MODULE tl_step3d_t_mod ! !git $Id$ !svn $Id: tl_step3d_t.F 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routine time-steps tangent linear tracer equations. Notice ! ! that advective and diffusive terms are time-stepped differently. ! ! It applies the corrector time-step for horizontal and vertical ! ! advection, vertical diffusion, nudging if necessary, and lateral ! ! boundary conditions. ! ! ! ! A different horizontal/vertical advection scheme is allowed for ! ! each tracer. If the HSIMT monotonic scheme, it is applied to both ! ! horizontal and vertical advective fluxes. It is not coded yet, it ! ! is problematic since it requires NghostPoints=3. ! ! ! ! The MPDATA scheme is not supported in the TLM, RPM, and ADM. ! ! ! ! Notice that at input the tracer arrays have: ! ! ! ! t(:,:,:,nnew,:) m Tunits n+1 horizontal/vertical diffusion ! ! terms plus source/sink terms ! ! (biology, sediment), if any ! ! ! ! t(:,:,:,3 ,:) Tunits n+1/2 advective terms and vertical ! ! diffusion predictor step ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: tl_step3d_t ! CONTAINS ! !*********************************************************************** SUBROUTINE tl_step3d_t (ng, tile) !*********************************************************************** ! USE mod_param USE mod_grid USE mod_mixing USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & "ROMS/Tangent/tl_step3d_t.F" ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private ! storage arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J) directions and ! MAX(I,J) directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL wclock_on (ng, iTLM, 35, 71, MyFile) CALL tl_step3d_t_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), nstp(ng), nnew(ng), & & GRID(ng) % rmask, & & GRID(ng) % umask, & & GRID(ng) % vmask, & & GRID(ng) % omn, & & GRID(ng) % om_u, & & GRID(ng) % om_v, & & GRID(ng) % on_u, & & GRID(ng) % on_v, & & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % Hz, & & GRID(ng) % tl_Hz, & & GRID(ng) % Huon, & & GRID(ng) % tl_Huon, & & GRID(ng) % Hvom, & & GRID(ng) % tl_Hvom, & & GRID(ng) % z_r, & & GRID(ng) % tl_z_r, & & MIXING(ng) % Akt, & & MIXING(ng) % tl_Akt, & & OCEAN(ng) % W, & & OCEAN(ng) % tl_W, & & OCEAN(ng) % t, & & OCEAN(ng) % tl_t) CALL wclock_off (ng, iTLM, 35, 115, MyFile) ! RETURN END SUBROUTINE tl_step3d_t ! !