#undef DEBUG MODULE ad_step2d_mod ! !git $Id$ !svn $Id: ad_step2d_LF_AM3.h 1188 2023-08-03 19:26:47Z arango $ !======================================================================= ! ! ! Adjoint shallow-water primitive equations predictor (Leap-frog) ! ! and corrector (Adams-Moulton) time-stepping engine. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: ad_step2d ! CONTAINS ! !*********************************************************************** SUBROUTINE ad_step2d (ng, tile) !*********************************************************************** ! USE mod_param USE mod_ncparam #ifdef SOLVE3D USE mod_coupling #endif #ifdef DIAGNOSTICS_UV !! USE mod_diags #endif USE mod_forces USE mod_grid #if defined UV_VIS2 || defined UV_VIS4 || defined WEC_MELLOR USE mod_mixing #endif USE mod_ocean #if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET && \ defined SOLVE3D USE mod_sedbed #endif USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & __FILE__ ! #include "tile.h" #ifdef PROFILE CALL wclock_on (ng, iADM, 9, __LINE__, MyFile) #endif CALL ad_step2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & krhs(ng), kstp(ng), knew(ng), & #ifdef SOLVE3D & nstp(ng), nnew(ng), & #endif #ifdef MASKING & GRID(ng) % pmask, GRID(ng) % rmask, & & GRID(ng) % umask, GRID(ng) % vmask, & #endif #ifdef WET_DRY_NOT_YET & GRID(ng) % pmask_wet, GRID(ng) % pmask_full, & & GRID(ng) % rmask_wet, GRID(ng) % rmask_full, & & GRID(ng) % umask_wet, GRID(ng) % umask_full, & & GRID(ng) % vmask_wet, GRID(ng) % vmask_full, & # ifdef SOLVE3D & GRID(ng) % rmask_wet_avg, & # endif #endif & GRID(ng) % fomn, & & GRID(ng) % h, GRID(ng) % ad_h, & & GRID(ng) % om_u, GRID(ng) % om_v, & & GRID(ng) % on_u, GRID(ng) % on_v, & & GRID(ng) % omn, & & GRID(ng) % pm, GRID(ng) % pn, & #if defined CURVGRID && defined UV_ADV & GRID(ng) % dndx, GRID(ng) % dmde, & #endif #if defined UV_VIS2 || defined UV_VIS4 & GRID(ng) % pmon_r, GRID(ng) % pnom_r, & & GRID(ng) % pmon_p, GRID(ng) % pnom_p, & & GRID(ng) % om_r, GRID(ng) % on_r, & & GRID(ng) % om_p, GRID(ng) % on_p, & # ifdef UV_VIS2 & MIXING(ng) % visc2_p, MIXING(ng) % visc2_r,& # endif # ifdef UV_VIS4 & MIXING(ng) % visc4_p, MIXING(ng) % visc4_r,& # endif #endif #if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & SEDBED(ng) % ad_bed_thick, & #endif #ifdef WEC_MELLOR & MIXING(ng) % ad_rustr2d, & & MIXING(ng) % ad_rvstr2d, & & OCEAN(ng) % ad_rulag2d, & & OCEAN(ng) % ad_rvlag2d, & & OCEAN(ng) % ubar_stokes, & & OCEAN(ng) % ad_ubar_stokes, & & OCEAN(ng) % vbar_stokes, & & OCEAN(ng) % ad_vbar_stokes, & #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D & OCEAN(ng) % eq_tide, & & OCEAN(ng) % ad_eq_tide, & #endif #ifndef SOLVE3D & FORCES(ng) % ad_sustr, & & FORCES(ng) % ad_svstr, & & FORCES(ng) % ad_bustr, & & FORCES(ng) % ad_bvstr, & # ifdef ATM_PRESS & FORCES(ng) % Pair, & # endif #else # ifdef VAR_RHO_2D_NOT_YET & COUPLING(ng) % rhoA, & & COUPLING(ng) % ad_rhoA, & & COUPLING(ng) % rhoS, & & COUPLING(ng) % ad_rhoS, & # endif & COUPLING(ng) % ad_DU_avg1, & & COUPLING(ng) % ad_DU_avg2, & & COUPLING(ng) % ad_DV_avg1, & & COUPLING(ng) % ad_DV_avg2, & & COUPLING(ng) % Zt_avg1, & & COUPLING(ng) % ad_Zt_avg1, & & COUPLING(ng) % ad_rufrc, & & COUPLING(ng) % ad_rvfrc, & & OCEAN(ng) % ad_ru, & & OCEAN(ng) % ad_rv, & #endif #ifdef DIAGNOSTICS_UV !! & DIAGS(ng) % DiaU2wrk, DIAGS(ng) % DiaV2wrk,& !! & DIAGS(ng) % DiaRUbar, DIAGS(ng) % DiaRVbar,& # ifdef SOLVE3D !! & DIAGS(ng) % DiaU2int, DIAGS(ng) % DiaV2int,& !! & DIAGS(ng) % DiaRUfrc, DIAGS(ng) % DiaRVfrc,& # endif #endif #ifndef SOLVE3D & OCEAN(ng) % ad_ubar_sol, & & OCEAN(ng) % ad_vbar_sol, & & OCEAN(ng) % ad_zeta_sol, & #endif & OCEAN(ng) % rubar, OCEAN(ng) % ad_rubar,& & OCEAN(ng) % rvbar, OCEAN(ng) % ad_rvbar,& & OCEAN(ng) % rzeta, OCEAN(ng) % ad_rzeta,& & OCEAN(ng) % ubar, OCEAN(ng) % ad_ubar, & & OCEAN(ng) % vbar, OCEAN(ng) % ad_vbar, & & OCEAN(ng) % zeta, OCEAN(ng) % ad_zeta) #ifdef PROFILE CALL wclock_off (ng, iADM, 9, __LINE__, MyFile) #endif ! RETURN END SUBROUTINE ad_step2d ! !*********************************************************************** SUBROUTINE ad_step2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & #ifdef SOLVE3D & nstp, nnew, & #endif #ifdef MASKING & pmask, rmask, umask, vmask, & #endif #ifdef WET_DRY_NOT_YET & pmask_wet, pmask_full, & & rmask_wet, rmask_full, & & umask_wet, umask_full, & & vmask_wet, vmask_full, & # ifdef SOLVE3D & rmask_wet_avg, & # endif #endif & fomn, & & h, ad_h, & & om_u, om_v, on_u, on_v, omn, pm, pn, & #if defined CURVGRID && defined UV_ADV & dndx, dmde, & #endif #if defined UV_VIS2 || defined UV_VIS4 & pmon_r, pnom_r, pmon_p, pnom_p, & & om_r, on_r, om_p, on_p, & # ifdef UV_VIS2 & visc2_p, visc2_r, & # endif # ifdef UV_VIS4 & visc4_p, visc4_r, & # endif #endif #if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET & ad_bed_thick, & #endif #ifdef WEC_MELLOR & ad_rustr2d, ad_rvstr2d, & & ad_rulag2d, ad_rvlag2d, & & ubar_stokes, ad_ubar_stokes, & & vbar_stokes, ad_vbar_stokes, & #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D & eq_tide, ad_eq_tide, & #endif #ifndef SOLVE3D & ad_sustr, ad_svstr, & & ad_bustr, ad_bvstr, & # ifdef ATM_PRESS & Pair, & # endif #else # ifdef VAR_RHO_2D_NOT_YET & rhoA, ad_rhoA, rhoS, ad_rhoS, & # endif & ad_DU_avg1, ad_DU_avg2, & & ad_DV_avg1, ad_DV_avg2, & & Zt_avg1, ad_Zt_avg1, & & ad_rufrc, ad_rvfrc, & & ad_ru, ad_rv, & #endif #ifdef DIAGNOSTICS_UV !! & DiaU2wrk, DiaV2wrk, & !! & DiaRUbar, DiaRVbar, & # ifdef SOLVE3D !! & DiaU2int, DiaV2int, & !! & DiaRUfrc, DiaRVfrc, & # endif #endif #ifndef SOLVE3D & ad_ubar_sol, ad_vbar_sol, & & ad_zeta_sol, & #endif & rubar, ad_rubar, & & rvbar, ad_rvbar, & & rzeta, ad_rzeta, & & ubar, ad_ubar, & & vbar, ad_vbar, & & zeta, ad_zeta) !*********************************************************************** ! USE mod_param USE mod_clima USE mod_ncparam USE mod_scalars #if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET USE mod_sedbed #endif USE mod_sources ! USE ad_exchange_2d_mod USE exchange_2d_mod #ifdef DISTRIBUTE USE mp_exchange_mod, ONLY : ad_mp_exchange2d USE mp_exchange_mod, ONLY : mp_exchange2d #endif USE obc_volcons_mod USE ad_obc_volcons_mod USE ad_u2dbc_mod, ONLY : ad_u2dbc_tile USE ad_v2dbc_mod, ONLY : ad_v2dbc_tile USE ad_zetabc_mod, ONLY : ad_zetabc_tile #ifdef WET_DRY_NOT_YET !^ USE wetdry_mod, ONLY : wetdry_tile #endif ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: krhs, kstp, knew #ifdef SOLVE3D integer, intent(in) :: nstp, nnew #endif ! #ifdef ASSUMED_SHAPE # ifdef MASKING real(r8), intent(in) :: pmask(LBi:,LBj:) real(r8), intent(in) :: rmask(LBi:,LBj:) real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) # endif real(r8), intent(in) :: fomn(LBi:,LBj:) real(r8), intent(in) :: h(LBi:,LBj:) real(r8), intent(in) :: om_u(LBi:,LBj:) real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: on_v(LBi:,LBj:) real(r8), intent(in) :: omn(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) # if defined CURVGRID && defined UV_ADV real(r8), intent(in) :: dndx(LBi:,LBj:) real(r8), intent(in) :: dmde(LBi:,LBj:) # endif # if defined UV_VIS2 || defined UV_VIS4 real(r8), intent(in) :: pmon_r(LBi:,LBj:) real(r8), intent(in) :: pnom_r(LBi:,LBj:) real(r8), intent(in) :: pmon_p(LBi:,LBj:) real(r8), intent(in) :: pnom_p(LBi:,LBj:) real(r8), intent(in) :: om_r(LBi:,LBj:) real(r8), intent(in) :: on_r(LBi:,LBj:) real(r8), intent(in) :: om_p(LBi:,LBj:) real(r8), intent(in) :: on_p(LBi:,LBj:) # ifdef UV_VIS2 real(r8), intent(in) :: visc2_p(LBi:,LBj:) real(r8), intent(in) :: visc2_r(LBi:,LBj:) # endif # ifdef UV_VIS4 real(r8), intent(in) :: visc4_p(LBi:,LBj:) real(r8), intent(in) :: visc4_r(LBi:,LBj:) # endif # endif # ifdef WEC_MELLOR real(r8), intent(in) :: ubar_stokes(LBi:,LBj:) real(r8), intent(in) :: vbar_stokes(LBi:,LBj:) # endif real(r8), intent(in) :: rubar(LBi:,LBj:,:) real(r8), intent(in) :: rvbar(LBi:,LBj:,:) real(r8), intent(in) :: rzeta(LBi:,LBj:,:) real(r8), intent(in) :: ubar(LBi:,LBj:,:) real(r8), intent(in) :: vbar(LBi:,LBj:,:) real(r8), intent(in) :: zeta(LBi:,LBj:,:) # if defined TIDE_GENERATING_FORCES && !defined SOLVE3D real(r8), intent(in) :: eq_tide(LBi:,LBj:) # endif # if !defined SOLVE3D && defined ATM_PRESS real(r8), intent(in) :: Pair(LBi:,LBj:) # endif # ifdef SOLVE3D # if defined VAR_RHO_2D_NOT_YET real(r8), intent(in) :: rhoA(LBi:,LBj:) real(r8), intent(in) :: rhoS(LBi:,LBj:) # endif real(r8), intent(in) :: Zt_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_DU_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_DU_avg2(LBi:,LBj:) real(r8), intent(inout) :: ad_DV_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_DV_avg2(LBi:,LBj:) real(r8), intent(inout) :: ad_Zt_avg1(LBi:,LBj:) # if defined VAR_RHO_2D_NOT_YET real(r8), intent(inout) :: ad_rhoA(LBi:,LBj:) real(r8), intent(inout) :: ad_rhoS(LBi:,LBj:) # endif real(r8), intent(inout) :: ad_rufrc(LBi:,LBj:) real(r8), intent(inout) :: ad_rvfrc(LBi:,LBj:) real(r8), intent(inout) :: ad_ru(LBi:,LBj:,0:,:) real(r8), intent(inout) :: ad_rv(LBi:,LBj:,0:,:) # else real(r8), intent(inout) :: ad_sustr(LBi:,LBj:) real(r8), intent(inout) :: ad_svstr(LBi:,LBj:) real(r8), intent(inout) :: ad_bustr(LBi:,LBj:) real(r8), intent(inout) :: ad_bvstr(LBi:,LBj:) # endif # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET real(r8), intent(inout) :: ad_bed_thick(LBi:,LBj:,:) # endif # if defined TIDE_GENERATING_FORCES && !defined SOLVE3D real(r8), intent(inout) :: ad_eq_tide(LBi:,LBj:) # endif # ifdef WEC_MELLOR real(r8), intent(inout) :: ad_rustr2d(LBi:,LBj:) real(r8), intent(inout) :: ad_rvstr2d(LBi:,LBj:) real(r8), intent(inout) :: ad_rulag2d(LBi:,LBj:) real(r8), intent(inout) :: ad_rvlag2d(LBi:,LBj:) real(r8), intent(inout) :: ad_ubar_stokes(LBi:,LBj:) real(r8), intent(inout) :: ad_vbar_stokes(LBi:,LBj:) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(inout) :: pmask_full(LBi:,LBj:) real(r8), intent(inout) :: rmask_full(LBi:,LBj:) real(r8), intent(inout) :: umask_full(LBi:,LBj:) real(r8), intent(inout) :: vmask_full(LBi:,LBj:) real(r8), intent(inout) :: pmask_wet(LBi:,LBj:) real(r8), intent(inout) :: rmask_wet(LBi:,LBj:) real(r8), intent(inout) :: umask_wet(LBi:,LBj:) real(r8), intent(inout) :: vmask_wet(LBi:,LBj:) # ifdef SOLVE3D real(r8), intent(inout) :: rmask_wet_avg(LBi:,LBj:) # endif # endif # ifdef DIAGNOSTICS_UV !! real(r8), intent(inout) :: DiaU2wrk(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaV2wrk(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaRUbar(LBi:,LBj:,:,:) !! real(r8), intent(inout) :: DiaRVbar(LBi:,LBj:,:,:) # ifdef SOLVE3D !! real(r8), intent(inout) :: DiaU2int(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaV2int(LBi:,LBj:,:) !! real(r8), intent(inout) :: DiaRUfrc(LBi:,LBj:,:,:) !! real(r8), intent(inout) :: DiaRVfrc(LBi:,LBj:,:,:) # endif # endif real(r8), intent(inout) :: ad_h(LBi:,LBj:) real(r8), intent(inout) :: ad_rubar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_rvbar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_rzeta(LBi:,LBj:,:) real(r8), intent(inout) :: ad_ubar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_vbar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_zeta(LBi:,LBj:,:) # ifndef SOLVE3D real(r8), intent(out) :: ad_ubar_sol(LBi:,LBj:) real(r8), intent(out) :: ad_vbar_sol(LBi:,LBj:) real(r8), intent(out) :: ad_zeta_sol(LBi:,LBj:) # endif #else # ifdef MASKING real(r8), intent(in) :: pmask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rmask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: umask(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vmask(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: fomn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: h(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_u(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_v(LBi:UBi,LBj:UBj) real(r8), intent(in) :: omn(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pm(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pn(LBi:UBi,LBj:UBj) # if defined CURVGRID && defined UV_ADV real(r8), intent(in) :: dndx(LBi:UBi,LBj:UBj) real(r8), intent(in) :: dmde(LBi:UBi,LBj:UBj) # endif # if defined UV_VIS2 || defined UV_VIS4 real(r8), intent(in) :: pmon_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pnom_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pmon_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: pnom_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_r(LBi:UBi,LBj:UBj) real(r8), intent(in) :: om_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: on_p(LBi:UBi,LBj:UBj) # ifdef UV_VIS2 real(r8), intent(in) :: visc2_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: visc2_r(LBi:UBi,LBj:UBj) # endif # ifdef UV_VIS4 real(r8), intent(in) :: visc4_p(LBi:UBi,LBj:UBj) real(r8), intent(in) :: visc4_r(LBi:UBi,LBj:UBj) # endif # endif # if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET real(r8), intent(inout) :: ad_bed_thick(LBi:UBi,LBj:UBj,3) # endif # if defined TIDE_GENERATING_FORCES && !defined SOLVE3D real(r8), intent(in) :: eq_tide(LBi:UBi,LBj:UBj) # endif # ifdef WEC_MELLOR real(r8), intent(in) :: ubar_stokes(LBi:UBi,LBj:UBj) real(r8), intent(in) :: vbar_stokes(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: rubar(LBi:UBi,LBj:UBj,2) real(r8), intent(in) :: rvbar(LBi:UBi,LBj:UBj,2) real(r8), intent(in) :: rzeta(LBi:UBi,LBj:UBj,2) real(r8), intent(in) :: ubar(LBi:UBi,LBj:UBj,:) real(r8), intent(in) :: vbar(LBi:UBi,LBj:UBj,:) real(r8), intent(in) :: zeta(LBi:UBi,LBj:UBj,:) # if !defined SOLVE3D && defined ATM_PRESS real(r8), intent(in) :: Pair(LBi:UBi,LBj:UBj) # endif # ifdef SOLVE3D # ifdef VAR_RHO_2D_NOT_YET real(r8), intent(in) :: rhoA(LBi:UBi,LBj:UBj) real(r8), intent(in) :: rhoS(LBi:UBi,LBj:UBj) # endif real(r8), intent(in) :: Zt_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_DU_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_DU_avg2(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_DV_avg1(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_DV_avg2(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_Zt_avg1(LBi:UBi,LBj:UBj) # if defined VAR_RHO_2D_NOT_YET real(r8), intent(inout) :: ad_rhoA(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_rhoS(LBi:UBi,LBj:UBj) # endif real(r8), intent(inout) :: ad_rufrc(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_rvfrc(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_ru(LBi:UBi,LBj:UBj,0:UBk,2) real(r8), intent(inout) :: ad_rv(LBi:UBi,LBj:UBj,0:UBk,2) # else real(r8), intent(inout) :: ad_sustr(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_svstr(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_bustr(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_bvstr(LBi:UBi,LBj:UBj) # endif # ifdef WEC_MELLOR real(r8), intent(inout) :: ad_rustr2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_rvstr2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_rulag2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_rvlag2d(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_ubar_stokes(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_vbar_stokes(LBi:UBi,LBj:UBj) # endif # if defined TIDE_GENERATING_FORCES && !defined SOLVE3D real(r8), intent(inout) :: ad_eq_tide(LBi:UBi,LBj:UBj) # endif # ifdef WET_DRY_NOT_YET real(r8), intent(inout) :: pmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: umask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: vmask_full(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: pmask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: rmask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: umask_wet(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: vmask_wet(LBi:UBi,LBj:UBj) # ifdef SOLVE3D real(r8), intent(inout) :: rmask_wet_avg(LBi:UBi,LBj:UBj) # endif # endif # ifdef DIAGNOSTICS_UV !! real(r8), intent(inout) :: DiaU2wrk(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaV2wrk(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaRUbar(LBi:UBi,LBj:UBj,2,NDM2d-1) !! real(r8), intent(inout) :: DiaRVbar(LBi:UBi,LBj:UBj,2,NDM2d-1) # ifdef SOLVE3D !! real(r8), intent(inout) :: DiaU2int(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaV2int(LBi:UBi,LBj:UBj,NDM2d) !! real(r8), intent(inout) :: DiaRUfrc(LBi:UBi,LBj:UBj,3,NDM2d-1) !! real(r8), intent(inout) :: DiaRVfrc(LBi:UBi,LBj:UBj,3,NDM2d-1) # endif # endif real(r8), intent(inout) :: ad_h(LBi:UBi,LBj:UBj) real(r8), intent(inout) :: ad_rubar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: ad_rvbar(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: ad_rzeta(LBi:UBi,LBj:UBj,2) real(r8), intent(inout) :: ad_ubar(LBi:UBi,LBj:UBj,:) real(r8), intent(inout) :: ad_vbar(LBi:UBi,LBj:UBj,:) real(r8), intent(inout) :: ad_zeta(LBi:UBi,LBj:UBj,:) # ifndef SOLVE3D real(r8), intent(out) :: ad_ubar_sol(LBi:UBi,LBj:UBj) real(r8), intent(out) :: ad_vbar_sol(LBi:UBi,LBj:UBj) real(r8), intent(out) :: ad_zeta_sol(LBi:UBi,LBj:UBj) # endif #endif ! ! Local variable declarations. ! logical :: CORRECTOR_2D_STEP ! integer :: i, is, j, ptsk #ifdef DIAGNOSTICS_UV !! integer :: idiag #endif ! real(r8) :: cff, cff1, cff2, cff3, cff4, cff5, cff6, cff7 real(r8) :: fac, fac1, fac2, fac3 real(r8) :: ad_cff, ad_cff1, ad_cff2, ad_cff3, ad_cff4 real(r8) :: ad_fac, ad_fac1 real(r8) :: adfac, adfac1, adfac2, adfac3, adfac4 ! real(r8), parameter :: IniVal = 0.0_r8 ! real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dgrad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dnew real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Drhs real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Drhs_p real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Dstp real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DUon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DVom #ifdef WEC_MELLOR real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DUSon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: DVSom #endif #ifdef UV_VIS4 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapU real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: LapV real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: UFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: UFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: VFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: VFx #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzeta2 #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gzetaSA #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_ubar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_vbar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: rhs_zeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: zeta_new real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: zwrk #ifdef WET_DRY_NOT_YET !