MODULE ad_t3dmix4_mod ! !git $Id$ !svn $Id: ad_t3dmix4_s.h 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This subroutine computes adjoint horizontal biharmonic mixing ! ! of tracers along S-coordinate levels surfaces. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC ad_t3dmix4 ! CONTAINS ! !*********************************************************************** SUBROUTINE ad_t3dmix4 (ng, tile) !*********************************************************************** ! USE mod_param #ifdef TS_MIX_CLIMA USE mod_clima #endif #ifdef DIAGNOSTICS_TS !! USE mod_diags #endif USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! #include "tile.h" ! #ifdef PROFILE CALL wclock_on (ng, iADM, 27, __LINE__, MyFile) #endif CALL ad_t3dmix4_s_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), nstp(ng), nnew(ng), & #ifdef MASKING & GRID(ng) % umask, & & GRID(ng) % vmask, & #endif #ifdef WET_DRY_NOT_YET & GRID(ng) % umask_wet, & & GRID(ng) % vmask_wet, & #endif & GRID(ng) % Hz, & & GRID(ng) % ad_Hz, & & GRID(ng) % pmon_u, & & GRID(ng) % pnom_v, & & GRID(ng) % pm, & & GRID(ng) % pn, & #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_Y ET & MIXING(ng) % diff3d_u, & & MIXING(ng) % diff3d_v, & # else & MIXING(ng) % diff3d_r, & # endif #else & MIXING(ng) % diff4, & #endif #ifdef TS_MIX_CLIMA & CLIMA(ng) % tclm, & #endif #ifdef DIAGNOSTICS_TS !! & DIAGS(ng) % DiaTwrk, & #endif & OCEAN(ng) % t, & & OCEAN(ng) % ad_t) #ifdef PROFILE CALL wclock_off (ng, iADM, 27, __LINE__, MyFile) #endif ! RETURN END SUBROUTINE ad_t3dmix4 ! !*********************************************************************** SUBROUTINE ad_t3dmix4_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, nstp, nnew, & #ifdef MASKING & umask, vmask, & #endif #ifdef WET_DRY_NOT_YET & umask_wet, vmask_wet, & #endif & Hz, ad_Hz, & & pmon_u, pnom_v, pm, pn, & #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET & diff3d_u, diff3d_v, & # else & diff3d_r, & # endif #else & diff4, & #endif #ifdef TS_MIX_CLIMA & tclm, & #endif #ifdef DIAGNOSTICS_TS !! & DiaTwrk, & #endif & t, ad_t) !*********************************************************************** ! USE mod_param USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs, nstp, nnew #ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(in) :: umask_wet(LBi:,LBj:) real(r8), intent(in) :: vmask_wet(LBi:,LBj:) # endif # ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET real(r8), intent(in) :: diff3d_u(LBi:,LBj:,:) real(r8), intent(in) :: diff3d_v(LBi:,LBj:,:) # else real(r8), intent(in) :: diff3d_r(LBi:,LBj:,:) # endif # else real(r8), intent(in) :: diff4(LBi:,LBj:,:) # endif real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: pmon_u(LBi:,LBj:) real(r8), intent(in) :: pnom_v(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: t(LBi:,LBj:,:,:,:) # ifdef TS_MIX_CLIMA real(r8), intent(in) :: tclm(LBi:,LBj:,:,:) # endif # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:,LBj:,:,:,:) # endif real(r8), intent(inout) :: ad_Hz(LBi:,LBj:,:) real(r8), intent(inout) :: ad_t(LBi:,LBj:,:,:,:) #else # ifdef MASKING real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(in) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask_wet(LBi:UBi,LBj:UBj) # endif # ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET real(r8), intent(in) :: diff3d_u(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: diff3d_v(LBi:UBi,LBj:UBj,N(ng)) # else real(r8), intent(in) :: diff3d_r(LBi:UBi,LBj:UBj,N(ng)) # endif # else real(r8), intent(in) :: diff4(LBi:UBi,LBj:UBj,NT(ng)) # endif real(r8), intent(in) :: Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(in) :: pmon_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pnom_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) # ifdef TS_MIX_CLIMA real(r8), intent(in) :: tclm(LBi:UBi,LBj:UBj,N(ng),NT(ng)) # endif # ifdef DIAGNOSTICS_TS !! real(r8), intent(inout) :: DiaTwrk(LBi:UBi,LBj:UBj,N(ng),NT(ng), & !! & NDT) # endif real(r8), intent(inout) :: ad_Hz(LBi:UBi,LBj:UBj,N(ng)) real(r8), intent(inout) :: ad_t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng)) #endif ! ! Local variable declarations. ! integer :: Imin, Imax, Jmin, Jmax integer :: i, itrc, j, k real(r8) :: cff, cff1 real(r8) :: adfac, adfac1, adfac2, adfac3, adfac4, ad_cff, ad_cff1 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapT real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_LapT #include "set_bounds.h" ! !----------------------------------------------------------------------- ! Initialize adjoint private variables. !----------------------------------------------------------------------- ! ad_cff=0.0_r8 ad_cff1=0.0_r8 ad_FE(IminS:ImaxS,JminS:JmaxS)=0.0_r8 ad_FX(IminS:ImaxS,JminS:JmaxS)=0.0_r8 ad_LapT(IminS:ImaxS,JminS:JmaxS)=0.0_r8 ! !---------------------------------------------------------------------- ! Compute adjoint horizontal biharmonic diffusion along constant ! S-surfaces. The biharmonic operator is computed by applying the ! harmonic operator twice. !---------------------------------------------------------------------- ! ! Set local I- and J-ranges. ! IF (EWperiodic(ng)) THEN Imin=Istr-1 Imax=Iend+1 ELSE Imin=MAX(Istr-1,1) Imax=MIN(Iend+1,Lm(ng)) END IF IF (NSperiodic(ng)) THEN Jmin=Jstr-1 Jmax=Jend+1 ELSE Jmin=MAX(Jstr-1,1) Jmax=MIN(Jend+1,Mm(ng)) END IF ! ! Compute FX=d(LapT)/d(xi) and FE=d(LapT)/d(eta) BASIC STATE terms. ! DO itrc=1,NT(ng) DO k=1,N(ng) DO j=Jmin,Jmax DO i=Imin,Imax+1 #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET cff=0.5_r8*diff3d_u(i,j,k)*pmon_u(i,j) # else cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i-1,j,k))* & & pmon_u(i,j) # endif #else cff=0.25_r8*(diff4(i,j,itrc)+diff4(i-1,j,itrc))* & & pmon_u(i,j) #endif #ifdef MASKING cff=cff*umask(i,j) #endif #ifdef WET_DRY cff=cff*umask_wet(i,j) #endif #if defined TS_MIX_STABILITY FX(i,j)=cff* & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (0.75_r8*(t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc))+ & & 0.25_r8*(t(i ,j,k,nstp,itrc)- & & t(i-1,j,k,nstp,itrc))) #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN FX(i,j)=cff* & & (Hz(i,j,k)+Hz(i-1,j,k))* & & ((t(i ,j,k,nrhs,itrc)-tclm(i ,j,k,itrc))- & & (t(i-1,j,k,nrhs,itrc)-tclm(i-1,j,k,itrc))) ELSE FX(i,j)=cff* & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc)) END IF #else FX(i,j)=cff* & & (Hz(i,j,k)+Hz(i-1,j,k))* & & (t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc)) #endif END DO END DO DO j=Jmin,Jmax+1 DO i=Imin,Imax #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET cff=0.5_r8*diff3d_v(i,j,k)*pnom_v(i,j) # else cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i,j-1,k))* & & pnom_v(i,j) # endif #else cff=0.25_r8*(diff4(i,j,itrc)+diff4(i,j-1,itrc))* & & pnom_v(i,j) #endif #ifdef MASKING cff=cff*vmask(i,j) #endif #ifdef WET_DRY cff=cff*vmask_wet(i,j) #endif #if defined TS_MIX_STABILITY FE(i,j)=cff* & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (0.75_r8*(t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc))+ & & 0.25_r8*(t(i,j ,k,nstp,itrc)- & & t(i,j-1,k,nstp,itrc))) #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN FE(i,j)=cff* & & (Hz(i,j,k)+Hz(i,j-1,k))* & & ((t(i,j ,k,nrhs,itrc)-tclm(i,j ,k,itrc))- & & (t(i,j-1,k,nrhs,itrc)-tclm(i,j-1,k,itrc))) ELSE FE(i,j)=cff* & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc)) END IF #else FE(i,j)=cff* & & (Hz(i,j,k)+Hz(i,j-1,k))* & & (t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc)) #endif END DO END DO ! ! Compute first BASIC STATE harmonic operator and multiply by the ! metrics of the second harmonic operator. ! DO j=Jmin,Jmax DO i=Imin,Imax cff=1.0_r8/Hz(i,j,k) LapT(i,j)=pm(i,j)*pn(i,j)*cff* & & (FX(i+1,j)-FX(i,j)+ & & FE(i,j+1)-FE(i,j)) END DO END DO ! ! Apply boundary conditions (except periodic; closed or gradient) ! to the first harmonic operator. ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN IF (ad_LBC(iwest,isTvar(itrc),ng)%closed) THEN DO j=Jmin,Jmax LapT(Istr-1,j)=0.0_r8 END DO ELSE DO j=Jmin,Jmax LapT(Istr-1,j)=LapT(Istr,j) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN IF (ad_LBC(ieast,isTvar(itrc),ng)%closed) THEN DO j=Jmin,Jmax LapT(Iend+1,j)=0.0_r8 END DO ELSE DO j=Jmin,Jmax LapT(Iend+1,j)=LapT(Iend,j) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN IF (ad_LBC(isouth,isTvar(itrc),ng)%closed) THEN DO i=Imin,Imax