_Cw=0.0_r8 #endif !! max_Ci=0 !! max_Cj=0 #ifdef SOLVE3D !! max_Ck=0 #endif !! END IF volume=volume+my_volume avgke=avgke+my_avgke avgpe=avgpe+my_avgpe maxspeed(ng)=MAX(maxspeed(ng),my_maxspeed) #ifdef SOLVE3D maxrho(ng)=MAX(maxrho(ng),my_maxrho) #endif IF (my_max_C.eq.max_C) THEN max_Ci=MIN(max_Ci,my_max_Ci) max_Cj=MIN(max_Cj,my_max_Cj) #ifdef SOLVE3D max_Ck=MIN(max_Ck,my_max_Ck) #endif ELSE IF (my_max_C.gt.max_C) THEN max_C =my_max_C max_Cu=my_max_Cu max_Cv=my_max_Cv #ifdef SOLVE3D max_Cw=my_max_Cw #endif max_Ci=my_max_Ci max_Cj=my_max_Cj #ifdef SOLVE3D max_Ck=my_max_Ck #endif END IF tile_count=tile_count+1 IF (tile_count.eq.NSUB) THEN tile_count=0 #ifdef DISTRIBUTE rbuffer(1)=volume rbuffer(2)=avgke rbuffer(3)=avgpe rbuffer(4)=maxspeed(ng) # ifdef SOLVE3D rbuffer(5)=maxrho(ng) # endif op_handle(1)='SUM' op_handle(2)='SUM' op_handle(3)='SUM' op_handle(4)='MAX' # ifdef SOLVE3D op_handle(5)='MAX' # endif CALL mp_reduce (ng, iNLM, Nreduce, rbuffer, op_handle) volume=rbuffer(1) avgke=rbuffer(2) avgpe=rbuffer(3) maxspeed(ng)=rbuffer(4) # ifdef SOLVE3D maxrho(ng)=rbuffer(5) # endif ! Courant(1)=max_C Courant(2)=max_Cu Courant(3)=max_Cv Courant(4)=REAL(max_Ci,r8) Courant(5)=REAL(max_Cj,r8) # ifdef SOLVE3D Courant(6)=max_Cw Courant(7)=REAL(max_Ck,r8) # endif C_handle(1)='MAXLOC' CALL mp_reduce2 (ng, iNLM, Ncourant, 1, Courant, C_handle) max_C =Courant(1) max_Cu=Courant(2) max_Cv=Courant(3) max_Ci=INT(Courant(4)) max_Cj=INT(Courant(5)) # ifdef SOLVE3D max_Cw=Courant(6) max_Ck=INT(Courant(7)) # endif ! trd=MyMaster #else trd=my_threadnum() #endif avgke=avgke/volume avgpe=avgpe/volume avgkp=avgke+avgpe ! ! Report global run diagnotics values for the nonlinear kernel. ! IF (first_time(ng).eq.0) THEN first_time(ng)=1 IF (Master.and.(ng.eq.1)) THEN WRITE (stdout,10) 'TIME-STEP', 'YYYY-MM-DD hh:mm:ss.ss', & & 'KINETIC_ENRG', 'POTEN_ENRG', & #ifdef NESTING & 'TOTAL_ENRG', 'NET_VOLUME', 'Grid' #else & 'TOTAL_ENRG', 'NET_VOLUME' #endif #ifdef SOLVE3D WRITE (stdout,20) 'C => (i,j,k)', 'Cu', 'Cv', & & ' Cw ', 'Max Speed' #else WRITE (stdout,20) ' C => (i,j)', 'Cu', 'Cv', & & ' C Max', 'Max Speed' #endif #ifdef NESTING 10 FORMAT (/,1x,a,1x,a,2x,a,3x,a,4x,a,4x,a,2x,a) #else 10 FORMAT (/,1x,a,1x,a,2x,a,3x,a,4x,a,4x,a) #endif 20 FORMAT (21x,a,7x,a,12x,a,10x,a,7x,a,/) END IF END IF ! IF (Master) THEN WRITE (stdout,30) istep, DateTime, & #ifdef NESTING & avgke, avgpe, avgkp, volume, ng #else & avgke, avgpe, avgkp, volume #endif #ifdef SOLVE3D ispace=35-(6+Idigits(ng)+Jdigits(ng)+Kdigits(ng)) WRITE (frmt,40) ispace, & & '"("', Idigits(ng), Idigits(ng), & & '","', Jdigits(ng), Jdigits(ng), & & '","', Kdigits(ng), Kdigits(ng), '")"' WRITE (stdout,frmt) max_Ci, max_Cj, & & max_Ck, max_Cu, max_Cv, max_Cw, & & maxspeed(ng) #else ispace=35-(5+Idigits(ng)+Jdigits(ng)) WRITE (frmt,40) ispace, & & '"("', Idigits(ng), Idigits(ng), & & '","', Jdigits(ng), Jdigits(ng), '")"' WRITE (stdout,frmt) max_Ci, max_Cj, & & max_Cu, max_Cv, max_C, & & maxspeed(ng) #endif CALL my_flush (stdout) #ifdef NESTING 30 FORMAT (i10,1x,a,4(1pe14.6),2x,i2.2) #else 30 FORMAT (i10,1x,a,4(1pe14.6)) #endif 40 FORMAT ('(',i2.2,'x,',a,',i',i1,'.',i1,',', & & a,',i',i1,'.',i1,',', & #ifdef SOLVE3D & a,',i',i1,'.',i1,',', & #endif & a,',t35,4(1pe13.6,1x))') END IF ! ! If blowing-up, set exit_flag to stop computations. ! WRITE (kechar,'(1pe8.1)') avgke WRITE (pechar,'(1pe8.1)') avgpe DO i=1,8 IF ((kechar(i:i).eq.'N').or.(pechar(i:i).eq.'N').or. & & (kechar(i:i).eq.'n').or.(pechar(i:i).eq.'n').or. & & (kechar(i:i).eq.'*').or.(pechar(i:i).eq.'*')) THEN exit_flag=1 blowup_string='KEchar = '//kechar//', PEchar = '//pechar END IF END DO ! ! Stop computations if exceeding maximum speed allowed. This will be ! useful during debugging to avoid NaNs in output NetCDF files. ! IF (maxspeed(ng).gt.max_speed) THEN exit_flag=1 WRITE (maxvalchar,'(1pe8.1)') maxspeed(ng) blowup_string='MaxSpeed = '//maxvalchar END IF #ifdef SOLVE3D ! ! Stop computation if exceeding maximum density anomaly allowed. ! Recall that density is computed from potential temperature and ! salinity. This is a good way to screen for very bad values which ! indicates that the model is blowing-up. ! IF (maxrho(ng).gt.max_rho) THEN exit_flag=1 WRITE (maxvalchar,'(1pe8.1)') maxrho(ng) blowup_string='MaxDensity = '//maxvalchar END IF #endif ! ! Reset global reduction variables for the next call. ! volume=0.0_r8 avgke=0.0_r8 avgpe=0.0_r8 maxspeed(ng)=-Large #ifdef SOLVE3D maxrho(ng)=-Large #endif max_C =0.0_r8 max_Cu=0.0_r8 max_Cv=0.0_r8 #ifdef SOLVE3D max_Cw=0.0_r8 #endif max_Ci=0 max_Cj=0 #ifdef SOLVE3D max_Ck=0 #endif END IF !$OMP END CRITICAL (NL_DIAGNOSTICS) END IF ! RETURN END SUBROUTINE diag_tile END MODULE diag_mod