*********************************************************************** SUBROUTINE tl_step3d_t_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, nstp, nnew, & & rmask, umask, vmask, & & omn, om_u, om_v, on_u, on_v, & & pm, pn, & & Hz, tl_Hz, & & Huon, tl_Huon, & & Hvom, tl_Hvom, & & z_r, tl_z_r, & & Akt, tl_Akt, & & W, tl_W, & & t, tl_t) !*********************************************************************** ! USE mod_param USE mod_clima USE mod_scalars USE mod_sources ! USE exchange_3d_mod, ONLY : exchange_r3d_tile USE mp_exchange_mod, ONLY : mp_exchange3d USE mp_exchange_mod, ONLY : mp_exchange4d USE tl_t3dbc_mod, ONLY : tl_t3dbc_tile ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs, nstp, nnew ! real(r8), intent(in) :: rmask(LBi:,LBj:) real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) real(r8), intent(in) :: omn(LBi:,LBj:) real(r8), intent(in) :: om_u(LBi:,LBj:) real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: on_v(LBi:,LBj:) real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: Huon(LBi:,LBj:,:) real(r8), intent(in) :: Hvom(LBi:,LBj:,:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: Akt(LBi:,LBj:,0:,:) real(r8), intent(in) :: t(LBi:,LBj:,:,:,:) real(r8), intent(in) :: W(LBi:,LBj:,0:) real(r8), intent(in) :: tl_Hz(LBi:,LBj:,:) real(r8), intent(in) :: tl_Huon(LBi:,LBj:,:) real(r8), intent(in) :: tl_Hvom(LBi:,LBj:,:) real(r8), intent(in) :: tl_z_r(LBi:,LBj:,:) real(r8), intent(in) :: tl_Akt(LBi:,LBj:,0:,:) real(r8), intent(in) :: tl_W(LBi:,LBj:,0:) real(r8), intent(inout) :: tl_t(LBi:,LBj:,:,:,:) ! ! Local variable declarations. ! logical :: LapplySrc, Lhsimt ! integer :: JminT, JmaxT integer :: Isrc, Jsrc integer :: i, ic, is, itrc, j, k, ltrc real(r8), parameter :: eps = 1.0E-16_r8 real(r8) :: cff, cff1, cff2, cff3 real(r8) :: tl_cff, tl_cff1, tl_cff2, tl_cff3 real(r8), dimension(IminS:ImaxS,0:N(ng)) :: CF real(r8), dimension(IminS:ImaxS,0:N(ng)) :: BC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: DC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: FC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_CF real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_BC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_DC real(r8), dimension(IminS:ImaxS,0:N(ng)) :: tl_FC real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: curv real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_FE real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_FX real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_curv real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: tl_grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: oHz real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: tl_oHz ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Time-step horizontal advection term. !