^ real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: wetdry #endif #ifdef DIAGNOSTICS_UV !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Uwrk !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Vwrk !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS, !! & NDM2d-1) :: DiaU2rhs !! real(r8), dimension(IminS:ImaxS,JminS:JmaxS, !! & NDM2d-1) :: DiaV2rhs #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_Dgrad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_Dnew real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_Drhs real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_Drhs_p real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_Dstp real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_DUon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_DVom #ifdef WEC_MELLOR real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_DUSon real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_DVSom #endif #ifdef UV_VIS4 real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_LapU real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_LapV #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_UFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_UFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_VFe real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_VFx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_gzeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_gzeta2 #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_gzetaSA #endif real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_rhs_ubar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_rhs_vbar real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_rhs_zeta real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_zeta_new real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_zwrk #ifdef WET_DRY_NOT_YET !^ real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_wetdry #endif #include "set_bounds.h" ! ptsk=3-kstp CORRECTOR_2D_STEP=.not.PREDICTOR_2D_STEP(ng) #ifdef DEBUG WRITE (21,20) iic(ng), CORRECTOR_2D_STEP, & & kstp, krhs, knew, ptsk 20 FORMAT (' iic = ',i5.5,' corrector = ',l1,' kstp = ',i1, & & ' krhs = ',i1,' knew = ',i1,' ptsk = ',i1) #endif ! !----------------------------------------------------------------------- ! Initialize adjoint private variables. !----------------------------------------------------------------------- ! ad_cff=IniVal ad_cff1=IniVal ad_cff2=IniVal ad_cff3=IniVal ad_cff4=IniVal ad_fac=IniVal ad_fac1=IniVal DO j=JminS,JmaxS DO i=IminS,ImaxS ad_Dgrad(i,j)=IniVal ad_Dnew(i,j)=IniVal ad_Drhs(i,j)=IniVal ad_Drhs_p(i,j)=IniVal ad_Dstp(i,j)=IniVal ad_DUon(i,j)=IniVal ad_DVom(i,j)=IniVal #ifdef WEC_MELLOR ad_DUSon(i,j)=IniVal ad_DVSom(i,j)=IniVal #endif #ifdef UV_VIS4 ad_LapU(i,j)=IniVal ad_LapV(i,j)=IniVal #endif ad_UFe(i,j)=IniVal ad_UFx(i,j)=IniVal ad_VFe(i,j)=IniVal ad_VFx(i,j)=IniVal ad_grad(i,j)=IniVal ad_gzeta(i,j)=IniVal ad_gzeta2(i,j)=IniVal #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D ad_gzetaSA(i,j)=IniVal #endif ad_rhs_ubar(i,j)=IniVal ad_rhs_vbar(i,j)=IniVal ad_rhs_zeta(i,j)=IniVal ad_zeta_new(i,j)=IniVal ad_zwrk(i,j)=IniVal ad_DUon(i,j)=IniVal ad_DVom(i,j)=IniVal #ifdef INITIALIZE_AUTOMATIC Dgrad(i,j)=IniVal Dnew(i,j)=IniVal Drhs(i,j)=IniVal Drhs_p(i,j)=IniVal Dstp(i,j)=IniVal DUon(i,j)=IniVal DVom(i,j)=IniVal # ifdef WEC_MELLOR DUSon(i,j)=IniVal DVSom(i,j)=IniVal # endif # ifdef UV_VIS4 LapU(i,j)=IniVal LapV(i,j)=IniVal UFe(i,j)=IniVal UFx(i,j)=IniVal VFe(i,j)=IniVal VFx(i,j)=IniVal # endif grad(i,j)=IniVal gzeta(i,j)=IniVal gzeta2(i,j)=IniVal # if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D gzetaSA(i,j)=IniVal # endif rhs_ubar(i,j)=IniVal rhs_vbar(i,j)=IniVal rhs_zeta(i,j)=IniVal zeta_new(i,j)=IniVal zwrk(i,j)=IniVal #endif END DO END DO ! !----------------------------------------------------------------------- ! Compute BASIC STATE total depth (m) arrays and vertically ! integerated mass fluxes. !----------------------------------------------------------------------- ! #ifdef DISTRIBUTE ! In distributed-memory, the I- and J-ranges are different and a ! special exchange is done to avoid having three ghost points for ! high order numerical stencils. Notice that a private array is ! passed below to the exchange routine. It also applies periodic ! boundary conditions, if appropriate and no partitions in I- or ! J-directions. ! DO j=JstrV-2,Jendp2 DO i=IstrU-2,Iendp2 Dnew(i,j)=zeta(i,j,knew)+h(i,j) Drhs(i,j)=zeta(i,j,krhs)+h(i,j) Dstp(i,j)=zeta(i,j,kstp)+h(i,j) END DO END DO DO j=JstrV-2,Jendp2 DO i=IstrU-1,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) DUon(i,j)=ubar(i,j,krhs)*cff1 # ifdef WEC_MELLOR DUSon(i,j)=ubar_stokes(i,j)*cff1 DUon(i,j)=DUon(i,j)+DUSon(i,j) # endif END DO END DO DO j=JstrV-1,Jendp2 DO i=IstrU-2,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) DVom(i,j)=vbar(i,j,krhs)*cff1 # ifdef WEC_MELLOR DVSom(i,j)=vbar_stokes(i,j)*cff1 DVom(i,j)=DVom(i,j)+DVSom(i,j) # endif END DO END DO IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL exchange_u2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & DUon) CALL exchange_v2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & DVom) END IF CALL mp_exchange2d (ng, tile, iADM, 2, & & IminS, ImaxS, JminS, JmaxS, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & DUon, DVom) #else DO j=JstrVm2-1,Jendp2 DO i=IstrUm2-1,Iendp2 Dnew(i,j)=zeta(i,j,knew)+h(i,j) Drhs(i,j)=zeta(i,j,krhs)+h(i,j) Dstp(i,j)=zeta(i,j,kstp)+h(i,j) END DO END DO DO j=JstrVm2-1,Jendp2 DO i=IstrUm2,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) DUon(i,j)=ubar(i,j,krhs)*cff1 # ifdef WEC_MELLOR DUSon(i,j)=ubar_stokes(i,j)*cff1 DUon(i,j)=DUon(i,j)+DUSon(i,j) # endif END DO END DO DO j=JstrVm2,Jendp2 DO i=IstrUm2-1,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) DVom(i,j)=vbar(i,j,krhs)*cff1 # ifdef WEC_MELLOR DVSom(i,j)=vbar_stokes(i,j)*cff1 DVom(i,j)=DVom(i,j)+DVSom(i,j) # endif END DO END DO #endif ! ! Compute integral mass flux across open boundaries and adjust ! for volume conservation. Compute BASIC STATE value. ! This must be computed here instead of below. ! IF (ANY(ad_VolCons(:,ng))) THEN CALL obc_flux_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & knew, & # ifdef MASKING & umask, vmask, & # endif & h, om_v, on_u, & & ubar, vbar, zeta) ! ! Set vertically integrated mass fluxes DUon and DVom along the open ! boundaries in such a way that the integral volume is conserved. ! CALL set_DUV_bc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, & # ifdef MASKING & umask, vmask, & # endif & om_v, on_u, & & ubar, vbar, & & Drhs, DUon, DVom) END IF #if defined UV_VIS2 || defined UV_VIS4 ! ! Compute BASIC state depths at PSI-points for viscosity. ! # ifdef UV_VIS4 DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 # else DO j=Jstr,Jend+1 DO i=Istr,Iend+1 # endif Drhs_p(i,j)=0.25_r8*(Drhs(i,j )+Drhs(i-1,j )+ & & Drhs(i,j-1)+Drhs(i-1,j-1)) END DO END DO #endif !! !! Since the BASIC STATE is not recomputed, set right-hand-side !! terms. !! !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! rhs_ubar(i,j)=rubar(i,j,1) !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! rhs_vbar(i,j)=rvbar(i,j,1) !! END DO !! END DO ! ! Initialize BASIC STATE right-hand-side terms. ! DO j=Jstr,Jend DO i=Istr,Iend rhs_ubar(i,j)=0.0_r8 rhs_vbar(i,j)=0.0_r8 END DO END DO ! ! Do not perform the actual time stepping during the auxiliary ! (nfast(ng)+1) time step. ! STEP_LOOP : IF (iif(ng).le.nfast(ng)) THEN ! !----------------------------------------------------------------------- ! Exchange boundary information. !----------------------------------------------------------------------- ! #ifdef DISTRIBUTE !^ CALL mp_exchange2d (ng, tile, iTLM, 2, & !^ & LBi, UBi, LBj, UBj, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_ubar(:,:,knew), & !^ & tl_vbar(:,:,knew)) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_ubar(:,:,knew), & & ad_vbar(:,:,knew)) ! #endif IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !^ CALL exchange_v2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_vbar(:,:,knew)) !^ CALL ad_exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_vbar(:,:,knew)) !^ CALL exchange_u2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_ubar(:,:,knew)) !^ CALL ad_exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_ubar(:,:,knew)) END IF ! !----------------------------------------------------------------------- ! Apply adjoint momentum transport point sources (like river runoff), ! if any. !----------------------------------------------------------------------- ! IF (LuvSrc(ng)) THEN DO is=1,Nsrc(ng) i=SOURCES(ng)%Isrc(is) j=SOURCES(ng)%Jsrc(is) IF (((IstrR.le.i).and.(i.le.IendR)).and. & & ((JstrR.le.j).and.(j.le.JendR))) THEN IF (INT(SOURCES(ng)%Dsrc(is)).eq.0) THEN cff=1.0_r8/(on_u(i,j)* & & 0.5_r8*(zeta(i-1,j,knew)+h(i-1,j)+ & & zeta(i ,j,knew)+h(i ,j))) !^ tl_ubar(i,j,knew)=SOURCES(ng)%tl_Qbar(is)*cff+ & !^ & SOURCES(ng)%Qbar(is)*tl_cff !^ SOURCES(ng)%ad_Qbar(is)=SOURCES(ng)%ad_Qbar(is)+ & & cff*ad_ubar(i,j,knew) ad_cff=ad_cff+ & & SOURCES(ng)%Qbar(is)*ad_ubar(i,j,knew) ad_ubar(i,j,knew)=0.0_r8 !^ tl_cff=-cff*cff*on_u(i,j)* & !^ & 0.5_r8*(tl_zeta(i-1,j,knew)+tl_h(i-1,j)+ & !^ & tl_zeta(i ,j,knew)+tl_h(i ,j)) !^ adfac=-cff*cff*on_u(i,j)*0.5_r8*ad_cff ad_h(i-1,j)=ad_h(i-1,j)+adfac ad_h(i ,j)=ad_h(i ,j)+adfac ad_zeta(i-1,j,knew)=ad_zeta(i-1,j,knew)+adfac ad_zeta(i ,j,knew)=ad_zeta(i ,j,knew)+adfac ad_cff=0.0_r8 ELSE IF (INT(SOURCES(ng)%Dsrc(is)).eq.1) THEN cff=1.0_r8/(om_v(i,j)* & & 0.5_r8*(zeta(i,j-1,knew)+h(i,j-1)+ & & zeta(i,j ,knew)+h(i,j ))) !^ tl_vbar(i,j,knew)=SOURCES(ng)%tl_Qbar(is)*cff+ & !^ & SOURCES(ng)%Qbar(is)*tl_cff !^ SOURCES(ng)%ad_Qbar(is)=SOURCES(ng)%ad_Qbar(is)+ & & cff*ad_vbar(i,j,knew) ad_cff=ad_cff+ & & SOURCES(ng)%Qbar(is)*ad_vbar(i,j,knew) ad_vbar(i,j,knew)=0.0_r8 !^ tl_cff=-cff*cff*om_v(i,j)* & !^ & 0.5_r8*(tl_zeta(i,j-1,knew)+tl_h(i,j-1)+ & !^ & tl_zeta(i,j ,knew)+tl_h(i,j )) !^ adfac=-cff*cff*om_v(i,j)*0.5_r8*ad_cff ad_h(i,j-1)=ad_h(i,j-1)+adfac ad_h(i,j )=ad_h(i,j )+adfac ad_zeta(i,j-1,knew)=ad_zeta(i,j-1,knew)+adfac ad_zeta(i,j ,knew)=ad_zeta(i,j ,knew)+adfac ad_cff=0.0_r8 END IF END IF END DO END IF ! !----------------------------------------------------------------------- ! Apply adjoint lateral boundary conditions. !----------------------------------------------------------------------- ! ! Compute integral mass flux across open boundaries and adjust ! for adjoint volume conservation. ! IF (ANY(ad_VolCons(:,ng))) THEN !^ CALL tl_obc_flux_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & knew, & # ifdef MASKING !^ & umask, vmask, & # endif !^ & h, tl_h, om_v, on_u, & !^ & ubar, vbar, zeta, & !^ & tl_ubar, tl_vbar, tl_zeta) !^ CALL ad_obc_flux_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & knew, & # ifdef MASKING & umask, vmask, & # endif & h, ad_h, om_v, on_u, & & ubar, vbar, zeta, & & ad_ubar, ad_vbar, ad_zeta) END IF ! ! Adjoint lateral boundary conditons. ! !^ CALL tl_v2dbc_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & krhs, kstp, knew, & !^ & ubar, vbar, zeta, & !^ & tl_ubar, tl_vbar, tl_zeta) !^ CALL ad_v2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & ubar, vbar, zeta, & & ad_ubar, ad_vbar, ad_zeta) !^ CALL tl_u2dbc_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & krhs, kstp, knew, & !^ & ubar, vbar, zeta, & !^ & tl_ubar, tl_vbar, tl_zeta) !^ CALL ad_u2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & ubar, vbar, zeta, & & ad_ubar, ad_vbar, ad_zeta) ! ! If predictor step, load right-side-term into shared arrays for ! future use during the subsequent corrector step. ! IF (PREDICTOR_2D_STEP(ng)) THEN #ifdef DIAGNOSTICS_UV !! DO idiag=1,NDM2d-1 !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaRUbar(i,j,krhs,idiag)=DiaU2rhs(i,j,idiag) !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaRVbar(i,j,krhs,idiag)=DiaV2rhs(i,j,idiag) !! END DO !! END DO !! END DO #endif DO j=JstrV,Jend DO i=Istr,Iend !^ tl_rvbar(i,j,krhs)=tl_rhs_vbar(i,j) !^ ad_rhs_vbar(i,j)=ad_rhs_vbar(i,j)+ad_rvbar(i,j,krhs) ad_rvbar(i,j,krhs)=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend !^ tl_rubar(i,j,krhs)=tl_rhs_ubar(i,j) !^ ad_rhs_ubar(i,j)=ad_rhs_ubar(i,j)+ad_rubar(i,j,krhs) ad_rubar(i,j,krhs)=0.0_r8 END DO END DO END IF #ifdef DIAGNOSTICS_UV !! !!----------------------------------------------------------------------- !! Time step 2D momentum diagnostic terms. !!----------------------------------------------------------------------- !! # ifdef SOLVE3D !! !! The arrays "DiaU2rhs" and "DiaV2rhs" contain the contributions of !! each of the 2D right-hand-side terms for the momentum equations. !! !! These values are integrated, time-stepped and converted to mass flux !! units (m3 s-1) for coupling with the 3D diagnostic terms. !! !! fac=weight(1,iif(ng),ng) !! IF (FIRST_2D_STEP.and.CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng) !! DO idiag=1,NDM2d-1 !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2wrk(i,j,idiag)=DiaV2int(i,j,idiag)* & !! & (pn(i,j)+pn(i,j-1))*fac !! DiaV2int(i,j,idiag)=cff1*DiaV2rhs(i,j,idiag) !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2wrk(i,j,idiag)=DiaU2int(i,j,idiag)* & !! & (pm(i-1,j)+pm(i,j))*fac !! DiaU2int(i,j,idiag)=cff1*DiaU2rhs(i,j,idiag) !! END DO !! END DO !! END DO !! ELSE IF (CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 !! cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 !! cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 !! DO idiag=1,NDM2d-1 !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2wrk(i,j,idiag)=DiaV2wrk(i,j,idiag)+ & !! & DiaV2int(i,j,idiag)* & !! & (pn(i,j)+pn(i,j-1))*fac !! DiaV2int(i,j,idiag)=DiaV2int(i,j,idiag)+ & !! & (cff1*DiaV2rhs(i,j,idiag)+ & !! & cff2*DiaRVbar(i,j,kstp,idiag)- & !! & cff3*DiaRVbar(i,j,ptsk,idiag)) !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2wrk(i,j,idiag)=DiaU2wrk(i,j,idiag)+ & !! & DiaU2int(i,j,idiag)* & !! & (pm(i-1,j)+pm(i,j))*fac !! DiaU2int(i,j,idiag)=DiaU2int(i,j,idiag)+ & !! & (cff1*DiaU2rhs(i,j,idiag)+ & !! & cff2*DiaRUbar(i,j,kstp,idiag)- & !! & cff3*DiaRUbar(i,j,ptsk,idiag)) !! END DO !! END DO !! END DO !! END IF # else !! !! Time-step the diagnostic terms. !! !! IF (FIRST_2D_STEP.and.CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng) !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2wrk(i,j,M2rate)=vbar(i,j,knew)-vbar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i,j-1))*fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2wrk(i,j,M2rate)=ubar(i,j,knew)-ubar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i-1,j))*fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! END DO !! END DO !! DO idiag=1,NDM2d-1 !! DO j=JstrV,Jend !! DO i=Istr,Iend !! cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) !! DiaV2wrk(i,j,idiag)=cff*cff1*DiaV2rhs(i,j,idiag)*fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) !! DiaU2wrk(i,j,idiag)=cff*cff1*DiaU2rhs(i,j,idiag)*fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! END DO !! END DO !! END DO !! ELSE IF (CORRECTOR_2D_STEP) THEN !! cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 !! cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 !! cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2wrk(i,j,M2rate)=vbar(i,j,knew)- & !! & vbar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i,j-1))*fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2wrk(i,j,M2rate)=ubar(i,j,knew)- & !! & ubar(i,j,kstp)* & !! & (Dstp(i,j)+Dstp(i-1,j))*fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! END DO !! END DO !! DO idiag=1,NDM2d-1 !! DO j=JstrV,Jend !! DO i=Istr,Iend !! cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) !! DiaV2wrk(i,j,idiag)=cff*(cff1*DiaV2rhs(i,j,idiag)+ & !! & cff2*DiaRVbar(i,j,kstp,idiag)- & !! & cff3*DiaRVbar(i,j,ptsk,idiag))*& !! & fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) !! END DO !! END DO !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) !! DiaU2wrk(i,j,idiag)=cff*(cff1*DiaU2rhs(i,j,idiag)+ & !! & cff2*DiaRUbar(i,j,kstp,idiag)- & !! & cff3*DiaRUbar(i,j,ptsk,idiag))*& !! & fac !! fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) !! END DO !! END DO !! END DO !! END IF # endif #endif ! !======================================================================= ! Time step adjoint 2D momentum equations. !