LapT(i,Jstr-1)=0.0_r8 END DO ELSE DO i=Imin,Imax LapT(i,Jstr-1)=LapT(i,Jstr) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN IF (ad_LBC(inorth,isTvar(itrc),ng)%closed) THEN DO i=Imin,Imax LapT(i,Jend+1)=0.0_r8 END DO ELSE DO i=Imin,Imax LapT(i,Jend+1)=LapT(i,Jend) END DO END IF END IF END IF ! ! Time-step biharmonic, S-surfaces diffusion term (m Tunits). ! DO j=Jstr,Jend DO i=Istr,Iend #ifdef DIAGNOSTICS_TS !! DiaTwrk(i,j,k,itrc,iThdif)=-cff #endif !^ tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff !^ ad_cff=ad_cff-ad_t(i,j,k,nnew,itrc) !^ tl_cff=dt(ng)*pm(i,j)*pn(i,j)* & !^ & (tl_FX(i+1,j)-tl_FX(i,j)+ & !^ & tl_FE(i,j+1)-tl_FE(i,j)) !^ adfac=dt(ng)*pm(i,j)*pn(i,j)*ad_cff ad_FX(i ,j)=ad_FX(i ,j)-adfac ad_FX(i+1,j)=ad_FX(i+1,j)+adfac ad_FE(i,j )=ad_FE(i,j )-adfac ad_FE(i,j+1)=ad_FE(i,j+1)+adfac ad_cff=0.0_r8 END DO END DO ! ! Compute ad_FE=d(ad_LapT)/d(eta) and ad_FX=d(ad_LapT)/d(xi) terms. ! DO j=Jstr,Jend+1 DO i=Istr,Iend #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET cff=0.5_r8*diff3d_v(i,j,k)*pnom_v(i,j) # else cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i,j-1,k))* & & pnom_v(i,j) # endif #else cff=0.25_r8*(diff4(i,j,itrc)+diff4(i,j-1,itrc))* & & pnom_v(i,j) #endif #ifdef WET_DRY_NOT_YET FE(i,j)=FE(i,j)*vmask_wet(i,j) #endif #ifdef MASKING !^ tl_FE(i,j)=tl_FE(i,j)*vmask(i,j) !^ ad_FE(i,j)=ad_FE(i,j)*vmask(i,j) #endif !^ tl_FE(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !^ & (LapT(i,j)-LapT(i,j-1))+ & !^ & (Hz(i,j,k)+Hz(i,j-1,k))* & !^ & (tl_LapT(i,j)-tl_LapT(i,j-1))) !^ adfac=cff*ad_FE(i,j) adfac1=adfac*(LapT(i,j)-LapT(i,j-1)) adfac2=adfac*(Hz(i,j,k)+Hz(i,j-1,k)) ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_LapT(i,j-1)=ad_LapT(i,j-1)-adfac2 ad_LapT(i,j )=ad_LapT(i,j )+adfac2 ad_FE(i,j)=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=Istr,Iend+1 #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET cff=0.5_r8*diff3d_u(i,j,k)*pmon_u(i,j) # else cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i-1,j,k))* & & pmon_u(i,j) # endif #else cff=0.25_r8*(diff4(i,j,itrc)+diff4(i-1,j,itrc))* & & pmon_u(i,j) #endif #ifdef WET_DRY_NOT_YET FX(i,j)=FX(i,j)*umask_wet(i,j) #endif #ifdef MASKING !^ tl_FX(i,j)=tl_FX(i,j)*umask(i,j) !^ ad_FX(i,j)=ad_FX(i,j)*umask(i,j) #endif !^ tl_FX(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !^ & (LapT(i,j)-LapT(i-1,j))+ & !^ & (Hz(i,j,k)+Hz(i-1,j,k))* & !^ & (tl_LapT(i,j)-tl_LapT(i-1,j))) !^ adfac=cff*ad_FX(i,j) adfac1=adfac*(LapT(i,j)-LapT(i-1,j)) adfac2=adfac*(Hz(i,j,k)+Hz(i-1,j,k)) ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_LapT(i-1,j)=ad_LapT(i-1,j)-adfac2 ad_LapT(i ,j)=ad_LapT(i ,j)+adfac2 ad_FX(i,j)=0.0_r8 END DO END DO ! ! Apply boundary conditions (except periodic; closed or gradient) ! to the first harmonic operator. ! IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN IF (ad_LBC(inorth,isTvar(itrc),ng)%closed) THEN DO i=Imin,Imax !