----------------------------------------------------------------------- ! Lhsimt =ANY(tl_Hadvection(:,ng)%HSIMT).and. & & ANY(tl_Vadvection(:,ng)%HSIMT) ! ! Compute reciprocal thickness, 1/Hz. ! IF (Lhsimt) THEN DO k=1,N(ng) DO j=Jstrm2,Jendp2 DO i=Istrm2,Iendp2 oHz(i,j,k)=1.0_r8/Hz(i,j,k) tl_oHz(i,j,k)=-oHz(i,j,k)*oHz(i,j,k)*tl_Hz(i,j,k) END DO END DO END DO ELSE DO k=1,N(ng) DO j=Jstr,Jend DO i=Istr,Iend oHz(i,j,k)=1.0_r8/Hz(i,j,k) tl_oHz(i,j,k)=-oHz(i,j,k)*oHz(i,j,k)*tl_Hz(i,j,k) END DO END DO END DO END IF ! ! Horizontal tracer advection. It is possible to have a different ! advection schme for each tracer. ! T_LOOP1 : DO itrc=1,NT(ng) ! ! Compute tangent linear horizontal tracer advection fluxes. ! K_LOOP : DO k=1,N(ng) ! HADV_FLUX : IF (tl_Hadvection(itrc,ng)%CENTERED2) THEN ! ! Second-order, centered differences horizontal advective fluxes. ! DO j=Jstr,Jend DO i=Istr,Iend+1 !^ FX(i,j)=Huon(i,j,k)* & !^ & 0.5_r8*(t(i-1,j,k,3,itrc)+ & !^ & t(i ,j,k,3,itrc)) !^ tl_FX(i,j)=0.5_r8* & & (tl_Huon(i,j,k)*(t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc))+ & & Huon(i,j,k)*(tl_t(i-1,j,k,3,itrc)+ & & tl_t(i ,j,k,3,itrc))) END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend !^ FE(i,j)=Hvom(i,j,k)* & !^ & 0.5_r8*(t(i,j-1,k,3,itrc)+ & !^ & t(i,j ,k,3,itrc)) !^ tl_FE(i,j)=0.5_r8* & & (tl_Hvom(i,j,k)*(t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc))+ & & Hvom(i,j,k)*(tl_t(i,j-1,k,3,itrc)+ & & tl_t(i,j ,k,3,itrc))) END DO END DO ! ELSE IF (tl_Hadvection(itrc,ng)%MPDATA) THEN ! ! First-order, upstream differences horizontal advective fluxes. ! CONTINUE ! not supported ! ELSE IF (tl_Hadvection(itrc,ng)%HSIMT) THEN ! ! Third High-order Spatial Interpolation at the Middle Temporal level ! (HSIMT; Wu and Zhu, 2010) with a Total Variation Diminishing (TVD) ! limiter horizontal advection fluxes. ! ! Hui Wu and Jianrong Zhu, 2010: Advection scheme with 3rd high-order ! spatial interpolation at the middle temporal level and its ! application to saltwater intrusion in the Changjiang Estuary, ! Ocean Modelling 33, 33-51, doi:10.1016/j.ocemod.2009.12.001 ! CONTINUE ! not supported ! ELSE IF ((tl_Hadvection(itrc,ng)%AKIMA4).or. & & (tl_Hadvection(itrc,ng)%CENTERED4).or. & & (tl_Hadvection(itrc,ng)%SPLIT_U3).or. & & (tl_Hadvection(itrc,ng)%UPSTREAM3)) THEN ! ! Fourth-order Akima, fourth-order centered differences, or third-order ! upstream-biased horizontal advective fluxes. ! DO j=Jstr,Jend DO i=Istrm1,Iendp2 FX(i,j)=t(i ,j,k,3,itrc)- & & t(i-1,j,k,3,itrc) tl_FX(i,j)=tl_t(i ,j,k,3,itrc)- & & tl_t(i-1,j,k,3,itrc) FX(i,j)=FX(i,j)*umask(i,j) tl_FX(i,j)=tl_FX(i,j)*umask(i,j) END DO END DO IF (.not.(CompositeGrid(iwest,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend FX(Istr-1,j)=FX(Istr,j) tl_FX(Istr-1,j)=tl_FX(Istr,j) END DO END IF END IF IF (.not.(CompositeGrid(ieast,ng).or.EWperiodic(ng))) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend FX(Iend+2,j)=FX(Iend+1,j) tl_FX(Iend+2,j)=tl_FX(Iend+1,j) END DO END IF END IF ! DO j=Jstr,Jend DO i=Istr-1,Iend+1 IF (tl_Hadvection(itrc,ng)%UPSTREAM3) THEN curv(i,j)=FX(i+1,j)-FX(i,j) tl_curv(i,j)=tl_FX(i+1,j)-tl_FX(i,j) ELSE IF (tl_Hadvection(itrc,ng)%AKIMA4) THEN cff=2.0_r8*FX(i+1,j)*FX(i,j) tl_cff=2.0_r8*(tl_FX(i+1,j)*FX(i,j)+ & & FX(i+1,j)*tl_FX(i,j)) IF (cff.gt.eps) THEN grad(i,j)=cff/(FX(i+1,j)+FX(i,j)) tl_grad(i,j)=((FX(i+1,j)+FX(i,j))*tl_cff- & & cff*(tl_FX(i+1,j)+tl_FX(i,j)))/ & & ((FX(i+1,j)+FX(i,j))* & & (FX(i+1,j)+FX(i,j))) ELSE grad(i,j)=0.0_r8 tl_grad(i,j)=0.0_r8 END IF ELSE IF ((tl_Hadvection(itrc,ng)%CENTERED4).or. & & (tl_Hadvection(itrc,ng)%SPLIT_U3)) THEN grad(i,j)=0.5_r8*(FX(i+1,j)+FX(i,j)) tl_grad(i,j)=0.5_r8*(tl_FX(i+1,j)+tl_FX(i,j)) END IF END DO END DO ! cff1=1.0_r8/6.0_r8 cff2=1.0_r8/3.0_r8 DO j=Jstr,Jend DO i=Istr,Iend+1 IF (tl_Hadvection(itrc,ng)%UPSTREAM3) THEN !^ FX(i,j)=Huon(i,j,k)*0.5_r8* & !^ & (t(i-1,j,k,3,itrc)+ & !^ & t(i ,j,k,3,itrc))- & !^ & cff1*(curv(i-1,j)*MAX(Huon(i,j,k),0.0_r8)+ & !^ & curv(i ,j)*MIN(Huon(i,j,k),0.0_r8)) !^ tl_FX(i,j)=0.5_r8* & & (tl_Huon(i,j,k)* & & (t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc))+ & & Huon(i,j,k)* & & (tl_t(i-1,j,k,3,itrc)+ & & tl_t(i ,j,k,3,itrc)))- & & cff1* & & (tl_curv(i-1,j)*MAX(Huon(i,j,k),0.0_r8)+ & & curv(i-1,j)* & & (0.5_r8+SIGN(0.5_r8, Huon(i,j,k)))* & & tl_Huon(i,j,k)+ & & tl_curv(i ,j)*MIN(Huon(i,j,k),0.0_r8)+ & & curv(i ,j)* & & (0.5_r8+SIGN(0.5_r8,-Huon(i,j,k)))* & & tl_Huon(i,j,k)) ELSE IF ((tl_Hadvection(itrc,ng)%AKIMA4).or. & & (tl_Hadvection(itrc,ng)%CENTERED4).or. & & (tl_Hadvection(itrc,ng)%SPLIT_U3)) THEN !^ FX(i,j)=Huon(i,j,k)*0.5_r8* & !^ & (t(i-1,j,k,3,itrc)+ & !^ & t(i ,j,k,3,itrc)- & !