======================================================================= #ifndef SOLVE3D ! ! Save 2D momentum adjoint solution for IO purposes. ! DO j=JstrR,JendR DO i=Istr,IendR ad_ubar_sol(i,j)=ad_ubar(i,j,knew) END DO IF (j.ge.Jstr) THEN DO i=IstrR,IendR ad_vbar_sol(i,j)=ad_vbar(i,j,knew) END DO END IF END DO #endif ! ! During the first time-step, the predictor step is Forward-Euler ! and the corrector step is Backward-Euler. Otherwise, the predictor ! step is Leap-frog and the corrector step is Adams-Moulton. #ifdef WET_DRY_NOT_YET ! HGA: This option is not fully adjointed yet. We need to resolve ! the issued time-dependent wet/dry mask arrays. #endif ! IF (FIRST_2D_STEP) THEN cff1=0.5_r8*dtfast(ng) #ifdef WET_DRY_NOT_YET cff2=1.0_r8/cff1 #endif DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) #ifdef WET_DRY_NOT_YET fac1=cff2/cff !^ tl_rhs_vbar(i,j)=(tl_vbar(i,j,knew)* & !^ & (Dnew(i,j)+Dnew(i,j-1))+ & !^ & vbar(i,j,knew)* & !^ & (tl_Dnew(i,j)+tl_Dnew(i,j-1))- & !^ & tl_vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))- & !^ & vbar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i,j-1)))*fac1 !^ adfac=fac1*ad_rhs_vbar(i,j) adfac1=adfac*vbar(i,j,knew) adfac2=adfac*vbar(i,j,kstp) ad_vbar(i,j,knew)=ad_vbar(i,j,knew)+ & & (Dnew(i,j)+Dnew(i,j-1))*adfac ad_vbar(i,j,kstp)=ad_vbar(i,j,kstp)- & & (Dstp(i,j)+Dstp(i,j-1))*adfac ad_Dnew(i,j-1)=ad_Dnew(i,j-1)+adfac1 ad_Dnew(i,j )=ad_Dnew(i,j )+adfac1 ad_Dstp(i,j-1)=ad_Dstp(i,j-1)-adfac2 ad_Dstp(i,j )=ad_Dstp(i,j )-adfac2 ad_rhs_vbar(i,j)=0.0_r8 !^ !^ cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) !^ cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) !^ cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !^ vbar(i,j,knew)=vbar(i,j,knew)*cff7 !^ !^ HGA: ADM code needed here for the above NLM code. !^ #endif #ifdef MASKING !^ tl_vbar(i,j,knew)=tl_vbar(i,j,knew)*vmask(i,j) !^ ad_vbar(i,j,knew)=ad_vbar(i,j,knew)*vmask(i,j) #endif !^ tl_vbar(i,j,knew)=(tl_vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))+ & !^ & vbar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i,j-1))+ & !^ & cff*cff1*tl_rhs_vbar(i,j))*fac+ & !^ & (vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))+ & !^ & cff*cff1*rhs_vbar(i,j))*tl_fac !^ adfac=fac*ad_vbar(i,j,knew) adfac1=adfac*(Dstp(i,j)+Dstp(i,j-1)) adfac2=adfac*cff*cff1 adfac3=adfac*vbar(i,j,kstp) ad_vbar(i,j,kstp)=ad_vbar(i,j,kstp)+adfac1 ad_rhs_vbar(i,j)=ad_rhs_vbar(i,j)+adfac2 ad_Dstp(i,j-1)=ad_Dstp(i,j-1)+adfac3 ad_Dstp(i,j )=ad_Dstp(i,j )+adfac3 ad_fac=ad_fac+ & & (vbar(i,j,kstp)*(Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*ad_vbar(i,j,knew) ad_vbar(i,j,knew)=0.0_r8 !^ tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i,j-1)) !^ adfac=-fac*fac*ad_fac ad_Dnew(i,j-1)=ad_Dnew(i,j-1)+adfac ad_Dnew(i,j )=ad_Dnew(i,j )+adfac ad_fac=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) #ifdef WET_DRY_NOT_YET fac1=cff2/cff !^ tl_rhs_ubar(i,j)=(tl_ubar(i,j,knew)* & !^ & (Dnew(i,j)+Dnew(i-1,j))+ & !^ & ubar(i,j,knew)* & !^ & (tl_Dnew(i,j)+tl_Dnew(i-1,j))- & !^ & tl_ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))- & !^ & ubar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i-1,j)))*fac1 !^ adfac=fac1*ad_rhs_ubar(i,j) adfac1=adfac*ubar(i,j,knew) adfac2=adfac*ubar(i,j,kstp) ad_ubar(i,j,knew)=ad_ubar(i,j,knew)+ & & (Dnew(i,j)+Dnew(i-1,j))*adfac ad_ubar(i,j,kstp)=ad_ubar(i,j,kstp)- & & (Dstp(i,j)+Dstp(i-1,j))*adfac ad_Dnew(i-1,j)=ad_Dnew(i-1,j)+adfac1 ad_Dnew(i ,j)=ad_Dnew(i ,j)+adfac1 ad_Dstp(i-1,j)=ad_Dstp(i-1,j)-adfac2 ad_Dstp(i ,j)=ad_Dstp(i ,j)-adfac2 ad_rhs_ubar(i,j)=0.0_r8 !^ !^ cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) !^ cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) !^ cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !^ ubar(i,j,knew)=ubar(i,j,knew)*cff7 !^ !^ HGA: ADM code needed here for the above NLM code. !^ #endif #ifdef MASKING !^ tl_ubar(i,j,knew)=tl_ubar(i,j,knew)*umask(i,j) !^ ad_ubar(i,j,knew)=ad_ubar(i,j,knew)*umask(i,j) #endif !^ tl_ubar(i,j,knew)=(tl_ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))+ & !^ & ubar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i-1,j))+ & !^ & cff*cff1*tl_rhs_ubar(i,j))*fac+ & !^ & (ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))+ & !^ & cff*cff1*rhs_ubar(i,j))*tl_fac !^ adfac=fac*ad_ubar(i,j,knew) adfac1=adfac*(Dstp(i,j)+Dstp(i-1,j)) adfac2=adfac*cff*cff1 adfac3=adfac*ubar(i,j,kstp) ad_ubar(i,j,kstp)=ad_ubar(i,j,kstp)+adfac1 ad_rhs_ubar(i,j)=ad_rhs_ubar(i,j)+adfac2 ad_Dstp(i-1,j)=ad_Dstp(i-1,j)+adfac3 ad_Dstp(i ,j)=ad_Dstp(i ,j)+adfac3 ad_fac=ad_fac+ & & (ubar(i,j,kstp)*(Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*ad_ubar(i,j,knew) ad_ubar(i,j,knew)=0.0_r8 !^ tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i-1,j)) !^ adfac=-fac*fac*ad_fac ad_Dnew(i-1,j)=ad_Dnew(i-1,j)+adfac ad_Dnew(i ,j)=ad_Dnew(i ,j)+adfac ad_fac=0.0_r8 END DO END DO ELSE IF (PREDICTOR_2D_STEP(ng)) THEN cff1=dtfast(ng) #ifdef WET_DRY_NOT_YET cff2=1.0_r8/cff1 #endif DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) #ifdef WET_DRY_NOT_YET fac1=cff2/cff !^ tl_rhs_vbar(i,j)=(tl_vbar(i,j,knew)* & !^ & (Dnew(i,j)+Dnew(i,j-1))+ & !^ & vbar(i,j,knew)* & !^ & (tl_Dnew(i,j)+tl_Dnew(i,j-1))- & !^ & tl_vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))- & !^ & vbar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i,j-1)))*fac1 !^ adfac=fac1*ad_rhs_vbar(i,j) adfac1=adfac*vbar(i,j,knew) adfac2=adfac*vbar(i,j,kstp) ad_vbar(i,j,knew)=ad_vbar(i,j,knew)+ & & (Dnew(i,j)+Dnew(i,j-1))*adfac ad_vbar(i,j,kstp)=ad_vbar(i,j,kstp)- & & (Dstp(i,j)+Dstp(i,j-1))*adfac ad_Dnew(i,j-1)=ad_Dnew(i,j-1)+adfac1 ad_Dnew(i,j )=ad_Dnew(i,j )+adfac1 ad_Dstp(i,j-1)=ad_Dstp(i,j-1)-adfac2 ad_Dstp(i,j )=ad_Dstp(i,j )-adfac2 ad_rhs_vbar(i,j)=0.0_r8 !^ !^ cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) !^ cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) !^ cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !^ vbar(i,j,knew)=vbar(i,j,knew)*cff7 !^ !^ HGA: ADM code needed here for the above NLM code. !^ #endif #ifdef MASKING !^ tl_vbar(i,j,knew)=tl_vbar(i,j,knew)*vmask(i,j) !^ ad_vbar(i,j,knew)=ad_vbar(i,j,knew)*vmask(i,j) #endif !^ tl_vbar(i,j,knew)=(tl_vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))+ & !^ & vbar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i,j-1))+ & !^ & cff*cff1*tl_rhs_vbar(i,j))*fac+ & !^ & (vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))+ & !^ & cff*cff1*rhs_vbar(i,j))*tl_fac !^ adfac=fac*ad_vbar(i,j,knew) adfac1=adfac*(Dstp(i,j)+Dstp(i,j-1)) adfac2=adfac*cff*cff1 adfac3=adfac*vbar(i,j,kstp) ad_vbar(i,j,kstp)=ad_vbar(i,j,kstp)+adfac1 ad_rhs_vbar(i,j)=ad_rhs_vbar(i,j)+adfac2 ad_Dstp(i,j-1)=ad_Dstp(i,j-1)+adfac3 ad_Dstp(i,j )=ad_Dstp(i,j )+adfac3 ad_fac=ad_fac+ & & (vbar(i,j,kstp)*(Dstp(i,j)+Dstp(i,j-1))+ & & cff*cff1*rhs_vbar(i,j))*ad_vbar(i,j,knew) ad_vbar(i,j,knew)=0.0_r8 !^ tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i,j-1)) !^ adfac=-fac*fac*ad_fac ad_Dnew(i,j-1)=ad_Dnew(i,j-1)+adfac ad_Dnew(i,j )=ad_Dnew(i,j )+adfac ad_fac=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) #ifdef WET_DRY_NOT_YET fac1=cff2/cff !^ tl_rhs_ubar(i,j)=(tl_ubar(i,j,knew)* & !^ & (Dnew(i,j)+Dnew(i-1,j))+ & !^ & ubar(i,j,knew)* & !^ & (tl_Dnew(i,j)+tl_Dnew(i-1,j))- & !^ & tl_ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))- & !^ & ubar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i-1,j)))*fac1 !^ adfac=fac1*ad_rhs_ubar(i,j) adfac1=adfac*ubar(i,j,knew) adfac2=adfac*ubar(i,j,kstp) ad_ubar(i,j,knew)=ad_ubar(i,j,knew)+ & & (Dnew(i,j)+Dnew(i-1,j))*adfac ad_ubar(i,j,kstp)=ad_ubar(i,j,kstp)- & (Dstp(i,j)+Dstp(i-1,j))*adfac ad_Dnew(i-1,j)=ad_Dnew(i-1,j)+adfac1 ad_Dnew(i ,j)=ad_Dnew(i ,j)+adfac1 ad_Dstp(i-1,j)=ad_Dstp(i-1,j)-adfac2 ad_Dstp(i ,j)=ad_Dstp(i ,j)-adfac2 ad_rhs_ubar(i,j)=0.0_r8 !^ !^ cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) !^ cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) !^ cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !^ ubar(i,j,knew)=ubar(i,j,knew)*cff7 !^ !^ HGA: ADM code needed here for the above NLM code. !^ #endif #ifdef MASKING !^ tl_ubar(i,j,knew)=tl_ubar(i,j,knew)*umask(i,j) !^ ad_ubar(i,j,knew)=ad_ubar(i,j,knew)*umask(i,j) #endif !^ tl_ubar(i,j,knew)=(tl_ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))+ & !^ & ubar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i-1,j))+ & !^ & cff*cff1*tl_rhs_ubar(i,j))*fac+ & !^ & (ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))+ & !^ & cff*cff1*rhs_ubar(i,j))*tl_fac !^ adfac=fac*ad_ubar(i,j,knew) adfac1=adfac*(Dstp(i,j)+Dstp(i-1,j)) adfac2=adfac*cff*cff1 adfac3=adfac*ubar(i,j,kstp) ad_ubar(i,j,kstp)=ad_ubar(i,j,kstp)+adfac1 ad_rhs_ubar(i,j)=ad_rhs_ubar(i,j)+adfac2 ad_Dstp(i-1,j)=ad_Dstp(i-1,j)+adfac3 ad_Dstp(i ,j)=ad_Dstp(i ,j)+adfac3 ad_fac=ad_fac+ & & (ubar(i,j,kstp)*(Dstp(i,j)+Dstp(i-1,j))+ & & cff*cff1*rhs_ubar(i,j))*ad_ubar(i,j,knew) ad_ubar(i,j,knew)=0.0_r8 !^ tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i-1,j)) !^ adfac=-fac*fac*ad_fac ad_Dnew(i-1,j)=ad_Dnew(i-1,j)+adfac ad_Dnew(i ,j)=ad_Dnew(i ,j)+adfac ad_fac=0.0_r8 END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=0.5_r8*dtfast(ng)*5.0_r8/12.0_r8 cff2=0.5_r8*dtfast(ng)*8.0_r8/12.0_r8 cff3=0.5_r8*dtfast(ng)*1.0_r8/12.0_r8 #ifdef WET_DRY_NOT_YET cff4=1.0_r8/cff1 #endif DO j=JstrV,Jend DO i=Istr,Iend cff=(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1)) fac=1.0_r8/(Dnew(i,j)+Dnew(i,j-1)) #ifdef WET_DRY_NOT_YET fac1=1.0_r8/cff !^ tl_rhs_vbar(i,j)=((tl_vbar(i,j,knew)* & !^ & (Dnew(i,j)+Dnew(i,j-1))+ & !^ & vbar(i,j,knew)* & !^ & (tl_Dnew(i,j)+tl_Dnew(i,j-1))- & !^ & tl_vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))- & !^ & vbar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i,j-1)))*fac1- & !^ & cff2*tl_rvbar(i,j,kstp)+ & !^ & cff3*tl_rvbar(i,j,ptsk))*cff4 !^ adfac=cff4*ad_rhs_vbar(i,j) adfac1=adfac*fac1*vbar(i,j,knew) adfac2=adfac*fac1*vbar(i,j,kstp) ad_vbar(i,j,knew)=ad_vbar(i,j,knew)+ & & (Dnew(i,j)+Dnew(i,j-1))*adfac ad_vbar(i,j,kstp)=ad_vbar(i,j,kstp)- & & (Dstp(i,j)+Dstp(i,j-1))*adfac ad_rvbar(i,j,kstp)=ad_rvbar(i,j,kstp)-cff2*adfac ad_rvbar(i,j,ptsk)=ad_rvbar(i,j,ptsk)+cff3*adfac ad_Dnew(i,j-1)=ad_Dnew(i,j-1)+adfac1 ad_Dnew(i,j )=ad_Dnew(i,j )+adfac1 ad_Dstp(i,j-1)=ad_Dstp(i,j-1)-adfac2 ad_Dstp(i,j )=ad_Dstp(i,j )-adfac2 ad_rhs_vbar(i,j)=0.0_r8 !^ !^ cff5=ABS(ABS(vmask_wet(i,j))-1.0_r8) !^ cff6=0.5_r8+DSIGN(0.5_r8,vbar(i,j,knew))*vmask_wet(i,j) !^ cff7=0.5_r8*vmask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !^ vbar(i,j,knew)=vbar(i,j,knew)*cff7 !^ !^ HGA: ADM code needed here for the above NLM code. !^ #endif #ifdef MASKING !^ tl_vbar(i,j,knew)=tl_vbar(i,j,knew)*vmask(i,j) !^ ad_vbar(i,j,knew)=ad_vbar(i,j,knew)*vmask(i,j) #endif !^ tl_vbar(i,j,knew)=(tl_vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))+ & !^ & vbar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i,j-1))+ & !^ & cff*(cff1*tl_rhs_vbar(i,j)+ & !^ & cff2*tl_rvbar(i,j,kstp)- & !^ & cff3*tl_rvbar(i,j,ptsk)))*fac+ & !^ & (vbar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i,j-1))+ & !^ & cff*(cff1*rhs_vbar(i,j)+ & !^ & cff2*rvbar(i,j,kstp)- & !^ & cff3*rvbar(i,j,ptsk)))*tl_fac !^ adfac=fac*ad_vbar(i,j,knew) adfac1=adfac*(Dstp(i,j)+Dstp(i,j-1)) adfac2=adfac*cff adfac3=adfac*vbar(i,j,kstp) ad_vbar(i,j,kstp)=ad_vbar(i,j,kstp)+adfac1 ad_rhs_vbar(i,j)=ad_rhs_vbar(i,j)+cff1*adfac2 ad_rvbar(i,j,kstp)=ad_rvbar(i,j,kstp)+cff2*adfac2 ad_rvbar(i,j,ptsk)=-cff3*adfac2 ad_Dstp(i,j-1)=ad_Dstp(i,j-1)+adfac3 ad_Dstp(i,j )=ad_Dstp(i,j )+adfac3 ad_fac=ad_fac+ & & (vbar(i,j,kstp)*(Dstp(i,j)+Dstp(i,j-1))+ & & cff*(cff1*rhs_vbar(i,j)+ & & cff2*rvbar(i,j,kstp)- & & cff3*rvbar(i,j,ptsk)))*ad_vbar(i,j,knew) ad_vbar(i,j,knew)=0.0_r8 !^ tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i,j-1)) !^ adfac=-fac*fac*ad_fac ad_Dnew(i,j-1)=ad_Dnew(i,j-1)+adfac ad_Dnew(i,j )=ad_Dnew(i,j )+adfac ad_fac=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend cff=(pm(i,j)+pm(i-1,j))*(pn(i,j)+pn(i-1,j)) fac=1.0_r8/(Dnew(i,j)+Dnew(i-1,j)) #ifdef WET_DRY_NOT_YET fac1=1.0_r8/cff !^ tl_rhs_ubar(i,j)=((tl_ubar(i,j,knew)* & !^ & (Dnew(i,j)+Dnew(i-1,j))+ & !^ & ubar(i,j,knew)* & !^ & (tl_Dnew(i,j)+tl_Dnew(i-1,j))- & !^ & tl_ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))- & !^ & ubar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i-1,j)))*fac1- & !^ & cff2*tl_rubar(i,j,kstp)+ & !^ & cff3*tl_rubar(i,j,ptsk))*cff4 !^ adfac=cff4*ad_rhs_ubar(i,j) adfac1=adfac*fac1*ubar(i,j,knew) adfac2=adfac*fac1*ubar(i,j,kstp) ad_ubar(i,j,knew)=ad_ubar(i,j,knew)+ & & (Dnew(i,j)+Dnew(i-1,j))*adfac ad_ubar(i,j,kstp)=ad_ubar(i,j,kstp)- & & (Dstp(i,j)+Dstp(i-1,j))*adfac ad_rubar(i,j,kstp)=ad_rubar(i,j,kstp)-cff2*adfac ad_rubar(i,j,ptsk)=ad_rubar(i,j,ptsk)+cff3*adfac ad_Dnew(i-1,j)=ad_Dnew(i-1,j)+adfac1 ad_Dnew(i ,j)=ad_Dnew(i ,j)+adfac1 ad_Dstp(i-1,j)=ad_Dstp(i-1,j)-adfac2 ad_Dstp(i ,j)=ad_Dstp(i ,j)-adfac2 ad_rhs_ubar(i,j)=0.0_r8 !^ !^ cff5=ABS(ABS(umask_wet(i,j))-1.0_r8) !^ cff6=0.5_r8+DSIGN(0.5_r8,ubar(i,j,knew))*umask_wet(i,j) !^ cff7=0.5_r8*umask_wet(i,j)*cff5+cff6*(1.0_r8-cff5) !^ ubar(i,j,knew)=ubar(i,j,knew)*cff7 !^ !^ HGA: ADM code needed here for the above NLM code. !^ #endif #ifdef MASKING !^ tl_ubar(i,j,knew)=tl_ubar(i,j,knew)*umask(i,j) !^ ad_ubar(i,j,knew)=ad_ubar(i,j,knew)*umask(i,j) #endif !^ tl_ubar(i,j,knew)=(tl_ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))+ & !^ & ubar(i,j,kstp)* & !^ & (tl_Dstp(i,j)+tl_Dstp(i-1,j))+ & !^ & cff*(cff1*tl_rhs_ubar(i,j)+ & !^ & cff2*tl_rubar(i,j,kstp)- & !^ & cff3*tl_rubar(i,j,ptsk)))*fac+ & !^ & (ubar(i,j,kstp)* & !^ & (Dstp(i,j)+Dstp(i-1,j))+ & !^ & cff*(cff1*rhs_ubar(i,j)+ & !^ & cff2*rubar(i,j,kstp)- & !^ & cff3*rubar(i,j,ptsk)))*tl_fac !^ adfac=fac*ad_ubar(i,j,knew) adfac1=adfac*(Dstp(i,j)+Dstp(i-1,j)) adfac2=adfac*cff adfac3=adfac*ubar(i,j,kstp) ad_ubar(i,j,kstp)=ad_ubar(i,j,kstp)+adfac1 ad_rhs_ubar(i,j)=ad_rhs_ubar(i,j)+cff1*adfac2 ad_rubar(i,j,kstp)=ad_rubar(i,j,kstp)+cff2*adfac2 ad_rubar(i,j,ptsk)=-cff3*adfac2 ad_Dstp(i-1,j)=ad_Dstp(i-1,j)+adfac3 ad_Dstp(i ,j)=ad_Dstp(i ,j)+adfac3 ad_fac=ad_fac+ & & (ubar(i,j,kstp)*(Dstp(i,j)+Dstp(i-1,j))+ & & cff*(cff1*rhs_ubar(i,j)+ & & cff2*rubar(i,j,kstp)- & & cff3*rubar(i,j,ptsk)))*ad_ubar(i,j,knew) ad_ubar(i,j,knew)=0.0_r8 !^ tl_fac=-fac*fac*(tl_Dnew(i,j)+tl_Dnew(i-1,j)) !^ adfac=-fac*fac*ad_fac ad_Dnew(i-1,j)=ad_Dnew(i-1,j)+adfac ad_Dnew(i ,j)=ad_Dnew(i ,j)+adfac ad_fac=0.0_r8 END DO END DO END IF ! ! Compute adjoint total water column depth. ! DO j=JstrV-1,Jend DO i=IstrU-1,Iend !^ tl_Dstp(i,j)=tl_zeta(i,j,kstp)+tl_h(i,j) !^ ad_zeta(i,j,kstp)=ad_zeta(i,j,kstp)+ad_Dstp(i,j) ad_h(i,j)=ad_h(i,j)+ad_Dstp(i,j) ad_Dstp(i,j)=0.0_r8 END DO END DO ! !======================================================================= ! Compute right-hand-side for the 2D momentum equations. !======================================================================= #ifdef SOLVE3D ! !----------------------------------------------------------------------- ! Adjoint Coupling between 2D and 3D equations. !----------------------------------------------------------------------- ! ! Before the predictor step of the first barotropic time-step, ! arrays "rufrc" and "rvfrc" contain the vertical integrals of ! the 3D right-hand-side terms for momentum equations (including ! surface and bottom stresses, if so prescribed). ! ! Convert them into forcing terms by subtracting the fast time ! "rhs_ubar" and "rhs_vbar" from them; Also, immediately apply ! these forcing terms "rhs_ubar" and "rhs_vbar". ! ! From now on, these newly computed forcing terms will remain ! constant during the fast time stepping and will added to ! "rhs_ubar" and "rhs_vbar" during all subsequent time steps. ! IF (FIRST_2D_STEP.and.PREDICTOR_2D_STEP(ng)) THEN IF (iic(ng).eq.ntfirst(ng)) THEN DO j=JstrV,Jend DO i=Istr,Iend # ifdef DIAGNOSTICS_UV !! DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) !! DiaV2rhs(i,j,M2bstr)=DiaRVfrc(i,j,3,M2bstr) !! DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaV2rhs(i,j,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DO idiag=1,M2pgrd !! DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & DiaRVfrc(i,j,3,idiag) !! DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & !! & DiaV2rhs(i,j,idiag) !! END DO # endif !^ tl_rv(i,j,0,nstp)=tl_rvfrc(i,j) !^ ad_rvfrc(i,j)=ad_rvfrc(i,j)+ad_rv(i,j,0,nstp) ad_rv(i,j,0,nstp)=0.0_r8 !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_rvfrc(i,j) !^ ad_rvfrc(i,j)=ad_rvfrc(i,j)+ad_rhs_vbar(i,j) !^ tl_rvfrc(i,j)=tl_rvfrc(i,j)-tl_rhs_vbar(i,j) !^ ad_rhs_vbar(i,j)=ad_rhs_vbar(i,j)-ad_rvfrc(i,j) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV !! DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) !! DiaU2rhs(i,j,M2bstr)=DiaRUfrc(i,j,3,M2bstr) !! DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaU2rhs(i,j,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DO idiag=1,M2pgrd !! DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & DiaRUfrc(i,j,3,idiag) !! DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & !! & DiaU2rhs(i,j,idiag) !! END DO # endif !^ tl_ru(i,j,0,nstp)=tl_rufrc(i,j) !^ ad_rufrc(i,j)=ad_rufrc(i,j)+ad_ru(i,j,0,nstp) ad_ru(i,j,0,nstp)=0.0_r8 !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_rufrc(i,j) !^ ad_rufrc(i,j)=ad_rufrc(i,j)+ad_rhs_ubar(i,j) !^ tl_rufrc(i,j)=tl_rufrc(i,j)-tl_rhs_ubar(i,j) !^ ad_rhs_ubar(i,j)=ad_rhs_ubar(i,j)-ad_rufrc(i,j) END DO END DO ELSE IF (iic(ng).eq.