^ tl_LapT(i,Jend+1)=0.0_r8 !^ ad_LapT(i,Jend+1)=0.0_r8 END DO ELSE DO i=Imin,Imax !^ tl_LapT(i,Jend+1)=tl_LapT(i,Jend) !^ ad_LapT(i,Jend)=ad_LapT(i,Jend)+ad_LapT(i,Jend+1) ad_LapT(i,Jend+1)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN IF (ad_LBC(isouth,isTvar(itrc),ng)%closed) THEN DO i=Imin,Imax !^ tl_LapT(i,Jstr-1)=0.0_r8 !^ ad_LapT(i,Jstr-1)=0.0_r8 END DO ELSE DO i=Imin,Imax !^ tl_LapT(i,Jstr-1)=tl_LapT(i,Jstr) !^ ad_LapT(i,Jstr)=ad_LapT(i,Jstr)+ad_LapT(i,Jstr-1) ad_LapT(i,Jstr-1)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN IF (ad_LBC(ieast,isTvar(itrc),ng)%closed) THEN DO j=Jmin,Jmax !^ tl_LapT(Iend+1,j)=0.0_r8 !^ ad_LapT(Iend+1,j)=0.0_r8 END DO ELSE DO j=Jmin,Jmax !^ tl_LapT(Iend+1,j)=tl_LapT(Iend,j) !^ ad_LapT(Iend,j)=ad_LapT(Iend,j)+ad_LapT(Iend+1,j) ad_LapT(Iend+1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN IF (ad_LBC(iwest,isTvar(itrc),ng)%closed) THEN DO j=Jmin,Jmax !^ tl_LapT(Istr-1,j)=0.0_r8 !^ ad_LapT(Istr-1,j)=0.0_r8 END DO ELSE DO j=Jmin,Jmax !^ tl_LapT(Istr-1,j)=tl_LapT(Istr,j) !^ ad_LapT(Istr,j)=ad_LapT(Istr,j)+ad_LapT(Istr-1,j) ad_LapT(Istr-1,j)=0.0_r8 END DO END IF END IF END IF ! ! Compute first harmonic operator and multiply by the metrics of the ! second harmonic operator. ! DO j=Jmin,Jmax DO i=Imin,Imax cff=1.0_r8/Hz(i,j,k) !^ tl_LapT(i,j)=pm(i,j)*pn(i,j)* & !^ & (tl_cff* & !^ & (FX(i+1,j)-FX(i,j)+ & !^ & FE(i,j+1)-FE(i,j))+ & !^ & cff* & !^ & (tl_FX(i+1,j)-tl_FX(i,j)+ & !^ & tl_FE(i,j+1)-tl_FE(i,j))) !^ adfac=pm(i,j)*pn(i,j)*ad_LapT(i,j) adfac1=cff*adfac ad_cff=ad_cff+ & & adfac*(FX(i+1,j)-FX(i,j)+ & & FE(i,j+1)-FE(i,j)) ad_FX(i ,j)=ad_FX(i ,j)-adfac1 ad_FX(i+1,j)=ad_FX(i+1,j)+adfac1 ad_FE(i,j )=ad_FE(i,j )-adfac1 ad_FE(i,j+1)=ad_FE(i,j+1)+adfac1 ad_LapT(i,j)=0.0_r8 !^ tl_cff=-cff*cff*tl_Hz(i,j,k) !^ ad_Hz(i,j,k)=ad_Hz(i,j,k)-cff*cff*ad_cff ad_cff=0.0_r8 END DO END DO ! ! Compute horizontal tracer flux in the ETA- and XI-directions. ! DO j=Jmin,Jmax+1 DO i=Imin,Imax #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET cff=0.5_r8*diff3d_v(i,j,k)*pnom_v(i,j) # else cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i,j-1,k))* & & pnom_v(i,j) # endif #else cff=0.25_r8*(diff4(i,j,itrc)+diff4(i,j-1,itrc))* & & pnom_v(i,j) #endif #ifdef WET_DRY_NOT_YET cff=cff*vmask_wet(i,j) #endif #ifdef MASKING cff=cff*vmask(i,j) #endif #if defined TS_MIX_STABILITY !^ tl_FE(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !^ & (0.75_r8*(t(i,j ,k,nrhs,itrc)- & !^ & t(i,j-1,k,nrhs,itrc))+ & !^ & 0.25_r8*(t(i,j ,k,nstp,itrc)- & !^ & t(i,j-1,k,nstp,itrc)))+ & !^ & (Hz(i,j,k)+Hz(i,j-1,k))* & !^ & (0.75_r8*(tl_t(i,j ,k,nrhs,itrc)- & !^ & tl_t(i,j-1,k,nrhs,itrc))+ & !