^ & cff2*(grad(i ,j)- & !^ & grad(i-1,j))) !^ tl_FX(i,j)=0.5_r8* & & (tl_Huon(i,j,k)* & & (t(i-1,j,k,3,itrc)+ & & t(i ,j,k,3,itrc)- & & cff2*(grad(i ,j)- & & grad(i-1,j)))+ & & Huon(i,j,k)* & & (tl_t(i-1,j,k,3,itrc)+ & & tl_t(i ,j,k,3,itrc)- & & cff2*(tl_grad(i ,j)- & & tl_grad(i-1,j)))) END IF END DO END DO ! DO j=Jstrm1,Jendp2 DO i=Istr,Iend FE(i,j)=t(i,j ,k,3,itrc)- & & t(i,j-1,k,3,itrc) tl_FE(i,j)=tl_t(i,j ,k,3,itrc)- & & tl_t(i,j-1,k,3,itrc) FE(i,j)=FE(i,j)*vmask(i,j) tl_FE(i,j)=tl_FE(i,j)*vmask(i,j) END DO END DO IF (.not.(CompositeGrid(isouth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend FE(i,Jstr-1)=FE(i,Jstr) tl_FE(i,Jstr-1)=tl_FE(i,Jstr) END DO END IF END IF IF (.not.(CompositeGrid(inorth,ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend FE(i,Jend+2)=FE(i,Jend+1) tl_FE(i,Jend+2)=tl_FE(i,Jend+1) END DO END IF END IF ! DO j=Jstr-1,Jend+1 DO i=Istr,Iend IF (tl_Hadvection(itrc,ng)%UPSTREAM3) THEN curv(i,j)=FE(i,j+1)-FE(i,j) tl_curv(i,j)=tl_FE(i,j+1)-tl_FE(i,j) ELSE IF (tl_Hadvection(itrc,ng)%AKIMA4) THEN cff=2.0_r8*FE(i,j+1)*FE(i,j) tl_cff=2.0_r8*(tl_FE(i,j+1)*FE(i,j)+ & & FE(i,j+1)*tl_FE(i,j)) IF (cff.gt.eps) THEN grad(i,j)=cff/(FE(i,j+1)+FE(i,j)) tl_grad(i,j)=((FE(i,j+1)+FE(i,j))*tl_cff- & & cff*(tl_FE(i,j+1)+tl_FE(i,j)))/ & & ((FE(i,j+1)+FE(i,j))* & & (FE(i,j+1)+FE(i,j))) ELSE grad(i,j)=0.0_r8 tl_grad(i,j)=0.0_r8 END IF ELSE IF ((tl_Hadvection(itrc,ng)%CENTERED4).or. & & (tl_Hadvection(itrc,ng)%SPLIT_U3)) THEN grad(i,j)=0.5_r8*(FE(i,j+1)+FE(i,j)) tl_grad(i,j)=0.5_r8*(tl_FE(i,j+1)+tl_FE(i,j)) END IF END DO END DO ! cff1=1.0_r8/6.0_r8 cff2=1.0_r8/3.0_r8 DO j=Jstr,Jend+1 DO i=Istr,Iend IF (tl_Hadvection(itrc,ng)%UPSTREAM3) THEN !^ FE(i,j)=Hvom(i,j,k)*0.5_r8* & !^ & (t(i,j-1,k,3,itrc)+ & !^ & t(i,j ,k,3,itrc))- & !^ & cff1*(curv(i,j-1)*MAX(Hvom(i,j,k),0.0_r8)+ & !^ & curv(i,j )*MIN(Hvom(i,j,k),0.0_r8)) !^ tl_FE(i,j)=0.5_r8* & & (tl_Hvom(i,j,k)* & & (t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc))+ & & Hvom(i,j,k)* & & (tl_t(i,j-1,k,3,itrc)+ & & tl_t(i,j ,k,3,itrc)))- & & cff1* & & (tl_curv(i,j-1)*MAX(Hvom(i,j,k),0.0_r8)+ & & curv(i,j-1)* & & (0.5_r8+SIGN(0.5_r8, Hvom(i,j,k)))* & & tl_Hvom(i,j,k)+ & & tl_curv(i,j )*MIN(Hvom(i,j,k),0.0_r8)+ & & curv(i,j )* & & (0.5_r8+SIGN(0.5_r8,-Hvom(i,j,k)))* & & tl_Hvom(i,j,k)) ELSE IF ((tl_Hadvection(itrc,ng)%AKIMA4).or. & & (tl_Hadvection(itrc,ng)%CENTERED4).or. & & (tl_Hadvection(itrc,ng)%SPLIT_U3)) THEN !^ FE(i,j)=Hvom(i,j,k)*0.5_r8* & !