(ntfirst(ng)+1)) THEN DO j=JstrV,Jend DO i=Istr,Iend # ifdef DIAGNOSTICS_UV !! DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) !! DiaV2rhs(i,j,M2bstr)=1.5_r8*DiaRVfrc(i,j,3,M2bstr)- & !! & 0.5_r8*DiaRVfrc(i,j,nnew,M2bstr) !! DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaV2rhs(i,j,M2sstr)=1.5_r8*DiaRVfrc(i,j,3,M2sstr)- & !! & 0.5_r8*DiaRVfrc(i,j,nnew,M2sstr) !! DO idiag=1,M2pgrd !! DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & 1.5_r8*DiaRVfrc(i,j,3,idiag)- & !! & 0.5_r8*DiaRVfrc(i,j,nnew,idiag) !! DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & !! & DiaV2rhs(i,j,idiag) !! END DO # endif !^ tl_rv(i,j,0,nstp)=tl_rvfrc(i,j) !^ ad_rvfrc(i,j)=ad_rvfrc(i,j)+ad_rv(i,j,0,nstp) ad_rv(i,j,0,nstp)=0.0_r8 !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & !^ & 1.5_r8*tl_rvfrc(i,j)- & !^ & 0.5_r8*tl_rv(i,j,0,nnew) !^ ad_rvfrc(i,j)=ad_rvfrc(i,j)+1.5_r8*ad_rhs_vbar(i,j) ad_rv(i,j,0,nnew)=ad_rv(i,j,0,nnew)- & & 0.5_r8*ad_rhs_vbar(i,j) !^ tl_rvfrc(i,j)=tl_rvfrc(i,j)-tl_rhs_vbar(i,j) !^ ad_rhs_vbar(i,j)=ad_rhs_vbar(i,j)-ad_rvfrc(i,j) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV !! DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) !! DiaU2rhs(i,j,M2bstr)=1.5_r8*DiaRUfrc(i,j,3,M2bstr)- & !! & 0.5_r8*DiaRUfrc(i,j,nnew,M2bstr) !! DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaU2rhs(i,j,M2sstr)=1.5_r8*DiaRUfrc(i,j,3,M2sstr)- & !! & 0.5_r8*DiaRUfrc(i,j,nnew,M2sstr) !! DO idiag=1,M2pgrd !! DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & 1.5_r8*DiaRUfrc(i,j,3,idiag)- & !! & 0.5_r8*DiaRUfrc(i,j,nnew,idiag) !! DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & !! & DiaU2rhs(i,j,idiag) !! END DO # endif !^ tl_ru(i,j,0,nstp)=tl_rufrc(i,j) !^ ad_rufrc(i,j)=ad_rufrc(i,j)+ad_ru(i,j,0,nstp) ad_ru(i,j,0,nstp)=0.0_r8 !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & !^ & 1.5_r8*tl_rufrc(i,j)- & !^ & 0.5_r8*tl_ru(i,j,0,nnew) !^ ad_rufrc(i,j)=ad_rufrc(i,j)+1.5_r8*ad_rhs_ubar(i,j) ad_ru(i,j,0,nnew)=ad_ru(i,j,0,nnew)- & & 0.5_r8*ad_rhs_ubar(i,j) !^ tl_rufrc(i,j)=tl_rufrc(i,j)-tl_rhs_ubar(i,j) !^ ad_rhs_ubar(i,j)=ad_rhs_ubar(i,j)-ad_rufrc(i,j) END DO END DO ELSE cff1=23.0_r8/12.0_r8 cff2=16.0_r8/12.0_r8 cff3= 5.0_r8/12.0_r8 DO j=JstrV,Jend DO i=Istr,Iend # ifdef DIAGNOSTICS_UV !! DiaRVfrc(i,j,nstp,M2bstr)=DiaRVfrc(i,j,3,M2bstr) !! DiaV2rhs(i,j,M2bstr)=cff1*DiaRVfrc(i,j,3,M2bstr)- & !! & cff2*DiaRVfrc(i,j,nnew,M2bstr)+ & !! & cff3*DiaRVfrc(i,j,nstp,M2bstr) !! DiaRVfrc(i,j,nstp,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DiaV2rhs(i,j,M2sstr)=cff1*DiaRVfrc(i,j,3,M2sstr)- & !! & cff2*DiaRVfrc(i,j,nnew,M2sstr)+ & !! & cff3*DiaRVfrc(i,j,nstp,M2sstr) !! DO idiag=1,M2pgrd !! DiaRVfrc(i,j,nstp,idiag)=DiaRVfrc(i,j,3,idiag) !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & cff1*DiaRVfrc(i,j,3,idiag)- & !! & cff2*DiaRVfrc(i,j,nnew,idiag)+ & !! & cff3*DiaRVfrc(i,j,nstp,idiag) !! DiaRVfrc(i,j,3,idiag)=DiaRVfrc(i,j,3,idiag)- & !! & DiaV2rhs(i,j,idiag) !! END DO # endif !^ tl_rv(i,j,0,nstp)=tl_rvfrc(i,j) !^ ad_rvfrc(i,j)=ad_rvfrc(i,j)+ad_rv(i,j,0,nstp) ad_rv(i,j,0,nstp)=0.0_r8 !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & !^ & cff1*tl_rvfrc(i,j)- & !^ & cff2*tl_rv(i,j,0,nnew)+ & !^ & cff3*tl_rv(i,j,0,nstp) !^ ad_rvfrc(i,j)=ad_rvfrc(i,j)+cff1*ad_rhs_vbar(i,j) ad_rv(i,j,0,nnew)=ad_rv(i,j,0,nnew)- & & cff2*ad_rhs_vbar(i,j) ad_rv(i,j,0,nstp)=ad_rv(i,j,0,nstp)+ & & cff3*ad_rhs_vbar(i,j) !^ tl_rvfrc(i,j)=tl_rvfrc(i,j)-tl_rhs_vbar(i,j) !^ ad_rhs_vbar(i,j)=ad_rhs_vbar(i,j)-ad_rvfrc(i,j) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV !! DiaRUfrc(i,j,nstp,M2bstr)=DiaRUfrc(i,j,3,M2bstr) !! DiaU2rhs(i,j,M2bstr)=cff1*DiaRUfrc(i,j,3,M2bstr)- & !! & cff2*DiaRUfrc(i,j,nnew,M2bstr)+ & !! & cff3*DiaRUfrc(i,j,nstp,M2bstr) !! DiaRUfrc(i,j,nstp,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DiaU2rhs(i,j,M2sstr)=cff1*DiaRUfrc(i,j,3,M2sstr)- & !! & cff2*DiaRUfrc(i,j,nnew,M2sstr)+ & !! & cff3*DiaRUfrc(i,j,nstp,M2sstr) !! DO idiag=1,M2pgrd !! DiaRUfrc(i,j,nstp,idiag)=DiaRUfrc(i,j,3,idiag) !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & cff1*DiaRUfrc(i,j,3,idiag)- & !! & cff2*DiaRUfrc(i,j,nnew,idiag)+ & !! & cff3*DiaRUfrc(i,j,nstp,idiag) !! DiaRUfrc(i,j,3,idiag)=DiaRUfrc(i,j,3,idiag)- & !! & DiaU2rhs(i,j,idiag) !! END DO # endif !^ tl_ru(i,j,0,nstp)=tl_rufrc(i,j) !^ ad_rufrc(i,j)=ad_rufrc(i,j)+ad_ru(i,j,0,nstp) ad_ru(i,j,0,nstp)=0.0_r8 !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & !^ & cff1*tl_rufrc(i,j)- & !^ & cff2*tl_ru(i,j,0,nnew)+ & !^ & cff3*tl_ru(i,j,0,nstp) !^ ad_rufrc(i,j)=ad_rufrc(i,j)+cff1*ad_rhs_ubar(i,j) ad_ru(i,j,0,nnew)=ad_ru(i,j,0,nnew)- & & cff2*ad_rhs_ubar(i,j) ad_ru(i,j,0,nstp)=ad_ru(i,j,0,nstp)+ & & cff3*ad_rhs_ubar(i,j) !^ tl_rufrc(i,j)=tl_rufrc(i,j)-tl_rhs_ubar(i,j) !^ ad_rhs_ubar(i,j)=ad_rhs_ubar(i,j)-ad_rufrc(i,j) END DO END DO END IF ELSE DO j=JstrV,Jend DO i=Istr,Iend # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2bstr)=DiaRVfrc(i,j,3,M2bstr) !! DiaV2rhs(i,j,M2sstr)=DiaRVfrc(i,j,3,M2sstr) !! DO idiag=1,M2pgrd !! DiaV2rhs(i,j,idiag)=DiaV2rhs(i,j,idiag)+ & !! & DiaRVfrc(i,j,3,idiag) !! END DO # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_rvfrc(i,j) !^ ad_rvfrc(i,j)=ad_rvfrc(i,j)+ad_rhs_vbar(i,j) END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2bstr)=DiaRUfrc(i,j,3,M2bstr) !! DiaU2rhs(i,j,M2sstr)=DiaRUfrc(i,j,3,M2sstr) !! DO idiag=1,M2pgrd !! DiaU2rhs(i,j,idiag)=DiaU2rhs(i,j,idiag)+ & !! & DiaRUfrc(i,j,3,idiag) !! END DO # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_rufrc(i,j) !^ ad_rufrc(i,j)=ad_rufrc(i,j)+ad_rhs_ubar(i,j) END DO END DO END IF #else !^ !^---------------------------------------------------------------------- !^ Add in surface momentum stress. !^---------------------------------------------------------------------- !^ DO j=Jstr,Jend DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2sstr)=fac # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac !^ ad_fac=ad_fac+ad_rhs_ubar(i,j) !^ tl_fac=tl_sustr(i,j)*om_u(i,j)*on_u(i,j) !^ ad_sustr(i,j)=ad_sustr(i,j)+om_u(i,j)*on_u(i,j)*ad_fac ad_fac=0.0_r8 END DO END DO DO j=JstrV,Jend DO i=Istr,Iend # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2sstr)=fac # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_fac !^ ad_fac=ad_fac+ad_rhs_vbar(i,j) !^ tl_fac=tl_svstr(i,j)*om_v(i,j)*on_v(i,j) !^ ad_svstr(i,j)=ad_svstr(i,j)+om_v(i,j)*on_v(i,j)*ad_fac ad_fac=0.0_r8 END DO END DO #endif ! !----------------------------------------------------------------------- ! Add in adjoint nudging of 2D momentum climatology. !----------------------------------------------------------------------- ! IF (LnudgeM2CLM(ng)) THEN DO j=JstrV,Jend DO i=Istr,Iend cff=0.25_r8*(CLIMA(ng)%M2nudgcof(i,j-1)+ & & CLIMA(ng)%M2nudgcof(i,j ))* & & om_v(i,j)*on_v(i,j) !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+ & !^ & cff*((Drhs(i,j-1)+Drhs(i,j))* & !^ & (-tl_vbar(i,j,krhs))+ & !^ & (tl_Drhs(i,j-1)+tl_Drhs(i,j))* & !^ & (CLIMA(ng)%vbarclm(i,j)- !^ & vbar(i,j,krhs))) !^ adfac=cff*ad_rhs_vbar(i,j) adfac1=adfac*(Drhs(i,j-1)+Drhs(i,j)) adfac2=adfac*(CLIMA(ng)%vbarclm(i,j)-vbar(i,j,krhs)) ad_vbar(i,j,krhs)=ad_vbar(i,j,krhs)-adfac1 ad_Drhs(i,j-1)=ad_Drhs(i,j-1)+adfac2 ad_Drhs(i,j )=ad_Drhs(i,j )+adfac2 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend cff=0.25_r8*(CLIMA(ng)%M2nudgcof(i-1,j)+ & & CLIMA(ng)%M2nudgcof(i ,j))* & & om_u(i,j)*on_u(i,j) !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+ & !^ & cff*((Drhs(i-1,j)+Drhs(i,j))* & !^ & (-tl_ubar(i,j,krhs))+ & !^ & (tl_Drhs(i-1,j)+tl_Drhs(i,j))* & !^ & (CLIMA(ng)%ubarclm(i,j)- !^ & ubar(i,j,krhs))) !^ adfac=cff*ad_rhs_ubar(i,j) adfac1=adfac*(Drhs(i-1,j)+Drhs(i,j)) adfac2=adfac*(CLIMA(ng)%ubarclm(i,j)-ubar(i,j,krhs)) ad_ubar(i,j,krhs)=ad_ubar(i,j,krhs)-adfac1 ad_Drhs(i-1,j)=ad_Drhs(i-1,j)+adfac2 ad_Drhs(i ,j)=ad_Drhs(i ,j)+adfac2 END DO END DO END IF #ifndef SOLVE3D ! !----------------------------------------------------------------------- ! Add in bottom stress. !----------------------------------------------------------------------- ! DO j=JstrV,Jend DO i=Istr,Iend # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2bstr)=-fac # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac !^ ad_fac=ad_fac-ad_rhs_vbar(i,j) !^ tl_fac=tl_bvstr(i,j)*om_v(i,j)*on_v(i,j) !^ ad_bvstr(i,j)=ad_bvstr(i,j)+om_v(i,j)*on_v(i,j)*ad_fac ad_fac=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2bstr)=-fac # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)-tl_fac !^ ad_fac=ad_fac-ad_rhs_ubar(i,j) !^ tl_fac=tl_bustr(i,j)*om_u(i,j)*on_u(i,j) !^ ad_bustr(i,j)=ad_bustr(i,j)+om_u(i,j)*on_u(i,j)*ad_fac ad_fac=0.0_r8 END DO END DO #else # ifdef DIAGNOSTICS_UV !! !! Initialize the stress term if no bottom friction is defined. !! !! DO j=Jstr,Jend !! DO i=IstrU,Iend !! DiaU2rhs(i,j,M2bstr)=0.0_r8 !! END DO !! END DO !! DO j=JstrV,Jend !! DO i=Istr,Iend !! DiaV2rhs(i,j,M2bstr)=0.0_r8 !! END DO !! END DO # endif #endif #if defined WEC_MELLOR && \ (!defined SOLVE3D || defined DIAGNOSTICS_UV) ! !----------------------------------------------------------------------- ! Add in radiation stress terms. !----------------------------------------------------------------------- ! DO j=JstrV,Jend DO i=Istr,Iend # ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2hrad)=-cff1 # endif # ifndef SOLVE3D !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_cff1-tl_cff2 !^ ad_cff2=ad_cff2-ad_rhs_vbar(i,j) ad_cff1=ad_cff1-ad_rhs_vbar(i,j) # endif !^ tl_cff2=tl_rvlag2d(i,j) !^ ad_rvlag2d(i,j)=ad_rvlag2d(i,j)+ad_cff2 ad_cff2=0.0_r8 !^ tl_cff1=tl_rvstr2d(i,j)*om_v(i,j)*on_v(i,j) !^ ad_rvstr2d(i,j)=ad_rvstr2d(i,j)+ & & om_v(i,j)*on_v(i,j)*ad_cff1 ad_cff1=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2hrad)=-cff1 # endif # ifndef SOLVE3D !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)-tl_cff1-tl_cff2 !^ ad_cff2=ad_cff2-ad_rhs_ubar(i,j) ad_cff1=ad_cff1-ad_rhs_ubar(i,j) # endif !^ tl_cff2=tl_rulag2d(i,j) !^ ad_rulag2d(i,j)=ad_rulag2d(i,j)+ad_cff2 ad_cff2=0.0_r8 !^ tl_cff1=tl_rustr2d(i,j)*om_u(i,j)*on_u(i,j) !^ ad_rustr2d(i,j)=ad_rustr2d(i,j)+ & & om_u(i,j)*on_u(i,j)*ad_cff1 ad_cff1=0.0_r8 END DO END DO #endif #if defined UV_VIS2 || defined UV_VIS4 ! !----------------------------------------------------------------------- ! Compute basic state total depth at PSI-points. !----------------------------------------------------------------------- ! # ifdef UV_VIS4 DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 # else DO j=Jstr,Jend+1 DO i=Istr,Iend+1 # endif Drhs_p(i,j)=0.25_r8*(Drhs(i,j )+Drhs(i-1,j )+ & & Drhs(i,j-1)+Drhs(i-1,j-1)) END DO END DO #endif #ifdef UV_VIS4 ! !----------------------------------------------------------------------- ! Add in adjoint horizontal biharmonic viscosity. The biharmonic ! operator is computed by applying the harmonic operator twice. !----------------------------------------------------------------------- ! ! Compute flux-components of the horizontal divergence of the ! BASIC STATE stress tensor (m4 s^-3/2) in XI- and ETA-directions. ! DO j=JstrVm2,Jendp1 DO i=IstrUm2,Iendp1 cff=visc4_r(i,j)*0.5_r8* & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs))) UFx(i,j)=on_r(i,j)*on_r(i,j)*cff VFe(i,j)=om_r(i,j)*om_r(i,j)*cff END DO END DO DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 cff=visc4_p(i,j)*0.5_r8* & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs))) # ifdef MASKING cff=cff*pmask(i,j) # endif UFe(i,j)=om_p(i,j)*om_p(i,j)*cff VFx(i,j)=on_p(i,j)*on_p(i,j)*cff END DO END DO ! ! Compute BASIC STATE first harmonic operator (m s^-3/2). ! DO j=Jstrm1,Jendp1 DO i=IstrUm1,Iendp1 LapU(i,j)=0.125_r8* & & (pm(i-1,j)+pm(i,j))*(pn(i-1,j)+pn(i,j))* & & ((pn(i-1,j)+pn(i,j))* & & (UFx(i,j )-UFx(i-1,j))+ & & (pm(i-1,j)+pm(i,j))* & & (UFe(i,j+1)-UFe(i ,j))) END DO END DO DO j=JstrVm1,Jendp1 DO i=Istrm1,Iendp1 LapV(i,j)=0.125_r8* & & (pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1))* & & ((pn(i,j-1)+pn(i,j))* & & (VFx(i+1,j)-VFx(i,j ))- & & (pm(i,j-1)+pm(i,j))* & & (VFe(i ,j)-VFe(i,j-1))) END DO END DO ! ! Apply boundary conditions (other than periodic) to the first ! BASIC STATE harmonic operator. These are gradient or closed ! (free slip or no slip) boundary conditions. ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN IF (ad_LBC(iwest,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 LapU(IstrU-1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 LapU(IstrU-1,j)=LapU(IstrU,j) END DO END IF IF (ad_LBC(iwest,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 LapV(Istr-1,j)=gamma2(ng)*LapV(Istr,j) END DO ELSE DO j=JstrVm1,Jendp1 LapV(Istr-1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN IF (ad_LBC(ieast,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 LapU(Iend+1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 LapU(Iend+1,j)=LapU(Iend,j) END DO END IF IF (ad_LBC(ieast,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 LapV(Iend+1,j)=gamma2(ng)*LapV(Iend,j) END DO ELSE DO j=JstrVm1,Jendp1 LapV(Iend+1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN IF (ad_LBC(isouth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 LapU(i,Jstr-1)=gamma2(ng)*LapU(i,Jstr) END DO ELSE DO i=IstrUm1,Iendp1 LapU(i,Jstr-1)=0.0_r8 END DO END IF IF (ad_LBC(isouth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 LapV(i,JstrV-1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 LapV(i,JstrV-1)=LapV(i,JstrV) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN IF (ad_LBC(inorth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 LapU(i,Jend+1)=gamma2(ng)*LapU(i,Jend) END DO ELSE DO i=IstrUm1,Iendp1 LapU(i,Jend+1)=0.0_r8 END DO END IF IF (ad_LBC(inorth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 LapV(i,Jend+1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 LapV(i,Jend+1)=LapV(i,Jend) END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN LapU(Istr ,Jstr-1)=0.5_r8*(LapU(Istr+1,Jstr-1)+ & & LapU(Istr ,Jstr )) LapV(Istr-1,Jstr )=0.5_r8*(LapV(Istr-1,Jstr+1)+ & & LapV(Istr ,Jstr )) END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN LapU(Iend+1,Jstr-1)=0.5_r8*(LapU(Iend ,Jstr-1)+ & & LapU(Iend+1,Jstr )) LapV(Iend+1,Jstr )=0.5_r8*(LapV(Iend ,Jstr )+ & & LapV(Iend+1,Jstr+1)) END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN LapU(Istr ,Jend+1)=0.5_r8*(LapU(Istr+1,Jend+1)+ & & LapU(Istr ,Jend )) LapV(Istr-1,Jend+1)=0.5_r8*(LapV(Istr ,Jend+1)+ & & LapV(Istr-1,Jend )) END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN LapU(Iend+1,Jend+1)=0.5_r8*(LapU(Iend ,Jend+1)+ & & LapU(Iend+1,Jend )) LapV(Iend+1,Jend+1)=0.5_r8*(LapV(Iend ,Jend+1)+ & & LapV(Iend+1,Jend )) END IF END IF ! ! Add in adjoint biharmocnic viscosity ! DO j=JstrV,Jend DO i=Istr,Iend # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2yvis)=-cff2 !! DiaV2rhs(i,j,M2xvis)= cff1 !! DiaV2rhs(i,j,M2hvis)=fac # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_fac !^ ad_fac=ad_fac+ad_rhs_vbar(i,j) !^ tl_fac=tl_cff1-tl_cff2 !^ ad_cff1=ad_cff1+ad_fac ad_cff2=ad_cff2-ad_fac ad_fac=0.0_r8 !^ tl_cff2=0.5_r8*(pm(i,j-1)+pm(i,j))* & !^ & (tl_VFe(i ,j)-tl_VFe(i,j-1)) !^ adfac=0.5_r8*(pm(i,j-1)+pm(i,j))*ad_cff2 ad_VFe(i,j-1)=ad_VFe(i,j-1)-adfac ad_VFe(i,j )=ad_VFe(i,j )+adfac ad_cff2=0.0_r8 !^ tl_cff1=0.5_r8*(pn(i,j-1)+pn(i,j))* & !^ & (tl_VFx(i+1,j)-tl_VFx(i,j )) !^ adfac=0.5_r8*(pn(i,j-1)+pn(i,j))*ad_cff1 ad_VFx(i ,j)=ad_VFx(i ,j)-adfac ad_VFx(i+1,j)=ad_VFx(i+1,j)+adfac ad_cff1=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2yvis)=cff2 !! DiaU2rhs(i,j,M2xvis)=cff1 !! DiaU2rhs(i,j,M2hvis)=fac # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac !^ ad_fac=ad_fac+ad_rhs_ubar(i,j) !^ tl_fac=tl_cff1+tl_cff2 !^ ad_cff1=ad_cff1+ad_fac ad_cff2=ad_cff2+ad_fac ad_fac=0.0_r8 !^ tl_cff2=0.5_r8*(pm(i-1,j)+pm(i,j))* & !^ & (UFe(i,j+1)-UFe(i ,j)) !^ adfac=0.5_r8*(pm(i-1,j)+pm(i,j))*ad_cff2 UFe(i,j )=UFe(i,j )-adfac UFe(i,j+1)=UFe(i,j+1)+adfac ad_cff2=0.0_r8 !^ tl_cff1=0.5_r8*(pn(i-1,j)+pn(i,j))* & !^ & (tl_UFx(i,j )-tl_UFx(i-1,j)) !^ adfac=0.5_r8*(pn(i-1,j)+pn(i,j))*ad_cff1 ad_UFx(i-1,j)=ad_UFx(i-1,j)-adfac ad_UFx(i,j )=ad_UFx(i,j )+adfac ad_cff1=0.0_r8 END DO END DO ! ! Compute flux-components of the horizontal divergence of the ! adjoint biharmonic stress tensor (m4/s2) in XI- and ETA-directions. ! DO j=Jstr,Jend+1 DO i=Istr,Iend+1 !^ tl_VFx(i,j)=on_p(i,j)*on_p(i,j)*tl_cff !^ tl_UFe(i,j)=om_p(i,j)*om_p(i,j)*tl_cff !^ ad_cff=ad_cff+ & & on_p(i,j)*on_p(i,j)*ad_VFx(i,j)+ & & om_p(i,j)*om_p(i,j)*ad_UFe(i,j) ad_VFx(i,j)=0.0_r8 ad_UFe(i,j)=0.0_r8 # ifdef MASKING !^ tl_cff=tl_cff*pmask(i,j) !^ ad_cff=ad_cff*pmask(i,j) # endif !^ tl_cff=visc4_p(i,j)*0.5_r8* & !^ & (tl_Drhs_p(i,j)* & !^ & (pmon_p(i,j)* & !^ & ((pn(i ,j-1)+pn(i ,j))*LapV(i ,j)- & !^ & (pn(i-1,j-1)+pn(i-1,j))*LapV(i-1,j))+ & !^ & pnom_p(i,j)* & !^ & ((pm(i-1,j )+pm(i,j ))*LapU(i,j )- & !^ & (pm(i-1,j-1)+pm(i,j-1))*LapU(i,j-1)))+ & !^ & Drhs_p(i,j)* & !^ & (pmon_p(i,j)* & !^ & ((pn(i ,j-1)+pn(i ,j))*tl_LapV(i ,j)- & !^ & (pn(i-1,j-1)+pn(i-1,j))*tl_LapV(i-1,j))+ & !^ & pnom_p(i,j)* & !^ & ((pm(i-1,j )+pm(i,j ))*tl_LapU(i,j )- & !^ & (pm(i-1,j-1)+pm(i,j-1))*tl_LapU(i,j-1)))) !^ adfac=visc4_p(i,j)*0.5_r8*ad_cff adfac1=adfac*Drhs_p(i,j)*pmon_p(i,j) adfac2=adfac*Drhs_p(i,j)*pnom_p(i,j) ad_Drhs_p(i,j)=ad_Drhs_p(i,j)+ & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*LapV(i ,j)- & & (pn(i-1,j-1)+pn(i-1,j))*LapV(i-1,j))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*LapU(i,j )- & & (pm(i-1,j-1)+pm(i,j-1))*LapU(i,j-1)))* & & adfac ad_LapV(i ,j)=ad_LapV(i ,j)+ & & (pn(i ,j-1)+pn(i ,j))*adfac1 ad_LapV(i-1,j)=ad_LapV(i-1,j)- & & (pn(i-1,j-1)+pn(i-1,j))*adfac1 ad_LapU(i,j )=ad_LapU(i,j )+ & & (pm(i-1,j )+pm(i,j ))*adfac2 ad_LapU(i,j-1)=ad_LapU(i,j-1)- & & (pm(i-1,j-1)+pm(i,j-1))*adfac2 ad_cff=0.0_r8 END DO END DO DO j=JstrV-1,Jend DO i=IstrU-1,Iend !