^ & 0.25_r8*(tl_t(i,j ,k,nstp,itrc)- & !^ & tl_t(i,j-1,k,nstp,itrc)))) !^ adfac=cff*ad_FE(i,j) adfac1=adfac*(0.75_r8*(t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc))+ & & 0.25_r8*(t(i,j ,k,nstp,itrc)- & & t(i,j-1,k,nstp,itrc))) adfac2=adfac*(Hz(i,j,k)+Hz(i,j-1,k)) adfac3=adfac2*0.75_r8 adfac4=adfac2*0.25_r8 ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_t(i,j-1,k,nrhs,itrc)=ad_t(i,j-1,k,nrhs,itrc)-adfac3 ad_t(i,j ,k,nrhs,itrc)=ad_t(i,j ,k,nrhs,itrc)+adfac3 ad_t(i,j-1,k,nstp,itrc)=ad_t(i,j-1,k,nstp,itrc)-adfac4 ad_t(i,j ,k,nstp,itrc)=ad_t(i,j ,k,nstp,itrc)+adfac4 ad_FE(i,j)=0.0_r8 #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN !^ tl_FE(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !^ & ((t(i,j ,k,nrhs,itrc)- & !^ & tclm(i,j ,k,itrc))- & !^ & (t(i,j-1,k,nrhs,itrc)- & !^ & tclm(i,j-1,k,itrc)))+ & !^ & (Hz(i,j,k)+Hz(i,j-1,k))* & !^ & (tl_t(i,j ,k,nrhs,itrc)- & !^ & tl_t(i,j-1,k,nrhs,itrc))) !^ adfac=cff*ad_FE(i,j) adfac1=adfac*((t(i,j ,k,nrhs,itrc)- & & tclm(i,j ,k,itrc))- & & (t(i,j-1,k,nrhs,itrc)- & & tclm(i,j-1,k,itrc))) adfac2=adfac*(Hz(i,j,k)+Hz(i,j-1,k)) ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_t(i,j-1,k,nrhs,itrc)=ad_t(i,j-1,k,nrhs,itrc)-adfac2 ad_t(i,j ,k,nrhs,itrc)=ad_t(i,j ,k,nrhs,itrc)+adfac2 ad_FE(i,j)=0.0_r8 ELSE !^ tl_FE(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !^ & (t(i,j ,k,nrhs,itrc)- & !^ & t(i,j-1,k,nrhs,itrc))+ & !^ & (Hz(i,j,k)+Hz(i,j-1,k))* & !^ & (tl_t(i,j ,k,nrhs,itrc)- & !^ & tl_t(i,j-1,k,nrhs,itrc))) !^ adfac=cff*ad_FE(i,j) adfac1=adfac*(t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc)) adfac2=adfac*(Hz(i,j,k)+Hz(i,j-1,k)) ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_t(i,j-1,k,nrhs,itrc)=ad_t(i,j-1,k,nrhs,itrc)-adfac2 ad_t(i,j ,k,nrhs,itrc)=ad_t(i,j ,k,nrhs,itrc)+adfac2 ad_FE(i,j)=0.0_r8 END IF #else !^ tl_FE(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !^ & (t(i,j ,k,nrhs,itrc)- & !^ & t(i,j-1,k,nrhs,itrc))+ & !^ & (Hz(i,j,k)+Hz(i,j-1,k))* & !^ & (tl_t(i,j ,k,nrhs,itrc)- & !^ & tl_t(i,j-1,k,nrhs,itrc))) !^ adfac=cff*ad_FE(i,j) adfac1=adfac*(t(i,j ,k,nrhs,itrc)- & & t(i,j-1,k,nrhs,itrc)) adfac2=adfac*(Hz(i,j,k)+Hz(i,j-1,k)) ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_t(i,j-1,k,nrhs,itrc)=ad_t(i,j-1,k,nrhs,itrc)-adfac2 ad_t(i,j ,k,nrhs,itrc)=ad_t(i,j ,k,nrhs,itrc)+adfac2 ad_FE(i,j)=0.0_r8 #endif END DO END DO DO j=Jmin,Jmax DO i=Imin,Imax+1 #ifdef DIFF_3DCOEF # ifdef TS_U3ADV_SPLIT_NOT_YET cff=0.5_r8*diff3d_u(i,j,k)*pmon_u(i,j) # else cff=0.25_r8*(diff3d_r(i,j,k)+diff3d_r(i-1,j,k))* & & pmon_u(i,j) # endif #else cff=0.25_r8*(diff4(i,j,itrc)+diff4(i-1,j,itrc))* & & pmon_u(i,j) #endif #ifdef WET_DRY_NOT_YET cff=cff*umask_wet(i,j) #endif #ifdef MASKING cff=cff*umask(i,j) #endif #if defined TS_MIX_STABILITY !