^ & (t(i,j-1,k,3,itrc)+ & !^ & t(i,j ,k,3,itrc)- & !^ & cff2*(grad(i,j )- & !^ & grad(i,j-1))) !^ tl_FE(i,j)=0.5_r8* & & (tl_Hvom(i,j,k)* & & (t(i,j-1,k,3,itrc)+ & & t(i,j ,k,3,itrc)- & & cff2*(grad(i,j )- & & grad(i,j-1)))+ & & Hvom(i,j,k)* & & (tl_t(i,j-1,k,3,itrc)+ & & tl_t(i,j ,k,3,itrc)- & & cff2*(tl_grad(i,j )- & & tl_grad(i,j-1)))) END IF END DO END DO END IF HADV_FLUX ! ! Apply tracers point sources to the horizontal advection terms, ! if any. ! ! Dsrc(is) = 0, flow across grid cell u-face (positive or negative) ! Dsrc(is) = 1, flow across grid cell v-face (positive or negative) ! IF (LuvSrc(ng)) THEN DO is=1,Nsrc(ng) Isrc=SOURCES(ng)%Isrc(is) Jsrc=SOURCES(ng)%Jsrc(is) IF (INT(SOURCES(ng)%Dsrc(is)).eq.0) THEN IF ((tl_Hadvection(itrc,ng)%MPDATA).or. & & (tl_Hadvection(itrc,ng)%HSIMT)) THEN LapplySrc=(IstrUm2.le.Isrc).and. & & (Isrc.le.Iendp3).and. & & (JstrVm2.le.Jsrc).and. & & (Jsrc.le.Jendp2i) ELSE LapplySrc=(Istr.le.Isrc).and. & & (Isrc.le.Iend+1).and. & & (Jstr.le.Jsrc).and. & & (Jsrc.le.Jend) END IF IF (LapplySrc) THEN IF (LtracerSrc(itrc,ng)) THEN !^ FX(Isrc,Jsrc)=Huon(Isrc,Jsrc,k)* & !^ & SOURCES(ng)%Tsrc(is,k,itrc) !^ tl_FX(Isrc,Jsrc)=tl_Huon(Isrc,Jsrc,k)* & & SOURCES(ng)%Tsrc(is,k,itrc)+ & & Huon(Isrc,Jsrc,k)* & & SOURCES(ng)%tl_Tsrc(is,k,itrc) ELSE IF ((rmask(Isrc ,Jsrc).eq.0.0_r8).and. & & (rmask(Isrc-1,Jsrc).eq.1.0_r8)) THEN !^ FX(Isrc,Jsrc)=Huon(Isrc,Jsrc,k)* & !^ & t(Isrc-1,Jsrc,k,3,itrc) !^ tl_FX(Isrc,Jsrc)=tl_Huon(Isrc,Jsrc,k)* & & t(Isrc-1,Jsrc,k,3,itrc)+ & & Huon(Isrc,Jsrc,k)* & & tl_t(Isrc-1,Jsrc,k,3,itrc) ELSE IF ((rmask(Isrc ,Jsrc).eq.1.0_r8).and. & & (rmask(Isrc-1,Jsrc).eq.0.0_r8)) THEN !^ FX(Isrc,Jsrc)=Huon(Isrc,Jsrc,k)* & !^ & t(Isrc ,Jsrc,k,3,itrc) !^ tl_FX(Isrc,Jsrc)=tl_Huon(Isrc,Jsrc,k)* & & t(Isrc ,Jsrc,k,3,itrc)+ & & Huon(Isrc,Jsrc,k)* & & tl_t(Isrc ,Jsrc,k,3,itrc) END IF END IF END IF ELSE IF (INT(SOURCES(ng)%Dsrc(is)).eq.1) THEN IF ((tl_Hadvection(itrc,ng)%MPDATA).or. & & (tl_Hadvection(itrc,ng)%HSIMT)) THEN LapplySrc=(IstrUm2.le.Isrc).and. & & (Isrc.le.Iendp2i).and. & & (JstrVm2.le.Jsrc).and. & & (Jsrc.le.Jendp3) ELSE LapplySrc=(Istr.le.Isrc).and. & & (Isrc.le.Iend).and. & & (Jstr.le.Jsrc).and. & & (Jsrc.le.Jend+1) END IF IF (LapplySrc) THEN IF (LtracerSrc(itrc,ng)) THEN !^ FE(Isrc,Jsrc)=Hvom(Isrc,Jsrc,k)* & !^ & SOURCES(ng)%Tsrc(is,k,itrc) !^ tl_FE(Isrc,Jsrc)=tl_Hvom(Isrc,Jsrc,k)* & & SOURCES(ng)%Tsrc(is,k,itrc)+ & & Hvom(Isrc,Jsrc,k)* & & SOURCES(ng)%tl_Tsrc(is,k,itrc) ELSE IF ((rmask(Isrc,Jsrc ).eq.0.0_r8).and. & & (rmask(Isrc,Jsrc-1).eq.1.0_r8)) THEN !