^ tl_VFe(i,j)=om_r(i,j)*om_r(i,j)*tl_cff !^ tl_UFx(i,j)=on_r(i,j)*on_r(i,j)*tl_cff !^ ad_cff=ad_cff+ & & om_r(i,j)*om_r(i,j)*ad_VFe(i,j)+ & & on_r(i,j)*on_r(i,j)*ad_UFx(i,j) ad_VFe(i,j)=0.0_r8 ad_UFx(i,j)=0.0_r8 !^ tl_cff=visc4_r(i,j)*0.5_r8* & !^ & (tl_Drhs(i,j)* & !^ & (pmon_r(i,j)* & !^ & ((pn(i ,j)+pn(i+1,j))*LapU(i+1,j)- & !^ & (pn(i-1,j)+pn(i ,j))*LapU(i ,j))- & !^ & pnom_r(i,j)* & !^ & ((pm(i,j )+pm(i,j+1))*LapV(i,j+1)- & !^ & (pm(i,j-1)+pm(i,j ))*LapV(i,j )))+ & !^ & Drhs(i,j)* & !^ & (pmon_r(i,j)* & !^ & ((pn(i ,j)+pn(i+1,j))*tl_LapU(i+1,j)- & !^ & (pn(i-1,j)+pn(i ,j))*tl_LapU(i ,j))- & !^ & pnom_r(i,j)* & !^ & ((pm(i,j )+pm(i,j+1))*tl_LapV(i,j+1)- & !^ & (pm(i,j-1)+pm(i,j ))*tl_LapV(i,j )))) !^ adfac=visc4_r(i,j)*0.5_r8*ad_cff adfac1=adfac*Drhs(i,j)*pmon_r(i,j) adfac2=adfac*Drhs(i,j)*pnom_r(i,j) ad_Drhs(i,j)=ad_Drhs(i,j)+ & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*LapU(i+1,j)- & & (pn(i-1,j)+pn(i ,j))*LapU(i ,j))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*LapV(i,j+1)- & & (pm(i,j-1)+pm(i,j ))*LapV(i,j )))*adfac ad_LapU(i+1,j)=ad_LapU(i+1,j)+ & & (pn(i ,j)+pn(i+1,j))*adfac1 ad_LapU(i ,j)=ad_LapU(i ,j)- & & (pn(i-1,j)+pn(i ,j))*adfac1 ad_LapV(i,j+1)=ad_LapV(i,j+1)- & & (pm(i,j )+pm(i,j+1))*adfac2 ad_LapV(i,j )=ad_LapV(i,j )+ & & (pm(i,j-1)+pm(i,j ))*adfac2 ad_cff=0.0_r8 END DO END DO ! ! Apply boundary conditions (other than periodic) to the first ! adjoint harmonic operator. These are gradient or closed (free ! slip or no slip) boundary conditions. ! IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN !^ tl_LapV(Iend+1,Jend+1)=0.5_r8*(tl_LapV(Iend ,Jend+1)+ & !^ & tl_LapV(Iend+1,Jend )) !^ adfac=0.5_r8*ad_LapV(Iend+1,Jend+1) ad_LapV(Iend+1,Jend )=ad_LapV(Iend+1,Jend )+adfac ad_LapV(Iend ,Jend+1)=ad_LapV(Iend ,Jend+1)+adfac ad_LapV(Iend+1,Jend+1)=0.0_r8 !^ tl_LapU(Iend+1,Jend+1)=0.5_r8*(tl_LapU(Iend ,Jend+1)+ & !^ & tl_LapU(Iend+1,Jend )) !^ adfac=0.5_r8*ad_LapU(Iend+1,Jend+1) ad_LapU(Iend+1,Jend )=ad_LapU(Iend+1,Jend )+adfac ad_LapU(Iend ,Jend+1)=ad_LapU(Iend ,Jend+1)+adfac ad_LapU(Iend+1,Jend+1)=0.0_r8 END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN !^ tl_LapV(Istr-1,Jend+1)=0.5_r8*(tl_LapV(Istr ,Jend+1)+ & !^ & tl_LapV(Istr-1,Jend )) !^ adfac=0.5_r8*ad_LapV(Istr-1,Jend+1) ad_LapV(Istr-1,Jend )=ad_LapV(Istr-1,Jend )+adfac ad_LapV(Istr ,Jend+1)=ad_LapV(Istr ,Jend+1)+adfac ad_LapV(Istr-1,Jend+1)=0.0_r8 !^ tl_LapU(Istr ,Jend+1)=0.5_r8*(tl_LapU(Istr+1,Jend+1)+ & !^ & tl_LapU(Istr ,Jend )) !^ adfac=0.5_r8*ad_LapU(Istr ,Jend+1) ad_LapU(Istr ,Jend )=ad_LapU(Istr ,Jend )+adfac ad_LapU(Istr+1,Jend+1)=ad_LapU(Istr+1,Jend+1)+adfac ad_LapU(Istr ,Jend+1)=0.0_r8 END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(ieast ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN !^ tl_LapV(Iend+1,Jstr )=0.5_r8*(tl_LapV(Iend ,Jstr )+ & !^ & tl_LapV(Iend+1,Jstr+1)) !^ adfac=0.5_r8*ad_LapV(Iend+1,Jstr ) ad_LapV(Iend ,Jstr )=ad_LapV(Iend ,Jstr )+adfac ad_LapV(Iend+1,Jstr+1)=ad_LapV(Iend+1,Jstr+1)+adfac ad_LapV(Iend+1,Jstr )=0.0_r8 !^ tl_LapU(Iend+1,Jstr-1)=0.5_r8*(tl_LapU(Iend ,Jstr-1)+ & !^ & tl_LapU(Iend+1,Jstr )) !^ adfac=0.5_r8*ad_LapU(Iend+1,Jstr-1) ad_LapU(Iend ,Jstr-1)=ad_LapU(Iend ,Jstr-1)+adfac ad_LapU(Iend+1,Jstr )=ad_LapU(Iend+1,Jstr )+adfac ad_LapU(Iend+1,Jstr-1)=0.0_r8 END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng).or. & & CompositeGrid(iwest ,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN !^ tl_LapV(Istr-1,Jstr )=0.5_r8*(tl_LapV(Istr-1,Jstr+1)+ & !^ & tl_LapV(Istr ,Jstr )) !^ adfac=0.5_r8*ad_LapV(Istr-1,Jstr ) ad_LapV(Istr ,Jstr )=ad_LapV(Istr ,Jstr )+adfac ad_LapV(Istr-1,Jstr+1)=ad_LapV(Istr-1,Jstr+1)+adfac ad_LapV(Istr-1,Jstr )=0.0_r8 !^ tl_LapU(Istr ,Jstr-1)=0.5_r8*(tl_LapU(Istr+1,Jstr-1)+ & !^ & tl_LapU(Istr ,Jstr )) !^ adfac=0.5_r8*ad_LapU(Istr ,Jstr-1) ad_LapU(Istr+1,Jstr-1)=ad_LapU(Istr+1,Jstr-1)+adfac ad_LapU(Istr ,Jstr )=ad_LapU(Istr ,Jstr )+adfac ad_LapU(Istr ,Jstr-1)=0.0_r8 END IF END IF ! IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN IF (ad_LBC(inorth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 !^ tl_LapV(i,Jend+1)=0.0_r8 !^ ad_LapV(i,Jend+1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 !^ tl_LapV(i,Jend+1)=tl_LapV(i,Jend) !^ ad_LapV(i,Jend)=ad_LapV(i,Jend)+ad_LapV(i,Jend+1) ad_LapV(i,Jend+1)=0.0_r8 END DO END IF IF (ad_LBC(inorth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 !^ tl_LapU(i,Jend+1)=gamma2(ng)*tl_LapU(i,Jend) !^ ad_LapU(i,Jend)=ad_LapU(i,Jend)+ & & gamma2(ng)*ad_LapU(i,Jend+1) ad_LapU(i,Jend+1)=0.0_r8 END DO ELSE DO i=IstrUm1,Iendp1 !^ tl_LapU(i,Jend+1)=0.0_r8 !^ ad_LapU(i,Jend+1)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN IF (ad_LBC(isouth,isVbar,ng)%closed) THEN DO i=Istrm1,Iendp1 !^ tl_LapV(i,JstrV-1)=0.0_r8 !^ ad_LapV(i,JstrV-1)=0.0_r8 END DO ELSE DO i=Istrm1,Iendp1 !^ tl_LapV(i,JstrV-1)=tl_LapV(i,JstrV) !^ ad_LapV(i,JstrV)=ad_LapV(i,JstrV)+ad_LapV(i,JstrV-1) ad_LapV(i,JstrV-1)=0.0_r8 END DO END IF IF (ad_LBC(isouth,isUbar,ng)%closed) THEN DO i=IstrUm1,Iendp1 !^ tl_LapU(i,Jstr-1)=gamma2(ng)*tl_LapU(i,Jstr) !^ ad_LapU(i,Jstr)=ad_LapU(i,Jstr)+ & & gamma2(ng)*ad_LapU(i,Jstr-1) ad_LapU(i,Jstr-1)=0.0_r8 END DO ELSE DO i=IstrUm1,Iendp1 !^ tl_LapU(i,Jstr-1)=0.0_r8 !^ ad_LapU(i,Jstr-1)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN IF (ad_LBC(ieast,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 !^ tl_LapV(Iend+1,j)=gamma2(ng)*tl_LapV(Iend,j) !^ ad_LapV(Iend,j)=ad_LapV(Iend,j)+ & & gamma2(ng)*ad_LapV(Iend+1,j) ad_LapV(Iend+1,j)=0.0_r8 END DO ELSE DO j=JstrVm1,Jendp1 !^ tl_LapV(Iend+1,j)=0.0_r8 !^ ad_LapV(Iend+1,j)=0.0_r8 END DO END IF IF (ad_LBC(ieast,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 !^ tl_LapU(Iend+1,j)=0.0_r8 !^ ad_LapU(Iend+1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 !^ tl_LapU(Iend+1,j)=tl_LapU(Iend,j) !^ ad_LapU(Iend,j)=ad_LapU(Iend,j)+ad_LapU(Iend+1,j) ad_LapU(Iend+1,j)=0.0_r8 END DO END IF END IF END IF ! IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN IF (ad_LBC(iwest,isVbar,ng)%closed) THEN DO j=JstrVm1,Jendp1 !^ tl_LapV(Istr-1,j)=gamma2(ng)*tl_LapV(Istr,j) !^ ad_LapV(Istr,j)=ad_LapV(Istr,j)+ & & gamma2(ng)*ad_LapV(Istr-1,j) ad_LapV(Istr-1,j)=0.0_r8 END DO ELSE DO j=JstrVm1,Jendp1 !^ tl_LapV(Istr-1,j)=0.0_r8 !^ ad_LapV(Istr-1,j)=0.0_r8 END DO END IF IF (ad_LBC(iwest,isUbar,ng)%closed) THEN DO j=Jstrm1,Jendp1 !^ tl_LapU(IstrU-1,j)=0.0_r8 !^ ad_LapU(IstrU-1,j)=0.0_r8 END DO ELSE DO j=Jstrm1,Jendp1 !^ tl_LapU(IstrU-1,j)=tl_LapU(IstrU,j) !^ ad_LapU(IstrU,j)=ad_LapU(IstrU,j)+ad_LapU(IstrU-1,j) ad_LapU(IstrU-1,j)=0.0_r8 END DO END IF END IF END IF ! ! Compute adjoint first harmonic operator (m s^-3/2). ! DO j=JstrVm1,Jendp1 DO i=Istrm1,Iendp1 !^ tl_LapV(i,j)=0.125_r8* & !^ & (pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1))* & !^ & ((pn(i,j-1)+pn(i,j))* & !^ & (tl_VFx(i+1,j)-tl_VFx(i,j ))- & !^ & (pm(i,j-1)+pm(i,j))* & !^ & (tl_VFe(i ,j)-tl_VFe(i,j-1))) !^ adfac=0.125_r8*(pm(i,j)+pm(i,j-1))*(pn(i,j)+pn(i,j-1))* & & ad_LapV(i,j) adfac1=adfac*(pn(i,j-1)+pn(i,j)) adfac2=adfac*(pm(i,j-1)+pm(i,j)) ad_VFx(i ,j)=ad_VFx(i ,j)-adfac1 ad_VFx(i+1,j)=ad_VFx(i+1,j)+adfac1 ad_VFe(i,j )=ad_VFe(i,j )-adfac2 ad_VFe(i,j-1)=ad_VFe(i,j-1)+adfac2 ad_LapV(i,j)=0.0_r8 END DO END DO ! DO j=Jstrm1,Jendp1 DO i=IstrUm1,Iendp1 !^ tl_LapU(i,j)=0.125_r8* & !^ & (pm(i-1,j)+pm(i,j))*(pn(i-1,j)+pn(i,j))* & !^ & ((pn(i-1,j)+pn(i,j))* & !^ & (tl_UFx(i,j )-tl_UFx(i-1,j))+ & !^ & (pm(i-1,j)+pm(i,j))* & !^ & (tl_UFe(i,j+1)-tl_UFe(i ,j))) !^ adfac=0.125_r8*(pm(i-1,j)+pm(i,j))*(pn(i-1,j)+pn(i,j))* & & ad_LapU(i,j) adfac1=adfac*(pn(i-1,j)+pn(i,j)) adfac2=adfac*(pm(i-1,j)+pm(i,j)) ad_UFx(i-1,j)=ad_UFx(i-1,j)-adfac1 ad_UFx(i ,j)=ad_UFx(i ,j)+adfac1 ad_UFe(i,j+1)=ad_UFe(i,j+1)+adfac2 ad_UFe(i,j )=ad_UFe(i,j )-adfac2 ad_LapU(i,j)=0.0_r8 END DO END DO ! ! Compute flux-components of the adjoint horizontal divergence of the ! stress tensor (m4 s^-3/2) in XI- and ETA-directions. It is assumed ! here that "visc4_r" and "visc4_p" are the squared root of the ! biharmonic viscosity coefficient. For momentum balance purposes, ! the total thickness "D" appears only when computing the second ! harmonic operator. ! DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 !^ tl_VFx(i,j)=on_p(i,j)*on_p(i,j)*tl_cff !^ tl_UFe(i,j)=om_p(i,j)*om_p(i,j)*tl_cff !^ ad_cff=ad_cff+ & & on_p(i,j)*on_p(i,j)*ad_VFx(i,j)+ & & om_p(i,j)*om_p(i,j)*ad_UFe(i,j) ad_VFx(i,j)=0.0_r8 ad_UFe(i,j)=0.0_r8 # ifdef MASKING !^ tl_cff=tl_cff*pmask(i,j) !^ ad_cff=ad_cff*pmask(i,j) # endif !^ tl_cff=visc4_p(i,j)*0.5_r8* & !^ & (pmon_p(i,j)* & !^ & ((pn(i ,j-1)+pn(i ,j))*tl_vbar(i ,j,krhs)- & !^ & (pn(i-1,j-1)+pn(i-1,j))*tl_vbar(i-1,j,krhs))+ & !^ & pnom_p(i,j)* & !^ & ((pm(i-1,j )+pm(i,j ))*tl_ubar(i,j ,krhs)- & !^ & (pm(i-1,j-1)+pm(i,j-1))*tl_ubar(i,j-1,krhs))) !^ adfac=visc4_p(i,j)*0.5_r8*ad_cff adfac1=adfac*pmon_p(i,j) adfac2=adfac*pnom_p(i,j) ad_vbar(i-1,j,krhs)=ad_vbar(i-1,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*adfac1 ad_vbar(i ,j,krhs)=ad_vbar(i ,j,krhs)+ & & (pn(i ,j-1)+pn(i ,j))*adfac1 ad_ubar(i,j-1,krhs)=ad_ubar(i,j-1,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*adfac2 ad_ubar(i,j ,krhs)=ad_ubar(i,j ,krhs)+ & & (pm(i-1,j )+pm(i,j ))*adfac2 ad_cff=0.0_r8 END DO END DO DO j=JstrVm2,Jendp1 DO i=IstrUm2,Iendp1 !^ tl_VFe(i,j)=om_r(i,j)*om_r(i,j)*tl_cff !^ tl_UFx(i,j)=on_r(i,j)*on_r(i,j)*tl_cff !^ ad_cff=ad_cff+ & & om_r(i,j)*om_r(i,j)*ad_VFe(i,j)+ & & on_r(i,j)*on_r(i,j)*ad_UFx(i,j) ad_VFe(i,j)=0.0_r8 ad_UFx(i,j)=0.0_r8 !^ tl_cff=visc4_r(i,j)*0.5_r8* & !^ & (pmon_r(i,j)* & !^ & ((pn(i ,j)+pn(i+1,j))*tl_ubar(i+1,j,krhs)- & !^ & (pn(i-1,j)+pn(i ,j))*tl_ubar(i ,j,krhs))- & !^ & pnom_r(i,j)* & !^ & ((pm(i,j )+pm(i,j+1))*tl_vbar(i,j+1,krhs)- & !^ & (pm(i,j-1)+pm(i,j ))*tl_vbar(i,j ,krhs))) !^ adfac=visc4_r(i,j)*0.5_r8*ad_cff adfac1=adfac*pmon_r(i,j) adfac2=adfac*pnom_r(i,j) ad_ubar(i+1,j,krhs)=ad_ubar(i+1,j,krhs)+ & & (pn(i ,j)+pn(i+1,j))*adfac1 ad_ubar(i ,j,krhs)=ad_ubar(i ,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*adfac1 ad_vbar(i,j+1,krhs)=ad_vbar(i,j+1,krhs)- & & (pm(i,j )+pm(i,j+1))*adfac2 ad_vbar(i,j ,krhs)=ad_vbar(i,j ,krhs)+ & & (pm(i,j-1)+pm(i,j ))*adfac2 ad_cff=0.0_r8 END DO END DO #endif #ifdef UV_VIS2 ! !----------------------------------------------------------------------- ! Add in adjoint horizontal harmonic viscosity. !----------------------------------------------------------------------- ! ! Add in harmonic viscosity. ! DO j=JstrV,Jend DO i=Istr,Iend # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2yvis)=-cff2 !! DiaV2rhs(i,j,M2xvis)= cff1 !! DiaV2rhs(i,j,M2hvis)=fac # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)+tl_fac !^ ad_fac=ad_fac+ad_rhs_vbar(i,j) !^ tl_fac=tl_cff1-tl_cff2 !^ ad_cff1=ad_cff1+ad_fac ad_cff2=ad_cff2-ad_fac ad_fac=0.0_r8 !^ tl_cff2=0.5_r8*(pm(i,j-1)+pm(i,j))* & !^ & (tl_VFe(i ,j)-tl_VFe(i,j-1)) !^ adfac=0.5_r8*(pm(i,j-1)+pm(i,j))*ad_cff2 ad_VFe(i,j-1)=ad_VFe(i,j-1)-adfac ad_VFe(i ,j)=ad_VFe(i ,j)+adfac ad_cff2=0.0_r8 !^ tl_cff1=0.5_r8*(pn(i,j-1)+pn(i,j))* & !^ & (tl_VFx(i+1,j)-tl_VFx(i,j )) !^ adfac=0.5_r8*(pn(i,j-1)+pn(i,j))*ad_cff1 ad_VFx(i ,j)=ad_VFx(i ,j)-adfac ad_VFx(i+1,j)=ad_VFx(i+1,j)+adfac ad_cff1=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2yvis)=cff2 !! DiaU2rhs(i,j,M2xvis)=cff1 !! DiaU2rhs(i,j,M2hvis)=fac # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac !^ ad_fac=ad_fac+ad_rhs_ubar(i,j) !^ tl_fac=tl_cff1+tl_cff2 !^ ad_cff1=ad_cff1+ad_fac ad_cff2=ad_cff2+ad_fac ad_fac=0.0_r8 !^ tl_cff2=0.5_r8*(pm(i-1,j)+pm(i,j))* & !^ & (tl_UFe(i,j+1)-tl_UFe(i ,j)) !^ adfac=0.5_r8*(pm(i-1,j)+pm(i,j))*ad_cff2 ad_UFe(i,j )=ad_UFe(i,j )-adfac ad_UFe(i,j+1)=ad_UFe(i,j+1)+adfac ad_cff2=0.0_r8 !^ tl_cff1=0.5_r8*(pn(i-1,j)+pn(i,j))* & !^ & (tl_UFx(i,j )-tl_UFx(i-1,j)) !^ adfac=0.5_r8*(pn(i-1,j)+pn(i,j))*ad_cff1 ad_UFx(i-1,j)=ad_UFx(i-1,j)-adfac ad_UFx(i ,j)=ad_UFx(i ,j)+adfac ad_cff1=0.0_r8 END DO END DO ! ! Compute flux-components of the adjoint horizontal divergence of the ! stress tensor (m5/s2) in XI- and ETA-directions. ! DO j=Jstr,Jend+1 DO i=Istr,Iend+1 !^ tl_VFx(i,j)=on_p(i,j)*on_p(i,j)*tl_cff !^ tl_UFe(i,j)=om_p(i,j)*om_p(i,j)*tl_cff !^ ad_cff=ad_cff+ & & on_p(i,j)*on_p(i,j)*ad_VFx(i,j)+ & & om_p(i,j)*om_p(i,j)*ad_UFe(i,j) ad_VFx(i,j)=0.0_r8 ad_UFe(i,j)=0.0_r8 # ifdef MASKING !^ tl_cff=tl_cff*pmask(i,j) !^ ad_cff=ad_cff*pmask(i,j) # endif !^ tl_cff=visc2_p(i,j)*0.5_r8* & !^ & (tl_Drhs_p(i,j)* & !^ & (pmon_p(i,j)* & !^ & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & !^ & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & !^ & pnom_p(i,j)* & !^ & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & !^ & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs)))+ & !^ & Drhs_p(i,j)* & !^ & (pmon_p(i,j)* & !^ & ((pn(i ,j-1)+pn(i ,j))*tl_vbar(i ,j,krhs)- & !^ & (pn(i-1,j-1)+pn(i-1,j))*tl_vbar(i-1,j,krhs))+ & !^ & pnom_p(i,j)* & !^ & ((pm(i-1,j )+pm(i,j ))*tl_ubar(i,j ,krhs)- & !^ & (pm(i-1,j-1)+pm(i,j-1))*tl_ubar(i,j-1,krhs)))) !^ adfac=visc2_p(i,j)*0.5_r8*ad_cff adfac1=adfac*Drhs_p(i,j) adfac2=adfac1*pmon_p(i,j) adfac3=adfac1*pnom_p(i,j) ad_Drhs_p(i,j)=ad_Drhs_p(i,j)+ & & (pmon_p(i,j)* & & ((pn(i ,j-1)+pn(i ,j))*vbar(i ,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*vbar(i-1,j,krhs))+ & & pnom_p(i,j)* & & ((pm(i-1,j )+pm(i,j ))*ubar(i,j ,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*ubar(i,j-1,krhs)))*& & adfac ad_vbar(i-1,j,krhs)=ad_vbar(i-1,j,krhs)- & & (pn(i-1,j-1)+pn(i-1,j))*adfac2 ad_vbar(i ,j,krhs)=ad_vbar(i ,j,krhs)+ & & (pn(i ,j-1)+pn(i ,j))*adfac2 ad_ubar(i,j-1,krhs)=ad_ubar(i,j-1,krhs)- & & (pm(i-1,j-1)+pm(i,j-1))*adfac3 ad_ubar(i,j ,krhs)=ad_ubar(i,j ,krhs)+ & & (pm(i-1,j )+pm(i,j ))*adfac3 ad_cff=0.0_r8 END DO END DO DO j=JstrV-1,Jend DO i=IstrU-1,Iend !^ tl_VFe(i,j)=om_r(i,j)*om_r(i,j)*tl_cff !^ tl_UFx(i,j)=on_r(i,j)*on_r(i,j)*tl_cff !^ ad_cff=ad_cff+ & & om_r(i,j)*om_r(i,j)*ad_VFe(i,j)+ & & on_r(i,j)*on_r(i,j)*ad_UFx(i,j) ad_VFe(i,j)=0.0_r8 ad_UFx(i,j)=0.0_r8 !^ tl_cff=visc2_r(i,j)*0.5_r8* & !^ & (tl_Drhs(i,j)* & !^ & (pmon_r(i,j)* & !^ & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & !^ & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & !^ & pnom_r(i,j)* & !^ & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & !^ & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs)))+ & !^ & Drhs(i,j)* & !^ & (pmon_r(i,j)* & !^ & ((pn(i ,j)+pn(i+1,j))*tl_ubar(i+1,j,krhs)- & !^ & (pn(i-1,j)+pn(i ,j))*tl_ubar(i ,j,krhs))- & !^ & pnom_r(i,j)* & !^ & ((pm(i,j )+pm(i,j+1))*tl_vbar(i,j+1,krhs)- & !^ & (pm(i,j-1)+pm(i,j ))*tl_vbar(i,j ,krhs)))) !^ adfac=visc2_r(i,j)*0.5_r8*ad_cff adfac1=adfac*Drhs(i,j) adfac2=adfac1*pmon_r(i,j) adfac3=adfac1*pnom_r(i,j) ad_Drhs(i,j)=ad_Drhs(i,j)+ & & (pmon_r(i,j)* & & ((pn(i ,j)+pn(i+1,j))*ubar(i+1,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*ubar(i ,j,krhs))- & & pnom_r(i,j)* & & ((pm(i,j )+pm(i,j+1))*vbar(i,j+1,krhs)- & & (pm(i,j-1)+pm(i,j ))*vbar(i,j ,krhs)))* & & adfac ad_ubar(i ,j,krhs)=ad_ubar(i ,j,krhs)- & & (pn(i-1,j)+pn(i ,j))*adfac2 ad_ubar(i+1,j,krhs)=ad_ubar(i+1,j,krhs)+ & & (pn(i ,j)+pn(i+1,j))*adfac2 ad_vbar(i,j ,krhs)=ad_vbar(i,j ,krhs)+ & & (pm(i,j-1)+pm(i,j ))*adfac3 ad_vbar(i,j+1,krhs)=ad_vbar(i,j+1,krhs)- & & (pm(i,j )+pm(i,j+1))*adfac3 ad_cff=0.0_r8 END DO END DO #endif #if defined UV_VIS2 || defined UV_VIS4 ! !----------------------------------------------------------------------- ! If horizontal mixing, compute adjoint total depth at PSI-points. !----------------------------------------------------------------------- ! # ifdef UV_VIS4 DO j=Jstrm1,Jendp2 DO i=Istrm1,Iendp2 # else DO j=Jstr,Jend+1 DO i=Istr,Iend+1 # endif Drhs_p(i,j)=0.25_r8*(Drhs(i,j )+Drhs(i-1,j )+ & & Drhs(i,j-1)+Drhs(i-1,j-1)) !^ tl_Drhs_p(i,j)=0.25_r8*(tl_Drhs(i,j )+tl_Drhs(i-1,j )+ & !^ & tl_Drhs(i,j-1)+tl_Drhs(i-1,j-1)) !^ adfac=0.25_r8*ad_Drhs_p(i,j) ad_Drhs(i-1,j )=ad_Drhs(i-1,j )+adfac ad_Drhs(i ,j )=ad_Drhs(i ,j )+adfac ad_Drhs(i-1,j-1)=ad_Drhs(i-1,j-1)+adfac ad_Drhs(i ,j-1)=ad_Drhs(i ,j-1)+adfac ad_Drhs_p(i,j)=0.0_r8 END DO END DO #endif #if defined CURVGRID && defined UV_ADV ! !----------------------------------------------------------------------- ! Add in curvilinear transformation terms. !----------------------------------------------------------------------- ! DO j=JstrV,Jend DO i=Istr,Iend # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2hadv)=DiaV2rhs(i,j,M2hadv)-fac1 !! DiaV2rhs(i,j,M2yadv)=DiaV2rhs(i,j,M2yadv)-fac2 !! DiaV2rhs(i,j,M2xadv)=DiaV2rhs(i,j,M2xadv)-fac1+fac2 !! fac2=0.5_r8*(Vwrk(i,j)+Vwrk(i,j-1)) # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac1 !^ ad_fac1=ad_fac1-ad_rhs_vbar(i,j) !^ tl_fac1=0.5_r8*(tl_VFe(i,j)+tl_VFe(i,j-1)) !^ adfac=0.5_r8*ad_fac1 ad_VFe(i,j-1)=ad_VFe(i,j-1)+adfac ad_VFe(i,j )=ad_VFe(i,j )+adfac ad_fac1=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2hadv)=DiaU2rhs(i,j,M2hadv)+fac1 !! DiaU2rhs(i,j,M2yadv)=DiaU2rhs(i,j,M2yadv)+fac2 !! DiaU2rhs(i,j,M2xadv)=DiaU2rhs(i,j,M2xadv)+fac1-fac2 !! fac2=0.5_r8*(Uwrk(i,j)+Uwrk(i-1,j)) # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac1 !^ ad_fac1=ad_fac1+ad_rhs_ubar(i,j) !^ tl_fac1=0.5_r8*(tl_UFx(i,j)+tl_UFx(i-1,j)) !^ adfac=0.5_r8*ad_fac1 ad_UFx(i-1,j)=ad_UFx(i-1,j)+adfac ad_UFx(i ,j)=ad_UFx(i ,j)+adfac ad_fac1=0.0_r8 END DO END DO DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff1=0.5_r8*(vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)) cff2=0.5_r8*(ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)) cff3=cff1*dndx(i,j) cff4=cff2*dmde(i,j) cff=Drhs(i,j)*(cff3-cff4) # if defined DIAGNOSTICS_UV !! Vwrk(i,j)=-cff*cff2 ! vbar equation, ETA-term !! Uwrk(i,j)=-cff*cff1 ! ubar equation, ETA-term !! cff=Drhs(i,j)*cff4 # endif !