^ tl_FX(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !^ & (0.75_r8*(t(i ,j,k,nrhs,itrc)- & !^ & t(i-1,j,k,nrhs,itrc))+ & !^ & 0.25_r8*(t(i ,j,k,nstp,itrc)- & !^ & t(i-1,j,k,nstp,itrc)))+ & !^ & (Hz(i,j,k)+Hz(i-1,j,k))* & !^ & (0.75_r8*(tl_t(i ,j,k,nrhs,itrc)- & !^ & tl_t(i-1,j,k,nrhs,itrc))+ & !^ & 0.25_r8*(tl_t(i ,j,k,nstp,itrc)- & !^ & tl_t(i-1,j,k,nstp,itrc)))) !^ adfac=cff*ad_FX(i,j) adfac1=adfac*(0.75_r8*(t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc))+ & & 0.25_r8*(t(i ,j,k,nstp,itrc)- & & t(i-1,j,k,nstp,itrc))) adfac2=adfac*(Hz(i,j,k)+Hz(i-1,j,k)) adfac3=adfac2*0.75_r8 adfac4=adfac2*0.25_r8 ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_t(i-1,j,k,nrhs,itrc)=ad_t(i-1,j,k,nrhs,itrc)-adfac3 ad_t(i ,j,k,nrhs,itrc)=ad_t(i ,j,k,nrhs,itrc)+adfac3 ad_t(i-1,j,k,nstp,itrc)=ad_t(i-1,j,k,nstp,itrc)-adfac4 ad_t(i ,j,k,nstp,itrc)=ad_t(i ,j,k,nstp,itrc)+adfac4 ad_FX(i,j)=0.0_r8 #elif defined TS_MIX_CLIMA IF (LtracerCLM(itrc,ng)) THEN !^ tl_FX(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !^ & ((t(i ,j,k,nrhs,itrc)- & !^ & tclm(i ,j,k,itrc))- & !^ & (t(i-1,j,k,nrhs,itrc)- & !^ & tclm(i-1,j,k,itrc)))+ & !^ & (Hz(i,j,k)+Hz(i-1,j,k))* & !^ & (tl_t(i ,j,k,nrhs,itrc)- & !^ & tl_t(i-1,j,k,nrhs,itrc))) !^ adfac=cff*ad_FX(i,j) adfac1=adfac*((t(i ,j,k,nrhs,itrc)- & & tclm(i ,j,k,itrc))- & & (t(i-1,j,k,nrhs,itrc)- & & tclm(i-1,j,k,itrc))) adfac2=adfac*(Hz(i,j,k)+Hz(i-1,j,k)) ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_t(i-1,j,k,nrhs,itrc)=ad_t(i-1,j,k,nrhs,itrc)-adfac2 ad_t(i ,j,k,nrhs,itrc)=ad_t(i ,j,k,nrhs,itrc)+adfac2 ad_FX(i,j)=0.0_r8 ELSE !^ tl_FX(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !^ & (t(i ,j,k,nrhs,itrc)- & !^ & t(i-1,j,k,nrhs,itrc))+ & !^ & (Hz(i,j,k)+Hz(i-1,j,k))* & !^ & (tl_t(i ,j,k,nrhs,itrc)- & !^ & tl_t(i-1,j,k,nrhs,itrc))) !^ adfac=cff*ad_FX(i,j) adfac1=adfac*(t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc)) adfac2=adfac*(Hz(i,j,k)+Hz(i-1,j,k)) ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_t(i-1,j,k,nrhs,itrc)=ad_t(i-1,j,k,nrhs,itrc)-adfac2 ad_t(i ,j,k,nrhs,itrc)=ad_t(i ,j,k,nrhs,itrc)+adfac2 ad_FX(i,j)=0.0_r8 END IF #else !^ tl_FX(i,j)=cff* & !^ & ((tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !^ & (t(i ,j,k,nrhs,itrc)- & !^ & t(i-1,j,k,nrhs,itrc))+ & !^ & (Hz(i,j,k)+Hz(i-1,j,k))* & !^ & (tl_t(i ,j,k,nrhs,itrc)- & !^ & tl_t(i-1,j,k,nrhs,itrc))) !^ adfac=cff*ad_FX(i,j) adfac1=adfac*(t(i ,j,k,nrhs,itrc)- & & t(i-1,j,k,nrhs,itrc)) adfac2=adfac*(Hz(i,j,k)+Hz(i-1,j,k)) ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_t(i-1,j,k,nrhs,itrc)=ad_t(i-1,j,k,nrhs,itrc)-adfac2 ad_t(i ,j,k,nrhs,itrc)=ad_t(i ,j,k,nrhs,itrc)+adfac2 ad_FX(i,j)=0.0_r8 #endif END DO END DO END DO END DO ! RETURN END SUBROUTINE ad_t3dmix4_s_tile END MODULE ad_t3dmix4_mod