^ FE(Isrc,Jsrc)=Hvom(Isrc,Jsrc,k)* & !^ & t(Isrc,Jsrc-1,k,3,itrc) !^ tl_FE(Isrc,Jsrc)=tl_Hvom(Isrc,Jsrc,k)* & & t(Isrc,Jsrc-1,k,3,itrc)+ & & Hvom(Isrc,Jsrc,k)* & & tl_t(Isrc,Jsrc-1,k,3,itrc) ELSE IF ((rmask(Isrc,Jsrc ).eq.1.0_r8).and. & & (rmask(Isrc,Jsrc-1).eq.0.0_r8)) THEN !^ FE(Isrc,Jsrc)=Hvom(Isrc,Jsrc,k)* & !^ & t(Isrc,Jsrc ,k,3,itrc) !^ tl_FE(Isrc,Jsrc)=tl_Hvom(Isrc,Jsrc,k)* & & t(Isrc,Jsrc ,k,3,itrc)+ & & Hvom(Isrc,Jsrc,k)* & & tl_t(Isrc,Jsrc ,k,3,itrc) END IF END IF END IF END IF END DO END IF ! ! Time-step horizontal advection term. Advective fluxes have units of ! Tunits m3/s. The new tracer has units of m Tunits. ! HADV_STEPPING : IF (tl_Hadvection(itrc,ng)%MPDATA) THEN CONTINUE ! not supported ELSE DO j=Jstr,Jend DO i=Istr,Iend cff=dt(ng)*pm(i,j)*pn(i,j) !^ cff1=cff*(FX(i+1,j)-FX(i,j)) !^ tl_cff1=cff*(tl_FX(i+1,j)-tl_FX(i,j)) !^ cff2=cff*(FE(i,j+1)-FE(i,j)) !^ tl_cff2=cff*(tl_FE(i,j+1)-tl_FE(i,j)) !^ cff3=cff1+cff2 !^ tl_cff3=tl_cff1+tl_cff2 !^ t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)-cff3 !^ tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff3 END DO END DO END IF HADV_STEPPING END DO K_LOOP END DO T_LOOP1 ! !----------------------------------------------------------------------- ! Time-step vertical advection term. !----------------------------------------------------------------------- ! T_LOOP2 : DO itrc=1,NT(ng) IF (tl_Vadvection(itrc,ng)%MPDATA) THEN JminT=JstrVm2 JmaxT=Jendp2i ELSE JminT=Jstr JmaxT=Jend END IF ! J_LOOP1 : DO j=JminT,JmaxT ! start pipelined J-loop ! VADV_FLUX : IF (tl_Vadvection(itrc,ng)%SPLINES) THEN ! ! Build conservative parabolic splines for the vertical derivatives ! "FC" of the tracer. Then, the interfacial "FC" values are ! converted to vertical advective flux (Tunits m3/s). ! DO i=Istr,Iend FC(i,0)=2.0_r8*t(i,j,1,3,itrc) CF(i,1)=1.0_r8 END DO DO k=1,N(ng)-1 DO i=Istr,Iend cff=1.0_r8/(2.0_r8*Hz(i,j,k)+ & & Hz(i,j,k+1)*(2.0_r8-CF(i,k))) CF(i,k+1)=cff*Hz(i,j,k) FC(i,k)=cff*(3.0_r8*(Hz(i,j,k )*t(i,j,k+1,3,itrc)+ & & Hz(i,j,k+1)*t(i,j,k ,3,itrc))- & & Hz(i,j,k+1)*FC(i,k-1)) END DO END DO DO i=Istr,Iend FC(i,N(ng))=(2.0_r8*t(i,j,N(ng),3,itrc)-FC(i,N(ng)-1))/ & & (1.0_r8-CF(i,N(ng))) END DO DO k=N(ng)-1,0,-1 DO i=Istr,Iend FC(i,k)=FC(i,k)-CF(i,k+1)*FC(i,k+1) END DO END DO ! ! Now the tangent linear spline code. ! DO i=Istr,Iend !^ FC(i,0)=2.0_r8*t(i,j,1,3,itrc) !