^ tl_VFe(i,j)=tl_cff*cff2+cff*tl_cff2 !^ tl_UFx(i,j)=tl_cff*cff1+cff*tl_cff1 !^ ad_cff=ad_cff+ & & cff1*ad_UFx(i,j)+ & & cff2*ad_VFe(i,j) ad_cff1=ad_cff1+cff*ad_UFx(i,j) ad_cff2=ad_cff2+cff*ad_VFe(i,j) ad_UFx(i,j)=0.0_r8 ad_VFe(i,j)=0.0_r8 !^ tl_cff=tl_Drhs(i,j)*(cff3-cff4)+ & !^ & Drhs(i,j)*(tl_cff3-tl_cff4) !^ adfac=Drhs(i,j)*ad_cff ad_cff4=ad_cff4-adfac ad_cff3=ad_cff3+adfac ad_Drhs(i,j)=ad_Drhs(i,j)+(cff3-cff4)*ad_cff ad_cff=0.0_r8 !^ tl_cff4=tl_cff2*dmde(i,j) !^ ad_cff2=ad_cff2+dmde(i,j)*ad_cff4 ad_cff4=0.0_r8 !^ tl_cff3=tl_cff1*dndx(i,j) !^ ad_cff1=ad_cff1+dndx(i,j)*ad_cff3 ad_cff3=0.0_r8 !^ tl_cff2=0.5_r8*(tl_ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_ubar_stokes(i ,j)+ & !^ & tl_ubar_stokes(i+1,j)+ & # endif !^ & tl_ubar(i+1,j,krhs)) !^ adfac=0.5_r8*ad_cff2 ad_ubar(i ,j,krhs)=ad_ubar(i ,j,krhs)+adfac ad_ubar(i+1,j,krhs)=ad_ubar(i+1,j,krhs)+adfac # ifdef WEC_MELLOR ad_ubar_stokes(i ,j)=ad_ubar_stokes(i ,j)+adfac ad_ubar_stokes(i+1,j)=ad_ubar_stokes(i+1,j)+adfac # endif ad_cff2=0.0_r8 !^ tl_cff1=0.5_r8*(tl_vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i,j )+ & !^ & tl_vbar_stokes(i,j+1)+ & # endif !^ & tl_vbar(i,j+1,krhs)) !^ adfac=0.5_r8*ad_cff1 ad_vbar(i,j ,krhs)=ad_vbar(i,j ,krhs)+adfac ad_vbar(i,j+1,krhs)=ad_vbar(i,j+1,krhs)+adfac # ifdef WEC_MELLOR ad_vbar_stokes(i,j )=ad_vbar_stokes(i,j )+adfac ad_vbar_stokes(i,j+1)=ad_vbar_stokes(i,j+1)+adfac # endif ad_cff1=0.0_r8 END DO END DO #endif #ifdef UV_COR ! !----------------------------------------------------------------------- ! Add in Coriolis term. !----------------------------------------------------------------------- ! DO j=JstrV,Jend DO i=Istr,Iend # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2fcor)=-fac1 # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac1 !^ ad_fac1=ad_fac1-ad_rhs_vbar(i,j) !^ tl_fac1=0.5_r8*(tl_VFe(i,j)+tl_VFe(i,j-1)) !^ adfac=0.5_r8*ad_fac1 ad_VFe(i,j-1)=ad_VFe(i,j-1)+adfac ad_VFe(i,j )=ad_VFe(i,j )+adfac ad_fac1=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2fcor)=fac1 # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)+tl_fac1 !^ ad_fac1=ad_fac1+ad_rhs_ubar(i,j) !^ tl_fac1=0.5_r8*(tl_UFx(i,j)+tl_UFx(i-1,j)) !^ adfac=0.5_r8*ad_fac1 ad_UFx(i-1,j)=ad_UFx(i-1,j)+adfac ad_UFx(i ,j)=ad_UFx(i ,j)+adfac ad_fac1=0.0_r8 END DO END DO DO j=JstrV-1,Jend DO i=IstrU-1,Iend cff=0.5_r8*Drhs(i,j)*fomn(i,j) !^ tl_VFe(i,j)=tl_cff*(ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & ubar_stokes(i ,j)+ & !^ & ubar_stokes(i+1,j)+ & # endif !^ & ubar(i+1,j,krhs))+ & !^ & cff*(tl_ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_ubar_stokes(i ,j)+ & !^ & tl_ubar_stokes(i+1,j)+ & # endif !^ & tl_ubar(i+1,j,krhs)) !^ adfac=cff*ad_VFe(i,j) ad_ubar(i ,j,krhs)=ad_ubar(i ,j,krhs)+adfac ad_ubar(i+1,j,krhs)=ad_ubar(i+1,j,krhs)+adfac # ifdef WEC_MELLOR ad_ubar_stokes(i ,j)=ad_ubar_stokes(i ,j)+adfac ad_ubar_stokes(i+1,j)=ad_ubar_stokes(i+1,j)+adfac # endif ad_cff=ad_cff+(ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs))*ad_VFe(i,j) ad_VFe(i,j)=0.0_r8 !^ tl_UFx(i,j)=tl_cff*(vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & vbar_stokes(i,j )+ & !^ & vbar_stokes(i,j+1)+ & # endif !^ & vbar(i,j+1,krhs))+ & !^ & cff*(tl_vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i,j )+ & !^ & tl_vbar_stokes(i,j+1)+ & # endif !^ & tl_vbar(i,j+1,krhs)) !^ adfac=cff*ad_UFx(i,j) ad_vbar(i,j ,krhs)=ad_vbar(i,j ,krhs)+adfac ad_vbar(i,j+1,krhs)=ad_vbar(i,j+1,krhs)+adfac # ifdef WEC_MELLOR ad_vbar_stokes(i,j )=ad_vbar_stokes(i,j )+adfac ad_vbar_stokes(i,j+1)=ad_vbar_stokes(i,j+1)+adfac # endif ad_cff=ad_cff+(vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs))*ad_UFx(i,j) ad_UFx(i,j)=0.0_r8 !^ tl_cff=0.5_r8*tl_Drhs(i,j)*fomn(i,j) !^ ad_Drhs(i,j)=ad_Drhs(i,j)+0.5_r8*fomn(i,j)*ad_cff ad_cff=0.0_r8 END DO END DO #endif #ifdef UV_ADV ! !----------------------------------------------------------------------- ! Add in adjoint horizontal advection of momentum. !----------------------------------------------------------------------- ! DO j=JstrV,Jend DO i=Istr,Iend # if defined DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2hadv)=-fac !! DiaV2rhs(i,j,M2yadv)=-cff2 !! DiaV2rhs(i,j,M2xadv)=-cff1 # endif !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)-tl_fac !^ ad_fac=ad_fac-ad_rhs_vbar(i,j) !^ tl_fac=tl_cff1+tl_cff2 !^ ad_cff1=ad_cff1+ad_fac ad_cff2=ad_cff2+ad_fac ad_fac=0.0_r8 !^ tl_cff2=tl_VFe(i,j)-tl_VFe(i,j-1) !^ ad_VFe(i,j-1)=ad_VFe(i,j-1)-ad_cff2 ad_VFe(i,j )=ad_VFe(i,j )+ad_cff2 ad_cff2=0.0_r8 !^ tl_cff1=tl_VFx(i+1,j)-tl_VFx(i,j) !^ ad_VFx(i ,j)=ad_VFx(i ,j)-ad_cff1 ad_VFx(i+1,j)=ad_VFx(i+1,j)+ad_cff1 ad_cff1=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrU,Iend # if defined DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2xadv)=-cff1 !! DiaU2rhs(i,j,M2yadv)=-cff2 !! DiaU2rhs(i,j,M2hadv)=-fac # endif !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)-tl_fac !^ ad_fac=ad_fac-ad_rhs_ubar(i,j) !^ tl_fac=tl_cff1+tl_cff2 !^ ad_cff1=ad_cff1+ad_fac ad_cff2=ad_cff2+ad_fac ad_fac=0.0_r8 !^ tl_cff2=tl_UFe(i,j+1)-tl_UFe(i,j) !^ ad_UFe(i,j )=ad_UFe(i,j )-ad_cff2 ad_UFe(i,j+1)=ad_UFe(i,j+1)+ad_cff2 ad_cff2=0.0_r8 !^ tl_cff1=tl_UFx(i,j)-tl_UFx(i-1,j) !^ ad_UFx(i-1,j)=ad_UFx(i-1,j)-ad_cff1 ad_UFx(i ,j)=ad_UFx(i ,j)+ad_cff1 ad_cff1=0.0_r8 END DO END DO # ifdef UV_C2ADVECTION ! ! Second-order, centered differences advection. ! DO j=JstrV-1,Jend DO i=Istr,Iend !^ tl_VFe(i,j)=0.25_r8* & !^ & ((tl_DVom(i,j)+tl_DVom(i,j+1))* & !^ & (vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & vbar_stokes(i,j )+ & !^ & vbar_stokes(i,j+1)+ & # endif !^ & vbar(i,j+1,krhs))+ & !^ & (DVom(i,j)+DVom(i,j+1))* & !^ & (tl_vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i,j )+ & !^ & tl_vbar_stokes(i,j+1)+ & # endif !^ & tl_vbar(i,j+1,krhs))) !^ adfac=0.25_r8*ad_VFe(i,j) adfac1=adfac*(vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)) adfac2=adfac*(DVom(i,j)+DVom(i,j+1)) ad_DVom(i,j )=ad_DVom(i,j )+adfac1 ad_DVom(i,j+1)=ad_DVom(i,j+1)+adfac1 ad_vbar(i,j ,krhs)=ad_vbar(i,j ,krhs)+adfac2 ad_vbar(i,j+1,krhs)=ad_vbar(i,j+1,krhs)+adfac2 # ifdef WEC_MELLOR ad_vbar_stokes(i,j )=ad_vbar_stokes(i,j )+adfac2 ad_vbar_stokes(i,j+1)=ad_vbar_stokes(i,j+1)+adfac2 # endif ad_VFe(i,j)=0.0_r8 END DO END DO ! DO j=JstrV,Jend DO i=Istr,Iend+1 !^ tl_VFx(i,j)=0.25_r8* & !^ & ((tl_DUon(i,j)+tl_DUon(i,j-1))* & !^ & (vbar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & vbar_stokes(i ,j)+ & !^ & vbar_stokes(i-1,j)+ & # endif !^ & vbar(i-1,j,krhs))+ & !^ & (DUon(i,j)+DUon(i,j-1))* & !^ & (tl_vbar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i ,j)+ & !^ & tl_vbar_stokes(i-1,j)+ & # endif !^ & tl_vbar(i-1,j,krhs))) !^ adfac=0.25_r8*ad_VFx(i,j) adfac1=adfac*(vbar(i ,j,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i ,j)+ & & vbar_stokes(i-1,j)+ & # endif & vbar(i-1,j,krhs)) adfac2=adfac*(DUon(i,j)+DUon(i,j-1)) ad_DUon(i,j )=ad_DUon(i,j )+adfac1 ad_DUon(i,j-1)=ad_DUon(i,j-1)+adfac1 ad_vbar(i ,j,krhs)=ad_vbar(i ,j,krhs)+adfac2 ad_vbar(i-1,j,krhs)=ad_vbar(i-1,j,krhs)+adfac2 # ifdef WEC_MELLOR ad_vbar_stokes(i-1,j)=ad_vbar_stokes(i-1,j)+adfac2 ad_vbar_stokes(i ,j)=ad_vbar_stokes(i ,j)+adfac2 # endif ad_VFx(i,j)=0.0_r8 END DO END DO ! DO j=Jstr,Jend+1 DO i=IstrU,Iend !^ tl_UFe(i,j)=0.25_r8* & !^ & ((tl_DVom(i,j)+tl_DVom(i-1,j))* & !^ & (ubar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & ubar_stokes(i,j )+ & !^ & ubar_stokes(i,j-1)+ & # endif !^ & ubar(i,j-1,krhs))+ & !^ & (DVom(i,j)+DVom(i-1,j))* & !^ & (tl_ubar(i,j ,krhs)+ # ifdef WEC_MELLOR !^ & tl_ubar_stokes(i,j )+ & !^ & tl_ubar_stokes(i,j-1)+ & # endif !^ & tl_ubar(i,j-1,krhs))) !^ adfac=0.25_r8*ad_UFe(i,j) adfac1=adfac*(ubar(i,j ,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i,j )+ & & ubar_stokes(i,j-1)+ & # endif & ubar(i,j-1,krhs)) adfac2=adfac*(DVom(i,j)+DVom(i-1,j)) ad_DVom(i ,j)=ad_DVom(i ,j)+adfac1 ad_DVom(i-1,j)=ad_DVom(i-1,j)+adfac1 ad_ubar(i,j ,krhs)=ad_ubar(i,j ,krhs)+adfac2 ad_ubar(i,j-1,krhs)=ad_ubar(i,j-1,krhs)+adfac2 # ifdef WEC_MELLOR ad_ubar_stokes(i,j-1)=ad_ubar_stokes(i,j-1)+adfac2 ad_ubar_stokes(i,j )=ad_ubar_stokes(i,j )+adfac2 # endif ad_UFe(i,j)=0.0_r8 END DO END DO ! DO j=Jstr,Jend DO i=IstrU-1,Iend !^ tl_UFx(i,j)=0.25_r8* & !^ & ((tl_DUon(i,j)+tl_DUon(i+1,j))* & !^ & (ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & ubar_stokes(i ,j)+ & !^ & ubar_stokes(i+1,j)+ & # endif !^ & ubar(i+1,j,krhs))+ & !^ & (DUon(i,j)+DUon(i+1,j))* & !^ & (tl_ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_ubar_stokes(i ,j)+ & !^ & tl_ubar_stokes(i+1,j)+ & # endif !^ & tl_ubar(i+1,j,krhs))) !^ adfac=0.25_r8*ad_UFx(i,j) adfac1=adfac*(ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)) adfac2=adfac*(DUon(i,j)+DUon(i+1,j)) ad_DUon(i ,j)=ad_DUon(i ,j)+adfac1 ad_DUon(i+1,j)=ad_DUon(i+1,j)+adfac1 ad_ubar(i ,j,krhs)=ad_ubar(i ,j,krhs)+adfac2 ad_ubar(i+1,j,krhs)=ad_ubar(i+1,j,krhs)+adfac2 # ifdef WEC_MELLOR ad_ubar_stokes(i ,j)=ad_ubar_stokes(i ,j)+adfac2 ad_ubar_stokes(i+1,j)=ad_ubar_stokes(i+1,j)+adfac2 # endif ad_UFx(i,j)=0.0_r8 END DO END DO # else ! ! Fourth-order, centered differences advection. ! DO j=JstrVm1,Jendp1 DO i=Istr,Iend grad (i,j)=vbar(i,j-1,krhs)-2.0_r8*vbar(i,j,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i,j-1)-2.0_r8*vbar_stokes(i,j)+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs) Dgrad(i,j)=DVom(i,j-1)-2.0_r8*DVom(i,j)+DVom(i,j+1) END DO END DO IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jend+1)=grad (i,Jend) Dgrad(i,Jend+1)=Dgrad(i,Jend) END DO END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend grad (i,Jstr)=grad (i,Jstr+1) Dgrad(i,Jstr)=Dgrad(i,Jstr+1) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=JstrV-1,Jend DO i=Istr,Iend !^ tl_VFe(i,j)=0.25_r8* & !^ & ((tl_vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i,j )+ & !^ & tl_vbar_stokes(i,j+1)+ & # endif !^ & tl_vbar(i,j+1,krhs)- & !^ & cff*(tl_grad (i,j)+tl_grad (i,j+1)))* & !^ & (DVom(i,j)+DVom(i,j+1)- & !^ & cff*(Dgrad(i,j)+Dgrad(i,j+1)))+ & !^ & (vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & vbar_stokes(i,j )+ & !^ & vbar_stokes(i,j+1)+ & # endif !^ & vbar(i,j+1,krhs)- & !^ & cff*(grad (i,j)+grad (i,j+1)))* & !^ & (tl_DVom(i,j)+tl_DVom(i,j+1)- & !^ & cff*(tl_Dgrad(i,j)+tl_Dgrad(i,j+1)))) !^ adfac=0.25_r8*ad_VFe(i,j) adfac1=adfac*(DVom(i,j)+DVom(i,j+1)- & & cff*(Dgrad(i,j)+Dgrad(i,j+1))) adfac2=adfac1*cff adfac3=adfac*(vbar(i,j ,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i,j )+ & & vbar_stokes(i,j+1)+ & # endif & vbar(i,j+1,krhs)- & & cff*(grad (i,j)+grad (i,j+1))) adfac4=adfac3*cff ad_vbar(i,j ,krhs)=ad_vbar(i,j ,krhs)+adfac1 ad_vbar(i,j+1,krhs)=ad_vbar(i,j+1,krhs)+adfac1 # ifdef WEC_MELLOR ad_vbar_stokes(i,j )=ad_vbar_stokes(i,j )+adfac1 ad_vbar_stokes(i,j+1)=ad_vbar_stokes(i,j+1)+adfac1 # endif ad_grad (i,j )=ad_grad (i,j )-adfac2 ad_grad (i,j+1)=ad_grad (i,j+1)-adfac2 ad_DVom(i,j )=ad_DVom(i,j )+adfac3 ad_DVom(i,j+1)=ad_DVom(i,j+1)+adfac3 ad_Dgrad(i,j )=ad_Dgrad(i,j )-adfac4 ad_Dgrad(i,j+1)=ad_Dgrad(i,j+1)-adfac4 ad_VFe(i,j)=0.0_r8 END DO END DO IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend !^ tl_Dgrad(i,Jend+1)=tl_Dgrad(i,Jend) !^ ad_Dgrad(i,Jend)=ad_Dgrad(i,Jend)+ad_Dgrad(i,Jend+1) ad_Dgrad(i,Jend+1)=0.0_r8 !^ tl_grad (i,Jend+1)=tl_grad (i,Jend) !^ ad_grad (i,Jend)=ad_grad (i,Jend)+ad_grad (i,Jend+1) ad_grad (i,Jend+1)=0.0_r8 END DO END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend !^ tl_Dgrad(i,Jstr)=tl_Dgrad(i,Jstr+1) !^ ad_Dgrad(i,Jstr+1)=ad_Dgrad(i,Jstr+1)+ad_Dgrad(i,Jstr) ad_Dgrad(i,Jstr)=0.0_r8 !^ tl_grad (i,Jstr)=tl_grad (i,Jstr+1) !^ ad_grad (i,Jstr+1)=ad_grad (i,Jstr+1)+ad_grad (i,Jstr) ad_grad (i,Jstr)=0.0_r8 END DO END IF END IF DO j=JstrVm1,Jendp1 DO i=Istr,Iend !^ tl_Dgrad(i,j)=tl_DVom(i,j-1)-2.0_r8*tl_DVom(i,j)+ & !^ & tl_DVom(i,j+1) !^ ad_DVom(i,j-1)=ad_DVom(i,j-1)+ad_Dgrad(i,j) ad_DVom(i,j )=ad_DVom(i,j )-2.0_r8*ad_Dgrad(i,j) ad_DVom(i,j+1)=ad_DVom(i,j+1)+ad_Dgrad(i,j) ad_Dgrad(i,j)=0.0_r8 !^ tl_grad (i,j)=tl_vbar(i,j-1,krhs)-2.0_r8*tl_vbar(i,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i,j-1)- & !^ & 2.0_r8*tl_vbar_stokes(i,j)+ & !^ & tl_vbar_stokes(i,j+1)+ & # endif !^ & tl_vbar(i,j+1,krhs) !^ ad_vbar(i,j-1,krhs)=ad_vbar(i,j-1,krhs)+ad_grad(i,j) ad_vbar(i,j ,krhs)=ad_vbar(i,j ,krhs)- & & 2.0_r8*ad_grad(i,j) ad_vbar(i,j+1,krhs)=ad_vbar(i,j+1,krhs)+ad_grad(i,j) # ifdef WEC_MELLOR ad_vbar_stokes(i,j-1)=ad_vbar_stokes(i,j-1)+ad_grad(i,j) ad_vbar_stokes(i,j )=ad_vbar_stokes(i,j )- & & 2.0_r8*ad_grad(i,j) ad_vbar_stokes(i,j+1)=ad_vbar_stokes(i,j+1)+ad_grad(i,j) # endif ad_grad(i,j)=0.0_r8 END DO END DO DO j=JstrV,Jend DO i=Istrm1,Iendp1 grad(i,j)=vbar(i-1,j,krhs)-2.0_r8*vbar(i,j,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i-1,j)-2.0_r8*vbar_stokes(i,j)+ & & vbar_stokes(i+1,j)+ & # endif & vbar(i+1,j,krhs) END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=JstrV,Jend grad(Istr-1,j)=grad(Istr,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=JstrV,Jend grad(Iend+1,j)=grad(Iend,j) END DO END IF END IF DO j=JstrV-1,Jend DO i=Istr,Iend+1 Dgrad(i,j)=DUon(i,j-1)-2.0_r8*DUon(i,j)+DUon(i,j+1) END DO END DO cff=1.0_r8/6.0_r8 DO j=JstrV,Jend DO i=Istr,Iend+1 !^ tl_VFx(i,j)=0.25_r8* & !^ & ((tl_vbar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i ,j)+ & !^ & tl_vbar_stokes(i-1,j)+ & # endif !^ & tl_vbar(i-1,j,krhs)- & !^ & cff*(tl_grad (i,j)+tl_grad (i-1,j)))* & !^ & (DUon(i,j)+DUon(i,j-1)- & !^ & cff*(Dgrad(i,j)+Dgrad(i,j-1)))+ & !^ & (vbar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & vbar_stokes(i ,j)+ & !^ & vbar_stokes(i-1,j)+ & # endif !^ & vbar(i-1,j,krhs)- & !^ & cff*(grad (i,j)+grad (i-1,j)))* & !^ & (tl_DUon(i,j)+tl_DUon(i,j-1)- & !^ & cff*(tl_Dgrad(i,j)+tl_Dgrad(i,j-1)))) !^ adfac=0.25_r8*ad_VFx(i,j) adfac1=adfac*(DUon(i,j)+DUon(i,j-1)- & & cff*(Dgrad(i,j)+Dgrad(i,j-1))) adfac2=adfac1*cff adfac3=adfac*(vbar(i ,j,krhs)+ & # ifdef WEC_MELLOR & vbar_stokes(i ,j)+ & & vbar_stokes(i-1,j)+ & # endif & vbar(i-1,j,krhs)- & & cff*(grad (i,j)+grad (i-1,j))) adfac4=adfac3*cff ad_vbar(i-1,j,krhs)=ad_vbar(i-1,j,krhs)+adfac1 ad_vbar(i ,j,krhs)=ad_vbar(i ,j,krhs)+adfac1 # ifdef WEC_MELLOR ad_vbar_stokes(i-1,j)=ad_vbar_stokes(i-1,j)+adfac1 ad_vbar_stokes(i ,j)=ad_vbar_stokes(i ,j)+adfac1 # endif ad_grad (i-1,j)=ad_grad (i-1,j)-adfac2 ad_grad (i ,j)=ad_grad (i ,j)-adfac2 ad_DUon(i,j-1)=ad_DUon(i,j-1)+adfac3 ad_DUon(i,j )=ad_DUon(i,j )+adfac3 ad_Dgrad(i,j-1)=ad_Dgrad(i,j-1)-adfac4 ad_Dgrad(i,j )=ad_Dgrad(i,j )-adfac4 ad_VFx(i,j)=0.0_r8 END DO END DO DO j=JstrV-1,Jend DO i=Istr,Iend+1 !^ tl_Dgrad(i,j)=tl_DUon(i,j-1)-2.0_r8*tl_DUon(i,j)+ & !^ & tl_DUon(i,j+1) !^ ad_DUon(i,j-1)=ad_DUon(i,j-1)+ad_Dgrad(i,j) ad_DUon(i,j )=ad_DUon(i,j )-2.0_r8*ad_Dgrad(i,j) ad_DUon(i,j+1)=ad_DUon(i,j+1)+ad_Dgrad(i,j) ad_Dgrad(i,j)=0.0_r8 END DO END DO IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=JstrV,Jend !^ tl_grad(Iend+1,j)=tl_grad(Iend,j) !^ ad_grad(Iend,j)=ad_grad(Iend,j)+ad_grad(Iend+1,j) ad_grad(Iend+1,j)=0.0_r8 END DO END IF END IF IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=JstrV,Jend !^ tl_grad(Istr-1,j)=tl_grad(Istr,j) !^ ad_grad(Istr,j)=ad_grad(Istr,j)+ad_grad(Istr-1,j) ad_grad(Istr-1,j)=0.0_r8 END DO END IF END IF DO j=JstrV,Jend DO i=Istrm1,Iendp1 !^ tl_grad(i,j)=tl_vbar(i-1,j,krhs)-2.0_r8*tl_vbar(i,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_vbar_stokes(i-1,j)- & !^ & 2.0_r8*tl_vbar_stokes(i,j)+ & !^ & tl_vbar_stokes(i+1,j)+ & # endif !^ & tl_vbar(i+1,j,krhs) !^ ad_vbar(i-1,j,krhs)=ad_vbar(i-1,j,krhs)+ad_grad(i,j) ad_vbar(i ,j,krhs)=ad_vbar(i ,j,krhs)- & & 2.0_r8*ad_grad(i,j) ad_vbar(i+1,j,krhs)=ad_vbar(i+1,j,krhs)+ad_grad(i,j) # ifdef WEC_MELLOR ad_vbar_stokes(i-1,j)=ad_vbar_stokes(i-1,j)+ad_grad(i,j) ad_vbar_stokes(i ,j)=ad_vbar_stokes(i ,j)- & & 2.0_r8*ad_grad(i,j) ad_vbar_stokes(i+1,j)=ad_vbar_stokes(i+1,j)+ad_grad(i,j) # endif ad_grad(i,j)=0.0_r8 END DO END DO DO j=Jstrm1,Jendp1 DO i=IstrU,Iend grad(i,j)=ubar(i,j-1,krhs)-2.0_r8*ubar(i,j,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i,j-1)-2.0_r8*ubar_stokes(i,j)+ & & ubar_stokes(i,j+1)+ & # endif & ubar(i,j+1,krhs) END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=IstrU,Iend grad(i,Jstr-1)=grad(i,Jstr) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=IstrU,Iend grad(i,Jend+1)=grad(i,Jend) END DO END IF END IF DO j=Jstr,Jend+1 DO i=IstrU-1,Iend Dgrad(i,j)=DVom(i-1,j)-2.0_r8*DVom(i,j)+DVom(i+1,j) END DO END DO cff=1.0_r8/6.0_r8 DO j=Jstr,Jend+1 DO i=IstrU,Iend !^ tl_UFe(i,j)=0.25_r8* & !^ & ((tl_ubar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & tl_ubar_stokes(i,j )+ & !^ & tl_ubar_stokes(i,j-1)+ & # endif !^ & tl_ubar(i,j-1,krhs)- & !^ & cff*(tl_grad (i,j)+tl_grad (i,j-1)))* & !^ & (DVom(i,j)+DVom(i-1,j)- & !^ & cff*(Dgrad(i,j)+Dgrad(i-1,j)))+ & !^ & (ubar(i,j ,krhs)+ & # ifdef WEC_MELLOR !^ & ubar_stokes(i,j )+ & !^ & ubar_stokes(i,j-1)+ & # endif !^ & ubar(i,j-1,krhs)- & !^ & cff*(grad (i,j)+grad (i,j-1)))* & !^ & (tl_DVom(i,j)+tl_DVom(i-1,j)- & !^ & cff*(tl_Dgrad(i,j)+tl_Dgrad(i-1,j)))) !^ adfac=0.25_r8*ad_UFe(i,j) adfac1=adfac*(DVom(i,j)+DVom(i-1,j)- & & cff*(Dgrad(i,j)+Dgrad(i-1,j))) adfac2=adfac1*cff adfac3=adfac*(ubar(i,j ,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i,j )+ & & ubar_stokes(i,j-1)+ & # endif & ubar(i,j-1,krhs)- & & cff*(grad (i,j)+grad (i,j-1))) adfac4=adfac3*cff ad_ubar(i,j-1,krhs)=ad_ubar(i,j-1,krhs)+adfac1 ad_ubar(i,j ,krhs)=ad_ubar(i,j ,krhs)+adfac1 # ifdef WEC_MELLOR ad_ubar_stokes(i,j-1)=ad_ubar_stokes(i,j-1)+adfac1 ad_ubar_stokes(i,j )=ad_ubar_stokes(i,j )+adfac1 # endif ad_grad (i,j-1)=ad_grad (i,j-1)-adfac2 ad_grad (i,j )=ad_grad (i,j )-adfac2 ad_DVom(i-1,j)=ad_DVom(i-1,j)+adfac3 ad_DVom(i ,j)=ad_DVom(i ,j)+adfac3 ad_Dgrad(i-1,j)=ad_Dgrad(i-1,j)-adfac4 ad_Dgrad(i ,j)=ad_Dgrad(i ,j)-adfac4 ad_UFe(i,j)=0.0_r8 END DO END DO DO j=Jstr,Jend+1 DO i=IstrU-1,Iend !^ tl_Dgrad(i,j)=tl_DVom(i-1,j)-2.0_r8*tl_DVom(i,j)+ & !^ & tl_DVom(i+1,j) !^ ad_DVom(i-1,j)=ad_DVom(i-1,j)+ad_Dgrad(i,j) ad_DVom(i ,j)=ad_DVom(i ,j)-2.0_r8*ad_Dgrad(i,j) ad_DVom(i+1,j)=ad_DVom(i+1,j)+ad_Dgrad(i,j) ad_Dgrad(i,j)=0.0_r8 END DO END DO IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=IstrU,Iend !^ tl_grad(i,Jend+1)=tl_grad(i,Jend) !^ ad_grad(i,Jend)=ad_grad(i,Jend)+ad_grad(i,Jend+1) ad_grad(i,Jend+1)=0.0_r8 END DO END IF END IF IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=IstrU,Iend !^ tl_grad(i,Jstr-1)=tl_grad(i,Jstr) !^ ad_grad(i,Jstr)=ad_grad(i,Jstr)+ad_grad(i,Jstr-1) ad_grad(i,Jstr-1)=0.0_r8 END DO END IF END IF DO j=Jstrm1,Jendp1 DO i=IstrU,Iend !^ tl_grad(i,j)=tl_ubar(i,j-1,krhs)-2.0_r8*tl_ubar(i,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_ubar_stokes(i,j-1)- & !^ & 2.0_r8*tl_ubar_stokes(i,j)+ & !^ & tl_ubar_stokes(i,j+1)+ & # endif !^ & tl_ubar(i,j+1,krhs) !^ ad_ubar(i,j-1,krhs)=ad_ubar(i,j-1,krhs)+ad_grad(i,j) ad_ubar(i,j ,krhs)=ad_ubar(i,j ,krhs)- & & 2.0_r8*ad_grad(i,j) ad_ubar(i,j+1,krhs)=ad_ubar(i,j+1,krhs)+ad_grad(i,j) # ifdef WEC_MELLOR ad_ubar_stokes(i,j-1)=ad_ubar_stokes(i,j-1)+ad_grad(i,j) ad_ubar_stokes(i,j )=ad_ubar_stokes(i,j)- & & 2.0_r8*ad_grad(i,j) ad_ubar_stokes(i,j+1)=ad_ubar_stokes(i,j+1)+ad_grad(i,j) # endif ad_grad(i,j)=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=IstrUm1,Iendp1 grad (i,j)=ubar(i-1,j,krhs)-2.0_r8*ubar(i,j,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i-1,j)-2.0_r8*ubar_stokes(i,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs) Dgrad(i,j)=DUon(i-1,j)-2.0_r8*DUon(i,j)+DUon(i+1,j) END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend grad (Istr,j)=grad (Istr+1,j) Dgrad(Istr,j)=Dgrad(Istr+1,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend grad (Iend+1,j)=grad (Iend,j) Dgrad(Iend+1,j)=Dgrad(Iend,j) END DO END IF END IF cff=1.0_r8/6.0_r8 DO j=Jstr,Jend DO i=IstrU-1,Iend !^ tl_UFx(i,j)=0.25_r8* & !^ & ((ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & ubar_stokes(i ,j)+ & !^ & ubar_stokes(i+1,j)+ & # endif !^ & ubar(i+1,j,krhs)- & !^ & cff*(grad (i,j)+grad (i+1,j)))* & !^ & (tl_DUon(i,j)+tl_DUon(i+1,j)- & !^ & cff*(tl_Dgrad(i,j)+tl_Dgrad(i+1,j)))+ & !^ & (tl_ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR !^ & tl_ubar_stokes(i ,j)+ & !^ & tl_ubar_stokes(i+1,j)+ & # endif !^ & tl_ubar(i+1,j,krhs)- & !^ & cff*(tl_grad (i,j)+tl_grad (i+1,j)))* & !^ & (DUon(i,j)+DUon(i+1,j)- & !^ & cff*(Dgrad(i,j)+Dgrad(i+1,j)))) !^ adfac=0.25_r8*ad_UFx(i,j) adfac1=adfac*(DUon(i,j)+DUon(i+1,j)- & & cff*(Dgrad(i,j)+Dgrad(i+1,j))) adfac2=adfac1*cff adfac3=adfac*(ubar(i ,j,krhs)+ & # ifdef WEC_MELLOR & ubar_stokes(i ,j)+ & & ubar_stokes(i+1,j)+ & # endif & ubar(i+1,j,krhs)- & & cff*(grad (i,j)+grad (i+1,j))) adfac4=adfac3*cff ad_ubar(i ,j,krhs)=ad_ubar(i ,j,krhs)+adfac1 ad_ubar(i+1,j,krhs)=ad_ubar(i+1,j,krhs)+adfac1 # ifdef WEC_MELLOR ad_ubar_stokes(i ,j)=ad_ubar_stokes(i ,j)+adfac1 ad_ubar_stokes(i+1,j)=ad_ubar_stokes(i+1,j)+adfac1 # endif ad_grad (i ,j)=ad_grad (i ,j)-adfac2 ad_grad (i+1,j)=ad_grad (i+1,j)-adfac2 ad_DUon(i ,j)=ad_DUon(i ,j)+adfac3 ad_DUon(i+1,j)=ad_DUon(i+1,j)+adfac3 ad_Dgrad(i ,j)=ad_Dgrad(i ,j)-adfac4 ad_Dgrad(i+1,j)=ad_Dgrad(i+1,j)-adfac4 ad_UFx(i,j)=0.0_r8 END DO END DO IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend !^ tl_Dgrad(Iend+1,j)=tl_Dgrad(Iend,j) !^ ad_Dgrad(Iend,j)=ad_Dgrad(Iend,j)+ad_Dgrad(Iend+1,j) ad_Dgrad(Iend+1,j)=0.0_r8 !^ tl_grad (Iend+1,j)=tl_grad (Iend,j) !^ ad_grad (Iend,j)=ad_grad (Iend,j)+ad_grad (Iend+1,j) ad_grad (Iend+1,j)=0.0_r8 END DO END IF END IF IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend !^ tl_Dgrad(Istr,j)=tl_Dgrad(Istr+1,j) !^ ad_Dgrad(Istr+1,j)=ad_Dgrad(Istr+1,j)+ad_Dgrad(Istr,j) ad_Dgrad(Istr,j)=0.0_r8 !^ tl_grad (Istr,j)=tl_grad (Istr+1,j) !^ ad_grad (Istr+1,j)=ad_grad (Istr+1,j)+ad_grad (Istr,j) ad_grad (Istr,j)=0.0_r8 END DO END IF END IF DO j=Jstr,Jend DO i=IstrUm1,Iendp1 !^ tl_Dgrad(i,j)=tl_DUon(i-1,j)-2.0_r8*tl_DUon(i,j)+ & !^ & tl_DUon(i+1,j) !^ ad_DUon(i-1,j)=ad_DUon(i-1,j)+ad_Dgrad(i,j) ad_DUon(i ,j)=ad_DUon(i ,j)-2.0_r8*ad_Dgrad(i,j) ad_DUon(i+1,j)=ad_DUon(i+1,j)+ad_Dgrad(i,j) ad_Dgrad(i,j)=0.0_r8 !^ tl_grad (i,j)=tl_ubar(i-1,j,krhs)-2.0_r8*tl_ubar(i,j,krhs)+ & # ifdef NEARHSORE_MELLOR !^ & tl_ubar_stokes(i-1,j)- & !^ & 2.0_r8*tl_ubar_stokes(i,j)+ & !^ & tl_ubar_stokes(i+1,j)+ & # endif !^ & tl_ubar(i+1,j,krhs) !^ ad_ubar(i-1,j,krhs)=ad_ubar(i-1,j,krhs)+ad_grad (i,j) ad_ubar(i ,j,krhs)=ad_ubar(i ,j,krhs)- & & 2.0_r8*ad_grad (i,j) ad_ubar(i+1,j,krhs)=ad_ubar(i+1,j,krhs)+ad_grad (i,j) # ifdef NEARHSORE_MELLOR ad_ubar_stokes(i-1,j)=ad_ubar_stokes(i-1,j)+ad_grad (i,j) ad_ubar_stokes(i ,j)=ad_ubar_stokes(i ,j)- & & 2.0_r8*ad_grad (i,j) ad_ubar_stokes(i+1,j)=ad_ubar_stokes(i+1,j)+ad_grad (i,j) # endif ad_grad(i,j)=0.0_r8 END DO END DO # endif #endif ! !----------------------------------------------------------------------- ! Compute adjoint pressure gradient terms. !----------------------------------------------------------------------- ! ! Compute BASIC STATE fields associated with pressure gradient and ! time-stepping of adjoint free-surface. ! fac=1000.0_r8/rho0 IF (FIRST_2D_STEP) THEN cff1=dtfast(ng) DO j=JstrV-1,Jend DO i=IstrU-1,Iend !^ rhs_zeta(i,j)=(DUon(i,j)-DUon(i+1,j))+ & !^ & (DVom(i,j)-DVom(i,j+1)) !^ zeta_new(i,j)=zeta(i,j,kstp)+ & !^ & pm(i,j)*pn(i,j)*cff1*rhs_zeta(i,j) !^ !^ use background instead zeta_new(i,j)=zeta(i,j,knew) #ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) #endif zwrk(i,j)=0.5_r8*(zeta(i,j,kstp)+zeta_new(i,j)) #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) #else gzeta(i,j)=zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) #endif END DO END DO ELSE IF (PREDICTOR_2D_STEP(ng)) THEN cff1=2.0_r8*dtfast(ng) cff4=4.0_r8/25.0_r8 cff5=1.0_r8-2.0_r8*cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend !^ rhs_zeta(i,j)=(DUon(i,j)-DUon(i+1,j))+ & !^ & (DVom(i,j)-DVom(i,j+1)) !^ zeta_new(i,j)=zeta(i,j,kstp)+ & !^ & pm(i,j)*pn(i,j)*cff1*rhs_zeta(i,j) !^ !^ use background instead zeta_new(i,j)=zeta(i,j,knew) #ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) #endif zwrk(i,j)=cff5*zeta(i,j,krhs)+ & & cff4*(zeta(i,j,kstp)+zeta_new(i,j)) #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) #else gzeta(i,j)=zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) #endif END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=dtfast(ng)*5.0_r8/12.0_r8 cff2=dtfast(ng)*8.0_r8/12.0_r8 cff3=dtfast(ng)*1.0_r8/12.0_r8 cff4=2.0_r8/5.0_r8 cff5=1.0_r8-cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend !^ cff=cff1*((DUon(i,j)-DUon(i+1,j))+ & !^ & (DVom(i,j)-DVom(i,j+1))) !^ zeta_new(i,j)=zeta(i,j,kstp)+ & !^ & pm(i,j)*pn(i,j)*(cff+ & !^ & cff2*rzeta(i,j,kstp)- & !^ & cff3*rzeta(i,j,ptsk)) !^ !^ use background instead zeta_new(i,j)=zeta(i,j,knew) #ifdef MASKING zeta_new(i,j)=zeta_new(i,j)*rmask(i,j) #endif zwrk(i,j)=cff5*zeta_new(i,j)+cff4*zeta(i,j,krhs) #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D gzeta(i,j)=(fac+rhoS(i,j))*zwrk(i,j) gzeta2(i,j)=gzeta(i,j)*zwrk(i,j) gzetaSA(i,j)=zwrk(i,j)*(rhoS(i,j)-rhoA(i,j)) #else gzeta(i,j)=zwrk(i,j) gzeta2(i,j)=zwrk(i,j)*zwrk(i,j) #endif END DO END DO END IF ! ! Compute adjoint pressure gradient. ! cff1=0.5_r8*g cff2=1.0_r8/3.0_r8 #if !defined SOLVE3D && defined ATM_PRESS fac3=0.5_r8*100.0_r8/rho0 #endif DO j=Jstr,Jend IF (j.ge.JstrV) THEN DO i=Istr,Iend #ifdef DIAGNOSTICS_UV !! DiaV2rhs(i,j,M2pgrd)=rhs_vbar(i,j) #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)- & !^ & cff1*om_v(i,j)* & !^ & ((tl_h(i,j-1)+tl_h(i,j)+ & !^ & tl_gzeta(i,j-1)+tl_gzeta(i,j))* & !^ & (eq_tide(i,j)-eq_tide(i,j-1))+ & !^ & (h(i,j-1)+h(i,j)+ & !^ & gzeta(i,j-1)+gzeta(i,j))* & !^ & (tl_eq_tide(i,j)-tl_eq_tide(i,j-1))) !^ adfac=cff1*om_v(i,j)*ad_rhs_vbar(i,j) adfac1=adfac*(eq_tide(i,j)-eq_tide(i,j-1)) adfac2=adfac*(h(i,j-1)+h(i,j)+ & & gzeta(i,j-1)+gzeta(i,j)) ad_h(i,j-1)=ad_h(i,j-1)-adfac1 ad_h(i,j )=ad_h(i,j )-adfac1 ad_gzeta(i,j-1)=ad_gzeta(i,j-1)-adfac1 ad_gzeta(i,j )=ad_gzeta(i,j )-adfac1 ad_eq_tide(i,j-1)=ad_eq_tide(i,j-1)+adfac2 ad_eq_tide(i,j )=ad_eq_tide(i,j )-adfac2 #endif #if defined ATM_PRESS && !defined SOLVE3D !^ tl_rhs_vbar(i,j)=tl_rhs_vbar(i,j)- & !^ & fac3*om_v(i,j)* & !^ & (tl_h(i,j-1)+tl_h(i,j)+ & !^ & tl_gzeta(i,j-1)+tl_gzeta(i,j))* & !^ & (Pair(i,j)-Pair(i,j-1)) !^ adfac=-fac3*om_v(i,j)*(Pair(i,j)-Pair(i,j-1)* & & ad_rhs_vbar(i,j) ad_h(i,j-1)=ad_h(i,j-1)+adfac ad_h(i,j )=ad_h(i,j )+adfac ad_gzeta(i,j-1)=ad_gzeta(i,j-1)+adfac ad_gzeta(i,j )=ad_gzeta(i,j )+adfac #endif !^ tl_rhs_vbar(i,j)=cff1*om_v(i,j)* & !^ & ((tl_h(i,j-1)+ & !^ & tl_h(i,j ))* & !^ & (gzeta(i,j-1)- & !^ & gzeta(i,j ))+ & !^ & (h(i,j-1)+ & !^ & h(i,j ))* & !^ & (tl_gzeta(i,j-1)- & !^ & tl_gzeta(i,j ))+ & #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D !^ & (tl_h(i,j-1)- & !^ & tl_h(i,j ))* & !^ & (gzetaSA(i,j-1)+ & !^ & gzetaSA(i,j )+ & !^ & cff2*(rhoA(i,j-1)- & !^ & rhoA(i,j ))* & !^ & (zwrk(i,j-1)- & !^ & zwrk(i,j )))+ & !^ & (h(i,j-1)- & !^ & h(i,j ))* & !^ & (tl_gzetaSA(i,j-1)+ & !^ & tl_gzetaSA(i,j )+ & !^ & cff2*((tl_rhoA(i,j-1)- & !^ & tl_rhoA(i,j ))* & !^ & (zwrk(i,j-1)- & !^ & zwrk(i,j ))+ & !^ & (rhoA(i,j-1)- & !^ & rhoA(i,j ))* & !^ & (tl_zwrk(i,j-1)- & !^ & tl_zwrk(i,j ))))+ & #endif !^ & (tl_gzeta2(i,j-1)- & !^ & tl_gzeta2(i,j ) !^ adfac=cff1*om_v(i,j)*ad_rhs_vbar(i,j) adfac1=adfac*(gzeta(i,j-1)-gzeta(i,j )) adfac2=adfac*(h(i,j-1)+h(i,j )) ad_h(i,j-1)=ad_h(i,j-1)+adfac1 ad_h(i,j )=ad_h(i,j )+adfac1 ad_gzeta(i,j-1)=ad_gzeta(i,j-1)+adfac2 ad_gzeta(i,j )=ad_gzeta(i,j )-adfac2 ad_gzeta2(i,j-1)=ad_gzeta2(i,j-1)+adfac ad_gzeta2(i,j )=ad_gzeta2(i,j )-adfac #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D adfac1=adfac*(gzetaSA(i,j-1)+ & & gzetaSA(i,j )+ & & cff2*(rhoA(i,j-1)- & & rhoA(i,j ))* & & (zwrk(i,j-1)- & & zwrk(i,j ))) adfac2=adfac*(h(i,j-1)-h(i,j)) adfac3=adfac2*cff2*(zwrk(i,j-1)-zwrk(i,j)) adfac4=adfac2*cff2*(rhoA(i,j-1)-rhoA(i,j)) ad_h(i,j-1)=ad_h(i,j-1)+adfac1 ad_h(i,j )=ad_h(i,j )-adfac1 ad_gzetaSA(i,j-1)=ad_gzetaSA(i,j-1)+adfac2 ad_gzetaSA(i,j )=ad_gzetaSA(i,j )+adfac2 ad_rhoA(i,j-1)=ad_rhoA(i,j-1)+adfac3 ad_rhoA(i,j )=ad_rhoA(i,j )-adfac3 ad_zwrk(i,j-1)=ad_zwrk(i,j-1)+adfac4 ad_zwrk(i,j )=ad_zwrk(i,j )-adfac4 #endif ad_rhs_vbar(i,j)=0.0_r8 END DO END IF DO i=IstrU,Iend #ifdef DIAGNOSTICS_UV !! DiaU2rhs(i,j,M2pgrd)=rhs_ubar(i,j) #endif #if defined TIDE_GENERATING_FORCES && !defined SOLVE3D !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)- & !^ & cff1*on_u(i,j)* & !^ & ((tl_h(i-1,j)+tl_h(i,j)+ & !^ & tl_gzeta(i-1,j)+tl_gzeta(i,j))* & !^ & (eq_tide(i,j)-eq_tide(i-1,j))+ & !^ & (h(i-1,j)+h(i,j)+ & !^ & gzeta(i-1,j)+gzeta(i,j))* & !^ & (tl_eq_tide(i,j)-tl_eq_tide(i-1,j))) !^ adfac=cff1*on_u(i,j)*ad_rhs_ubar(i,j) adfac1=adfac*(eq_tide(i,j)-eq_tide(i-1,j)) adfac2=adfac*(h(i-1,j)+h(i,j)+ & & gzeta(i-1,j)+gzeta(i,j)) ad_h(i-1,j)=ad_h(i-1,j)-adfac1 ad_h(i ,j)=ad_h(i ,j)-adfac1 ad_gzeta(i-1,j)=ad_gzeta(i-1,j)-adfac1 ad_gzeta(i ,j)=ad_gzeta(i ,j)-adfac1 ad_eq_tide(i-1,j)=ad_eq_tide(i-1,j)+adfac2 ad_eq_tide(i ,j)=ad_eq_tide(i ,j)-adfac2 #endif #if defined ATM_PRESS && !defined SOLVE3D !^ tl_rhs_ubar(i,j)=tl_rhs_ubar(i,j)- & !^ & fac3*on_u(i,j)* & !^ & (tl_h(i-1,j)+tl_h(i,j)+ & !^ & tl_gzeta(i-1,j)+tl_gzeta(i,j))* & !^ & (Pair(i,j)-Pair(i-1,j)) !^ adfac=-fac3*on_u(i,j)*(Pair(i,j)-Pair(i-1,j))* & & ad_rhs_ubar(i,j) ad_h(i-1,j)=ad_h(i-1,j)+adfac ad_h(i ,j)=ad_h(i ,j)+adfac ad_gzeta(i-1,j)=ad_gzeta(i-1,j)+adfac ad_gzeta(i ,j)=ad_gzeta(i ,j)+adfac #endif !^ tl_rhs_ubar(i,j)=cff1*on_u(i,j)* & !^ & ((tl_h(i-1,j)+ & !^ & tl_h(i ,j))* & !^ & (gzeta(i-1,j)- & !^ & gzeta(i ,j))+ & !^ & (h(i-1,j)+ & !^ & h(i ,j))* & !^ & (tl_gzeta(i-1,j)- & !^ & tl_gzeta(i ,j))+ & #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D !^ & (tl_h(i-1,j)- & !^ & tl_h(i ,j))* & !^ & (gzetaSA(i-1,j)+ & !^ & gzetaSA(i ,j)+ & !^ & cff2*(rhoA(i-1,j)- & !^ & rhoA(i ,j))* & !^ & (zwrk(i-1,j)- & !^ & zwrk(i ,j)))+ & !^ & (h(i-1,j)- & !^ & h(i ,j))* & !^ & (tl_gzetaSA(i-1,j)+ & !^ & tl_gzetaSA(i ,j)+ & !^ & cff2*((tl_rhoA(i-1,j)- & !^ & tl_rhoA(i ,j))* & !^ & (zwrk(i-1,j)- & !^ & zwrk(i ,j))+ & !^ & (rhoA(i-1,j)- & !^ & rhoA(i ,j))* & !^ & (tl_zwrk(i-1,j)- & !^ & tl_zwrk(i ,j))))+ & #endif !^ & (tl_gzeta2(i-1,j)- & !^ & tl_gzeta2(i ,j))) !^ adfac=cff1*on_u(i,j)*ad_rhs_ubar(i,j) adfac1=adfac*(gzeta(i-1,j)-gzeta(i ,j)) adfac2=adfac*(h(i-1,j)+h(i ,j)) ad_h(i-1,j)=ad_h(i-1,j)+adfac1 ad_h(i ,j)=ad_h(i ,j)+adfac1 ad_gzeta(i-1,j)=ad_gzeta(i-1,j)+adfac2 ad_gzeta(i ,j)=ad_gzeta(i ,j)-adfac2 ad_gzeta2(i-1,j)=ad_gzeta2(i-1,j)+adfac ad_gzeta2(i ,j)=ad_gzeta2(i ,j)-adfac #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D adfac1=adfac*(gzetaSA(i-1,j)+ & & gzetaSA(i ,j)+ & & cff2*(rhoA(i-1,j)- & & rhoA(i ,j))* & & (zwrk(i-1,j)- & & zwrk(i ,j))) adfac2=adfac*(h(i-1,j)-h(i ,j)) adfac3=adfac2*cff2*(zwrk(i-1,j)-zwrk(i,j)) adfac4=adfac2*cff2*(rhoA(i-1,j)-rhoA(i,j)) ad_h(i-1,j)=ad_h(i-1,j)+adfac1 ad_h(i ,j)=ad_h(i ,j)-adfac1 ad_gzetaSA(i-1,j)=ad_gzetaSA(i-1,j)+adfac2 ad_gzetaSA(i ,j)=ad_gzetaSA(i ,j)+adfac2 ad_rhoA(i-1,j)=ad_rhoA(i-1,j)+adfac3 ad_rhoA(i ,j)=ad_rhoA(i ,j)-adfac3 ad_zwrk(i-1,j)=ad_zwrk(i-1,j)+adfac4 ad_zwrk(i ,j)=ad_zwrk(i ,j)-adfac4 #endif ad_rhs_ubar(i,j)=0.0_r8 END DO END DO ! ! Set adjoint free-surface lateral boundary conditions. ! #ifdef DISTRIBUTE !^ CALL mp_exchange2d (ng, tile, iTLM, 1, & !^ & LBi, UBi, LBj, UBj, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_zeta(:,:,knew)) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 1, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_zeta(:,:,knew)) #endif IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !^ CALL exchange_r2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_zeta(:,:,knew)) !^ CALL ad_exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_zeta(:,:,knew)) END IF !^ CALL tl_zetabc_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & krhs, kstp, knew, & !^ & zeta, tl_zeta) !^ CALL ad_zetabc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, knew, & & zeta, ad_zeta) #if defined SEDIMENT_NOT_YET && defined SED_MORPH_NOT_YET ! ! Scale the bed change with the fast time stepping. The half is ! becasue we do predictor and corrector. The "ndtfast/nfast" is ! becasue we do "nfast" steps to here. ! fac=0.5_r8*dtfast(ng)*ndtfast(ng)/(nfast(ng)*dt(ng)) DO j=Jstr,Jend DO i=Istr,Iend !^ tl_h(i,j)=tl_h(i,j)-tl_cff !^ ad_cff=ad_cff-ad_h(i,j) !^ tl_cff=fac*(tl_bed_thick(i,j,nstp)-tl_bed_thick(i,j,nnew)) !^ adfac=fac*ad_cff ad_bed_thick(i,j,nnew)=ad_bed_thick(i,j,nnew)-adfac ad_bed_thick(i,j,nstp)=ad_bed_thick(i,j,nstp)+adfac ad_cff=0.0_r8 END DO END DO #endif ! ! Apply adjoint mass point sources (volume vertical influx), if any. ! ! Dsrc(is) = 2, flow across grid cell w-face (positive or negative) ! IF (LwSrc(ng)) THEN DO is=1,Nsrc(ng) IF (INT(SOURCES(ng)%Dsrc(is)).eq.2) THEN i=SOURCES(ng)%Isrc(is) j=SOURCES(ng)%Jsrc(is) IF (((IstrR.le.i).and.(i.le.IendR)).and. & & ((JstrR.le.j).and.(j.le.JendR))) THEN !^ tl_zeta(i,j,knew)=tl_zeta(i,j,knew)+0.0_r8 !^ END IF END IF END DO END IF ! ! If adjoint predictor step, load right-side-term into shared array. ! IF (PREDICTOR_2D_STEP(ng)) THEN #ifdef DISTRIBUTE !^ CALL mp_exchange2d (ng, tile, iTLM, 1, & !^ & LBi, UBi, LBj, UBj, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_rzeta(:,:,krhs)) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 1, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_rzeta(:,:,krhs)) #endif IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !^ CALL exchange_r2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_rzeta(:,:,krhs)) !^ CALL ad_exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_rzeta(:,:,krhs)) END IF DO j=Jstr,Jend DO i=Istr,Iend !^ tl_rzeta(i,j,krhs)=tl_rhs_zeta(i,j) !^ ad_rhs_zeta(i,j)=ad_rhs_zeta(i,j)+ad_rzeta(i,j,krhs) ad_rzeta(i,j,krhs)=0.0 END DO END DO END IF #ifndef SOLVE3D ! ! Save free-surface adjoint solution for IO purposes. ! DO j=JstrR,JendR DO i=IstrR,IendR ad_zeta_sol(i,j)=ad_zeta(i,j,knew) END DO END DO #endif ! ! Load new adjoint free-surface values into shared array at both ! predictor and corrector steps. #ifdef WET_DRY_NOT_YET ! Modify new free-surface to Ensure that depth is > Dcrit for masked ! cells. #endif ! DO j=Jstr,Jend DO i=Istr,Iend #if defined WET_DRY_NOT_YET && defined MASKING !^ tl_zeta(i,j,knew)=tl_zeta(i,j,knew)- & !^ & tl_h(i,j)*(1.0_r8-rmask(i,j)) !^ ad_h(i,j)=ad_h(i,j)+(1.0_r8-rmask(i,j))*ad_zeta(i,j,knew) #endif !^ tl_zeta(i,j,knew)=tl_zeta_new(i,j) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)+ad_zeta(i,j,knew) ad_zeta(i,j,knew)=0.0_r8 END DO END DO ! !======================================================================= ! Time step adjoint free-surface equation. !======================================================================= ! ! During the first time-step, the predictor step is Forward-Euler ! and the corrector step is Backward-Euler. Otherwise, the predictor ! step is Leap-frog and the corrector step is Adams-Moulton. ! #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D fac=1000.0_r8/rho0 #endif IF (FIRST_2D_STEP) THEN cff1=dtfast(ng) DO j=JstrV-1,Jend DO i=IstrU-1,Iend #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D !^ tl_gzetaSA(i,j)=tl_zwrk(i,j)*(rhoS(i,j)-rhoA(i,j))+ & !^ & zwrk(i,j)*(tl_rhoS(i,j)-tl_rhoA(i,j)) !^ adfac=zwrk(i,j)*ad_gzetaSA(i,j) ad_zwrk(i,j)=ad_zwrk(i,j)+ & & (rhoS(i,j)-rhoA(i,j))*ad_gzetaSA(i,j) ad_rhoS(i,j)=ad_rhoS(i,j)+adfac ad_rhoA(i,j)=ad_rhoA(i,j)-adfac ad_gzetaSA(i,j)=0.0_r8 !^ tl_gzeta2(i,j)=tl_gzeta(i,j)*zwrk(i,j)+ & !^ & gzeta(i,j)*tl_zwrk(i,j) !^ ad_gzeta(i,j)=ad_gzeta(i,j)+zwrk(i,j)*ad_gzeta2(i,j) ad_zwrk(i,j)=ad_zwrk(i,j)+gzeta(i,j)*ad_gzeta2(i,j) ad_gzeta2(i,j)=0.0_r8 !^ tl_gzeta(i,j)=(fac+rhoS(i,j))*tl_zwrk(i,j)+ & !^ & tl_rhoS(i,j)*zwrk(i,j) !^ ad_rhoS(i,j)=ad_rhoS(i,j)+zwrk(i,j)*ad_gzeta(i,j) ad_zwrk(i,j)=ad_zwrk(i,j)+(fac+rhoS(i,j))*ad_gzeta(i,j) ad_gzeta(i,j)=0.0_r8 #else !^ tl_gzeta2(i,j)=2.0_r8*tl_zwrk(i,j)*zwrk(i,j) !^ tl_gzeta(i,j)=tl_zwrk(i,j) !^ ad_zwrk(i,j)=ad_zwrk(i,j)+ & & 2.0_r8*zwrk(i,j)*ad_gzeta2(i,j)+ & & ad_gzeta(i,j) ad_gzeta2(i,j)=0.0_r8 ad_gzeta(i,j)=0.0_r8 #endif !^ tl_zwrk(i,j)=0.5_r8*(tl_zeta(i,j,kstp)+tl_zeta_new(i,j)) !^ adfac=0.5_r8*ad_zwrk(i,j) ad_zeta(i,j,kstp)=ad_zeta(i,j,kstp)+adfac ad_zeta_new(i,j)=ad_zeta_new(i,j)+adfac ad_zwrk(i,j)=0.0_r8 !^ tl_Dnew(i,j)=tl_zeta_new(i,j)+tl_h(i,j) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)+ad_Dnew(i,j) ad_h(i,j)=ad_h(i,j)+ad_Dnew(i,j) ad_Dnew(i,j)=0.0_r8 #ifdef MASKING !^ tl_zeta_new(i,j)=tl_zeta_new(i,j)*rmask(i,j) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)*rmask(i,j) #endif !^ tl_zeta_new(i,j)=tl_zeta(i,j,kstp)+ & !^ & pm(i,j)*pn(i,j)*cff1*tl_rhs_zeta(i,j) !^ ad_zeta(i,j,kstp)=ad_zeta(i,j,kstp)+ad_zeta_new(i,j) ad_rhs_zeta(i,j)=ad_rhs_zeta(i,j)+ & & pm(i,j)*pn(i,j)*cff1*ad_zeta_new(i,j) ad_zeta_new(i,j)=0.0_r8 !^ tl_rhs_zeta(i,j)=(tl_DUon(i,j)-tl_DUon(i+1,j))+ & !^ & (tl_DVom(i,j)-tl_DVom(i,j+1)) !^ ad_DUon(i ,j )=ad_DUon(i ,j )+ad_rhs_zeta(i,j) ad_DUon(i+1,j )=ad_DUon(i+1,j )-ad_rhs_zeta(i,j) ad_DVom(i ,j )=ad_DVom(i ,j )+ad_rhs_zeta(i,j) ad_DVom(i ,j+1)=ad_DVom(i ,j+1)-ad_rhs_zeta(i,j) ad_rhs_zeta(i,j)=0.0_r8 END DO END DO ELSE IF (PREDICTOR_2D_STEP(ng)) THEN cff1=2.0_r8*dtfast(ng) cff4=4.0_r8/25.0_r8 cff5=1.0_r8-2.0_r8*cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D !^ tl_gzetaSA(i,j)=tl_zwrk(i,j)*(rhoS(i,j)-rhoA(i,j))+ & !^ & zwrk(i,j)*(tl_rhoS(i,j)-tl_rhoA(i,j)) !^ adfac=zwrk(i,j)*ad_gzetaSA(i,j) ad_zwrk(i,j)=ad_zwrk(i,j)+ & & (rhoS(i,j)-rhoA(i,j))*ad_gzetaSA(i,j) ad_rhoS(i,j)=ad_rhoS(i,j)+adfac ad_rhoA(i,j)=ad_rhoA(i,j)-adfac ad_gzetaSA(i,j)=0.0_r8 !^ tl_gzeta2(i,j)=tl_gzeta(i,j)*zwrk(i,j)+ & !^ & gzeta(i,j)*tl_zwrk(i,j) !^ ad_gzeta(i,j)=ad_gzeta(i,j)+zwrk(i,j)*ad_gzeta2(i,j) ad_zwrk(i,j)=ad_zwrk(i,j)+gzeta(i,j)*ad_gzeta2(i,j) ad_gzeta2(i,j)=0.0_r8 !^ tl_gzeta(i,j)=(fac+rhoS(i,j))*tl_zwrk(i,j)+ & !^ & tl_rhoS(i,j)*zwrk(i,j) !^ ad_zwrk(i,j)=ad_zwrk(i,j)+(fac+rhoS(i,j))*ad_gzeta(i,j) ad_rhoS(i,j)=ad_rhoS(i,j)+zwrk(i,j)*ad_gzeta(i,j) ad_gzeta(i,j)=0.0_r8 #else !^ tl_gzeta2(i,j)=2.0_r8*tl_zwrk(i,j)*zwrk(i,j) !^ tl_gzeta(i,j)=tl_zwrk(i,j) !^ ad_zwrk(i,j)=ad_zwrk(i,j)+ & & 2.0_r8*zwrk(i,j)*ad_gzeta2(i,j)+ & & ad_gzeta(i,j) ad_gzeta2(i,j)=0.0_r8 ad_gzeta(i,j)=0.0_r8 #endif !^ tl_zwrk(i,j)=cff5*tl_zeta(i,j,krhs)+ & !^ & cff4*(tl_zeta(i,j,kstp)+tl_zeta_new(i,j)) !^ adfac=cff4*ad_zwrk(i,j) ad_zeta(i,j,krhs)=ad_zeta(i,j,krhs)+cff5*ad_zwrk(i,j) ad_zeta(i,j,kstp)=ad_zeta(i,j,kstp)+adfac ad_zeta_new(i,j)=ad_zeta_new(i,j)+adfac ad_zwrk(i,j)=0.0_r8 !^ tl_Dnew(i,j)=tl_zeta_new(i,j)+tl_h(i,j) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)+ad_Dnew(i,j) ad_h(i,j)=ad_h(i,j)+ad_Dnew(i,j) ad_Dnew(i,j)=0.0_r8 #ifdef MASKING !^ tl_zeta_new(i,j)=tl_zeta_new(i,j)*rmask(i,j) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)*rmask(i,j) #endif !^ tl_zeta_new(i,j)=tl_zeta(i,j,kstp)+ & !^ & pm(i,j)*pn(i,j)*cff1*tl_rhs_zeta(i,j) !^ ad_zeta(i,j,kstp)=ad_zeta(i,j,kstp)+ad_zeta_new(i,j) ad_rhs_zeta(i,j)=ad_rhs_zeta(i,j)+ & & pm(i,j)*pn(i,j)*cff1*ad_zeta_new(i,j) ad_zeta_new(i,j)=0.0_r8 !^ tl_rhs_zeta(i,j)=(tl_DUon(i,j)-tl_DUon(i+1,j))+ & !^ & (tl_DVom(i,j)-tl_DVom(i,j+1)) !^ ad_DUon(i ,j )=ad_DUon(i ,j )+ad_rhs_zeta(i,j) ad_DUon(i+1,j )=ad_DUon(i+1,j )-ad_rhs_zeta(i,j) ad_DVom(i ,j )=ad_DVom(i ,j )+ad_rhs_zeta(i,j) ad_DVom(i ,j+1)=ad_DVom(i ,j+1)-ad_rhs_zeta(i,j) ad_rhs_zeta(i,j)=0.0_r8 END DO END DO ELSE IF (CORRECTOR_2D_STEP) THEN cff1=dtfast(ng)*5.0_r8/12.0_r8 cff2=dtfast(ng)*8.0_r8/12.0_r8 cff3=dtfast(ng)*1.0_r8/12.0_r8 cff4=2.0_r8/5.0_r8 cff5=1.0_r8-cff4 DO j=JstrV-1,Jend DO i=IstrU-1,Iend #if defined VAR_RHO_2D_NOT_YET && defined SOLVE3D !^ tl_gzetaSA(i,j)=tl_zwrk(i,j)*(rhoS(i,j)-rhoA(i,j))+ & !^ & zwrk(i,j)*(tl_rhoS(i,j)-tl_rhoA(i,j)) !^ adfac=zwrk(i,j)*ad_gzetaSA(i,j) ad_zwrk(i,j)=ad_zwrk(i,j)+ & & (rhoS(i,j)-rhoA(i,j))*ad_gzetaSA(i,j) ad_rhoS(i,j)=ad_rhoS(i,j)+adfac ad_rhoA(i,j)=ad_rhoA(i,j)-adfac ad_gzetaSA(i,j)=0.0_r8 !^ tl_gzeta2(i,j)=tl_gzeta(i,j)*zwrk(i,j)+ & !^ & gzeta(i,j)*tl_zwrk(i,j) !^ ad_zwrk(i,j)=ad_zwrk(i,j)+gzeta(i,j)*ad_gzeta2(i,j) ad_gzeta(i,j)=ad_gzeta(i,j)+zwrk(i,j)*ad_gzeta2(i,j) ad_gzeta2(i,j)=0.0_r8 !^ tl_gzeta(i,j)=(fac+rhoS(i,j))*tl_zwrk(i,j)+ & !^ & tl_rhoS(i,j)*zwrk(i,j) !^ ad_zwrk(i,j)=ad_zwrk(i,j)+(fac+rhoS(i,j))*ad_gzeta(i,j) ad_rhoS(i,j)=ad_rhoS(i,j)+zwrk(i,j)*ad_gzeta(i,j) ad_gzeta(i,j)=0.0_r8 #else !^ tl_gzeta(i,j)=tl_zwrk(i,j) !^ tl_gzeta2(i,j)=2.0_r8*tl_zwrk(i,j)*zwrk(i,j) !^ ad_zwrk(i,j)=ad_zwrk(i,j)+ & & 2.0_r8*zwrk(i,j)*ad_gzeta2(i,j)+ & & ad_gzeta(i,j) ad_gzeta2(i,j)=0.0_r8 ad_gzeta(i,j)=0.0_r8 #endif !^ tl_zwrk(i,j)=cff5*tl_zeta_new(i,j)+cff4*tl_zeta(i,j,krhs) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)+cff5*ad_zwrk(i,j) ad_zeta(i,j,krhs)=ad_zeta(i,j,krhs)+cff4*ad_zwrk(i,j) ad_zwrk(i,j)=0.0_r8 !^ tl_Dnew(i,j)=tl_zeta_new(i,j)+tl_h(i,j) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)+ad_Dnew(i,j) ad_h(i,j)=ad_h(i,j)+ad_Dnew(i,j) ad_Dnew(i,j)=0.0_r8 #ifdef MASKING !^ tl_zeta_new(i,j)=tl_zeta_new(i,j)*rmask(i,j) !^ ad_zeta_new(i,j)=ad_zeta_new(i,j)*rmask(i,j) #endif !^ tl_zeta_new(i,j)=tl_zeta(i,j,kstp)+ & !^ & pm(i,j)*pn(i,j)*(tl_cff+ & !^ & cff2*tl_rzeta(i,j,kstp)-& !^ & cff3*tl_rzeta(i,j,ptsk)) !^ adfac=pm(i,j)*pn(i,j)*ad_zeta_new(i,j) ad_zeta(i,j,kstp)=ad_zeta(i,j,kstp)+ad_zeta_new(i,j) ad_cff=ad_cff+adfac ad_rzeta(i,j,kstp)=ad_rzeta(i,j,kstp)+adfac*cff2 ad_rzeta(i,j,ptsk)=-adfac*cff3 ad_zeta_new(i,j)=0.0_r8 !^ tl_cff=cff1*((tl_DUon(i,j)-tl_DUon(i+1,j))+ & !^ & (tl_DVom(i,j)-tl_DVom(i,j+1))) !^ adfac=cff1*ad_cff ad_DUon(i ,j )=ad_DUon(i ,j )+adfac ad_DUon(i+1,j )=ad_DUon(i+1,j )-adfac ad_DVom(i ,j )=ad_DVom(i ,j )+adfac ad_DVom(i ,j+1)=ad_DVom(i ,j+1)-adfac ad_cff=0.0_r8 END DO END DO END IF #ifdef WET_DRY_NOT_YET ! !----------------------------------------------------------------------- ! Compute new wet/dry masks. !----------------------------------------------------------------------- ! !^ CALL wetdry_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & IminS, ImaxS, JminS, JmaxS, & # ifdef MASKING !^ & pmask, rmask, umask, vmask, & # endif !^ & h, zeta(:,:,kstp), & # ifdef SOLVE3D !^ & DU_avg1, DV_avg1, & !^ & rmask_wet_avg, & # endif !^ & pmask_wet, pmask_full, & !^ & rmask_wet, rmask_full, & !^ & umask_wet, umask_full, & !^ & vmask_wet, vmask_full) !^ !^ HGA: Need the ADM code here for the above NLM code. !^ #endif END IF STEP_LOOP #ifdef SOLVE3D ! !----------------------------------------------------------------------- ! Compute adjoint time averaged fields over all short timesteps. !----------------------------------------------------------------------- ! ! After all fast time steps are completed, recompute S-coordinate ! surfaces according to the new free surface field. Apply boundary ! conditions to time averaged fields. # ifdef NESTING ! In nesting applications with refinement grids, we need to exchange ! the DU_avg2 and DV_avg2 fluxes boundary information for the case ! that a contact point is at a tile partition. Notice that in such ! cases, we need i+1 and j+1 values for spatial/temporal interpolation. # endif ! IF ((iif(ng).eq.(nfast(ng)+1)).and.PREDICTOR_2D_STEP(ng)) THEN # ifdef DISTRIBUTE # ifdef NESTING !^ CALL mp_exchange2d (ng, tile, iTLM, 2, & !^ & LBi, UBi, LBj, UBj, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_DU_avg2, tl_DV_avg2) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_DU_avg2, ad_DV_avg2) # endif !^ CALL mp_exchange2d (ng, tile, iTLM, 3, & !^ & LBi, UBi, LBj, UBj, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_Zt_avg1, tl_DU_avg1, tl_DV_avg1) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 3, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_Zt_avg1, ad_DU_avg1, ad_DV_avg1) # endif IF (EWperiodic(ng).or.NSperiodic(ng)) THEN # ifdef NESTING !^ CALL exchange_v2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_DV_avg2) !^ CALL ad_exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DV_avg2) !^ CALL exchange_u2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_DU_avg2) CALL ad_exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DU_avg2) # endif !^ CALL exchange_v2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_DV_avg1) !^ CALL ad_exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DV_avg1) !^ CALL exchange_u2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_DU_avg1) !^ CALL ad_exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DU_avg1) !^ CALL exchange_r2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_Zt_avg1) !^ CALL ad_exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_Zt_avg1) END IF END IF ! ! Compute time-averaged fields. ! IF (PREDICTOR_2D_STEP(ng)) THEN IF (FIRST_2D_STEP) THEN ! ! Reset arrays for 2D fields averaged within the short time-steps. ! cff2=(-1.0_r8/12.0_r8)*weight(2,iif(ng)+1,ng) DO j=JstrR,JendR DO i=IstrR,IendR !^ tl_Zt_avg1(i,j)=0.0_r8 !^ ad_Zt_avg1(i,j)=0.0_r8 END DO DO i=Istr,IendR !^ tl_DU_avg2(i,j)=cff2*tl_DUon(i,j) !^ ad_DUon(i,j)=ad_DUon(i,j)+cff2*ad_DU_avg2(i,j) ad_DU_avg2(i,j)=0.0_r8 !^ tl_DU_avg1(i,j)=0.0_r8 !^ ad_DU_avg1(i,j)=0.0_r8 END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR !^ tl_DV_avg2(i,j)=cff2*tl_DVom(i,j) !^ ad_DVom(i,j)=ad_DVom(i,j)+cff2*ad_DV_avg2(i,j) ad_DV_avg2(i,j)=0.0_r8 !^ tl_DV_avg1(i,j)=0.0_r8 !^ ad_DV_avg1(i,j)=0.0_r8 END DO END DO ELSE ! ! Accumulate field averages of previous time-step after they are ! computed in the previous corrector step, updated their boundaries, ! and synchronized. ! cff1=weight(1,iif(ng)-1,ng) cff2=(8.0_r8/12.0_r8)*weight(2,iif(ng) ,ng)- & & (1.0_r8/12.0_r8)*weight(2,iif(ng)+1,ng) DO j=JstrR,JendR DO i=IstrR,IendR !^ tl_Zt_avg1(i,j)=tl_Zt_avg1(i,j)+cff1*tl_zeta(i,j,krhs) !^ ad_zeta(i,j,krhs)=ad_zeta(i,j,krhs)+cff1*ad_Zt_avg1(i,j) END DO DO i=Istr,IendR !^ tl_DU_avg2(i,j)=tl_DU_avg2(i,j)+cff2*tl_DUon(i,j) !^ ad_DUon(i,j)=ad_DUon(i,j)+ & & cff2*ad_DU_avg2(i,j) # ifdef WEC_MELLOR !^ tl_DU_avg1(i,j)=tl_DU_avg1(i,j)-cff1*tl_DUSon(i,j) !^ ad_DUSon(i,j)=ad_DUSon(i,j)- & & cff1*ad_DU_avg1(i,j) # endif !^ tl_DU_avg1(i,j)=tl_DU_avg1(i,j)+cff1*tl_DUon(i,j) !^ ad_DUon(i,j)=ad_DUon(i,j)+ & & cff1*ad_DU_avg1(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR !^ tl_DV_avg2(i,j)=tl_DV_avg2(i,j)+cff2*tl_DVom(i,j) !^ ad_DVom(i,j)=ad_DVom(i,j)+ & & cff2*ad_DV_avg2(i,j) # ifdef WEC_MELLOR !^ tl_DV_avg1(i,j)=tl_DV_avg1(i,j)-cff1*tl_DVSom(i,j) !^ ad_DVSom(i,j)=ad_DVSom(i,j)- & & cff1*ad_DV_avg1(i,j) # endif !^ tl_DV_avg1(i,j)=tl_DV_avg1(i,j)+cff1*tl_DVom(i,j) !^ ad_DVom(i,j)=ad_DVom(i,j)+ & & cff1*ad_DV_avg1(i,j) END DO END DO END IF ELSE IF (FIRST_2D_STEP) THEN cff2=weight(2,iif(ng),ng) ELSE cff2=(5.0_r8/12.0_r8)*weight(2,iif(ng),ng) END IF DO j=JstrR,JendR DO i=Istr,IendR !^ tl_DV_avg2(i,j)=tl_DV_avg2(i,j)+cff2*tl_DVom(i,j) !^ ad_DVom(i,j)=ad_DVom(i,j)+cff2*ad_DV_avg2(i,j) END DO END DO DO j=Jstr,JendR DO i=IstrR,IendR !^ tl_DU_avg2(i,j)=tl_DU_avg2(i,j)+cff2*tl_DUon(i,j) !^ ad_DUon(i,j)=ad_DUon(i,j)+cff2*ad_DU_avg2(i,j) END DO END DO END IF #endif ! !----------------------------------------------------------------------- ! Compute total depth (m) and vertically integrated mass fluxes. !----------------------------------------------------------------------- ! ! Set vertically integrated mass fluxes DUon and DVom along the open ! boundaries in such a way that the integral volume is conserved. ! IF (ANY(ad_VolCons(:,ng))) THEN !^ CALL tl_set_DUV_bc_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & krhs, & #ifdef MASKING !^ & umask, vmask, & #endif !^ & om_v, on_u, ubar, vbar, & !^ & tl_ubar, tl_vbar, & !^ & Drhs, DUon, DVom, & !^ & tl_Drhs, tl_DUon, tl_DVom) !^ CALL ad_set_DUV_bc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, & #ifdef MASKING & umask, vmask, & #endif & om_v, on_u, ubar, vbar, & & ad_ubar, ad_vbar, & & Drhs, DUon, DVom, & & ad_Drhs, ad_DUon, ad_DVom) END IF #ifdef DISTRIBUTE ! ! In distributed-memory, the I- and J-ranges are different and a ! special exchange is done to avoid having three ghost points for ! high order numerical stencils. Notice that a private array is ! passed below to the exchange routine. It also applies periodic ! boundary conditions, if appropriate and no partitions in I- or ! J-directions. ! !^ CALL mp_exchange2d (ng, tile, iTLM, 2, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_DUon, tl_DVom) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 2, & & IminS, ImaxS, JminS, JmaxS, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_DUon, ad_DVom) IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !^ CALL exchange_u2d_tile (ng, tile, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & tl_DUon) !^ CALL ad_exchange_u2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & ad_DUon) !^ CALL exchange_v2d_tile (ng, tile, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & tl_DVom) !^ CALL ad_exchange_v2d_tile (ng, tile, & & IminS, ImaxS, JminS, JmaxS, & & ad_DVom) END IF #endif #if defined DISTRIBUTE && !defined NESTING ! ! Compute adjoint adjoint vertically integrated mass fluxes. ! DO j=JstrV-1,Jendp2 DO i=IstrU-2,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) # ifdef WEC_MELLOR !^ tl_DVom(i,j)=tl_DVom(i,j)+tl_DVSom(i,j) !^ ad_DVSom(i,j)=ad_DVSom(i,j)+ad_DVom(i,j) !^ tl_DVSom(i,j)=tl_vbar_stokes(i,j)*cff1+ & !^ & vbar_stokes(i,j)*tl_cff1 !^ ad_cff1=ad_cff1+vbar_stokes(i,j)*ad_DVSom(i,j) ad_vbar_stokes(i,j)=ad_vbar_stokes(i,j)+cff1*ad_DVSom(i,j) ad_DVSom(i,j)=0.0_r8 # endif !^ tl_DVom(i,j)=tl_vbar(i,j,krhs)*cff1+ & !^ & vbar(i,j,krhs)*tl_cff1 !^ ad_cff1=ad_cff1+vbar(i,j,krhs)*ad_DVom(i,j) ad_vbar(i,j,krhs)=ad_vbar(i,j,krhs)+cff1*ad_DVom(i,j) ad_DVom(i,j)=0.0_r8 !^ tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i,j-1)) !^ adfac=cff*ad_cff1 ad_Drhs(i,j-1)=ad_Drhs(i,j-1)+adfac ad_Drhs(i,j )=ad_Drhs(i,j )+adfac ad_cff1=0.0_r8 END DO END DO DO j=JstrV-2,Jendp2 DO i=IstrU-1,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) # ifdef WEC_MELLOR !^ tl_DUon(i,j)=tl_DUon(i,j)+tl_DUSon(i,j) !^ ad_DUSon(i,j)=ad_DUSon(i,j)+ad_DUon(i,j) !^ tl_DUSon(i,j)=tl_ubar_stokes(i,j)*cff1+ & !^ & ubar_stokes(i,j)*tl_cff1 !^ ad_cff1=ad_cff1+ubar_stokes(i,j)*ad_DUSon(i,j) ad_ubar_stokes(i,j)=ad_ubar_stokes(i,j)+cff1*ad_DUSon(i,j) ad_DUSon(i,j)=0.0_r8 # endif !^ tl_DUon(i,j)=tl_ubar(i,j,krhs)*cff1+ & !^ & ubar(i,j,krhs)*tl_cff1 !^ ad_cff1=ad_cff1+ubar(i,j,krhs)*ad_DUon(i,j) ad_ubar(i,j,krhs)=ad_ubar(i,j,krhs)+cff1*ad_DUon(i,j) ad_DUon(i,j)=0.0_r8 !^ tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i-1,j)) !^ adfac=cff*ad_cff1 ad_Drhs(i-1,j)=ad_Drhs(i-1,j)+adfac ad_Drhs(i ,j)=ad_Drhs(i ,j)+adfac ad_cff1=0.0_r8 END DO END DO ! ! Compute adjoint total depth. ! DO j=JstrV-2,Jendp2 DO i=IstrU-2,Iendp2 !^ tl_Drhs(i,j)=tl_zeta(i,j,krhs)+tl_h(i,j) !^ ad_zeta(i,j,krhs)=ad_zeta(i,j,krhs)+ad_Drhs(i,j) ad_h(i,j)=ad_h(i,j)+ad_Drhs(i,j) ad_Drhs(i,j)=0.0_r8 END DO END DO #else DO j=JstrVm2,Jendp2 DO i=IstrUm2-1,Iendp2 cff=0.5_r8*om_v(i,j) cff1=cff*(Drhs(i,j)+Drhs(i,j-1)) # ifdef WEC_MELLOR !^ tl_DVom(i,j)=tl_DVom(i,j)+tl_DVSom(i,j) !^ ad_DVSom(i,j)=ad_DVSom(i,j)+ad_DVom(i,j) !^ tl_DVSom(i,j)=tl_vbar_stokes(i,j)*cff1+ & !^ & vbar_stokes(i,j)*tl_cff1 !^ ad_cff1=ad_cff1+vbar_stokes(i,j)*ad_DVSom(i,j) ad_vbar_stokes(i,j)=ad_vbar_stokes(i,j)+cff1*ad_DVSom(i,j) ad_DVSom(i,j)=0.0_r8 # endif !^ tl_DVom(i,j)=tl_vbar(i,j,krhs)*cff1+ & !^ & vbar(i,j,krhs)*tl_cff1 !^ ad_cff1=ad_cff1+vbar(i,j,krhs)*ad_DVom(i,j) ad_vbar(i,j,krhs)=ad_vbar(i,j,krhs)+cff1*ad_DVom(i,j) ad_DVom(i,j)=0.0_r8 !^ tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i,j-1)) !^ adfac=cff*ad_cff1 ad_Drhs(i,j-1)=ad_Drhs(i,j-1)+adfac ad_Drhs(i,j )=ad_Drhs(i,j )+adfac ad_cff1=0.0_r8 END DO END DO DO j=JstrVm2-1,Jendp2 DO i=IstrUm2,Iendp2 cff=0.5_r8*on_u(i,j) cff1=cff*(Drhs(i,j)+Drhs(i-1,j)) # ifdef WEC_MELLOR !^ tl_DUon(i,j)=tl_DUon(i,j)+tl_DUSon(i,j) !^ ad_DUSon(i,j)=ad_DUSon(i,j)+ad_DUon(i,j) !^ tl_DUSon(i,j)=tl_ubar_stokes(i,j)*cff1+ & !^ & ubar_stokes(i,j)*tl_cff1 !^ ad_cff1=ad_cff1+ubar_stokes(i,j)*ad_DUSon(i,j) ad_ubar_stokes(i,j)=ad_ubar_stokes(i,j)+cff1*ad_DUSon(i,j) ad_DUSon(i,j)=0.0_r8 # endif !^ tl_DUon(i,j)=tl_ubar(i,j,krhs)*cff1+ & !^ & ubar(i,j,krhs)*tl_cff1 !^ ad_cff1=ad_cff1+ubar(i,j,krhs)*ad_DUon(i,j) ad_ubar(i,j,krhs)=ad_ubar(i,j,krhs)+cff1*ad_DUon(i,j) ad_DUon(i,j)=0.0_r8 !^ tl_cff1=cff*(tl_Drhs(i,j)+tl_Drhs(i-1,j)) !^ adfac=cff*ad_cff1 ad_Drhs(i-1,j)=ad_Drhs(i-1,j)+adfac ad_Drhs(i ,j)=ad_Drhs(i ,j)+adfac ad_cff1=0.0_r8 END DO END DO ! ! Compute adjoint total depth. ! DO j=JstrVm2-1,Jendp2 DO i=IstrUm2-1,Iendp2 !^ tl_Drhs(i,j)=tl_zeta(i,j,krhs)+tl_h(i,j) !^ ad_zeta(i,j,krhs)=ad_zeta(i,j,krhs)+ad_Drhs(i,j) ad_h(i,j)=ad_h(i,j)+ad_Drhs(i,j) ad_Drhs(i,j)=0.0_r8 END DO END DO #endif ! RETURN END SUBROUTINE ad_step2d_tile END MODULE ad_step2d_mod