^ tl_FC(i,0)=2.0_r8*tl_t(i,j,1,3,itrc) CF(i,1)=1.0_r8 END DO DO k=1,N(ng)-1 DO i=Istr,Iend cff=1.0_r8/(2.0_r8*Hz(i,j,k)+ & & Hz(i,j,k+1)*(2.0_r8-CF(i,k))) CF(i,k+1)=cff*Hz(i,j,k) tl_FC(i,k)=cff* & & (3.0_r8*(Hz(i,j,k )*tl_t(i,j,k+1,3,itrc)+ & & Hz(i,j,k+1)*tl_t(i,j,k ,3,itrc)+ & & tl_Hz(i,j,k )*t(i,j,k+1,3,itrc)+ & & tl_Hz(i,j,k+1)*t(i,j,k ,3,itrc))- & & (tl_Hz(i,j,k+1)*FC(i,k-1)+ & & 2.0_r8*(tl_Hz(i,j,k )+ & & tl_Hz(i,j,k+1))*FC(i,k)+ & & tl_Hz(i,j,k )*FC(i,k+1))- & & Hz(i,j,k+1)*tl_FC(i,k-1)) END DO END DO DO i=Istr,Iend !^ FC(i,N(ng))=(2.0_r8*t(i,j,N(ng),3,itrc)-FC(i,N(ng)-1))/ & !^ & (1.0_r8-CF(i,N(ng))) !^ tl_FC(i,N(ng))=(2.0_r8*tl_t(i,j,N(ng),3,itrc)- & & tl_FC(i,N(ng)-1))/ & & (1.0_r8-CF(i,N(ng))) END DO DO k=N(ng)-1,0,-1 DO i=Istr,Iend !^ FC(i,k)=FC(i,k)-CF(i,k+1)*FC(i,k+1) !^ tl_FC(i,k)=tl_FC(i,k)-CF(i,k+1)*tl_FC(i,k+1) !^ FC(i,k+1)=W(i,j,k+1)*FC(i,k+1) !^ tl_FC(i,k+1)=tl_W(i,j,k+1)*FC(i,k+1)+ & & W(i,j,k+1)*tl_FC(i,k+1) END DO END DO DO i=Istr,Iend !^ FC(i,N(ng))=0.0_r8 !^ tl_FC(i,N(ng))=0.0_r8 !^ FC(i,0)=0.0_r8 !^ tl_FC(i,0)=0.0_r8 END DO ! ! Now complete the computation of the flux array FC. ! DO k=N(ng)-1,0,-1 DO i=Istr,Iend FC(i,k+1)=W(i,j,k+1)*FC(i,k+1) END DO END DO DO i=Istr,Iend FC(i,N(ng))=0.0_r8 FC(i,0)=0.0_r8 END DO ! ELSE IF (tl_Vadvection(itrc,ng)%AKIMA4) THEN ! ! Fourth-order, Akima vertical advective flux (Tunits m3/s). ! DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=t(i,j,k+1,3,itrc)- & & t(i,j,k ,3,itrc) tl_FC(i,k)=tl_t(i,j,k+1,3,itrc)- & & tl_t(i,j,k ,3,itrc) END DO END DO DO i=Istr,Iend FC(i,0)=FC(i,1) tl_FC(i,0)=tl_FC(i,1) FC(i,N(ng))=FC(i,N(ng)-1) tl_FC(i,N(ng))=tl_FC(i,N(ng)-1) END DO DO k=1,N(ng) DO i=Istr,Iend cff=2.0_r8*FC(i,k)*FC(i,k-1) tl_cff=2.0_r8*(tl_FC(i,k)*FC(i,k-1)+ & & FC(i,k)*tl_FC(i,k-1)) IF (cff.gt.eps) THEN CF(i,k)=cff/(FC(i,k)+FC(i,k-1)) tl_CF(i,k)=((FC(i,k)+FC(i,k-1))*tl_cff- & & cff*(tl_FC(i,k)+tl_FC(i,k-1)))/ & & ((FC(i,k)+FC(i,k-1))*(FC(i,k)+FC(i,k-1))) ELSE CF(i,k)=0.0_r8 tl_CF(i,k)=0.0_r8 END IF END DO END DO cff1=1.0_r8/3.0_r8 DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=W(i,j,k)* & & 0.5_r8*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc)- & & cff1*(CF(i,k+1)-CF(i,k))) tl_FC(i,k)=0.5_r8* & & (tl_W(i,j,k)* & & (t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc)- & & cff1*(CF(i,k+1)-CF(i,k)))+ & & W(i,j,k)* & & (tl_t(i,j,k ,3,itrc)+ & & tl_t(i,j,k+1,3,itrc)- & & cff1*(tl_CF(i,k+1)-tl_CF(i,k)))) END DO END DO DO i=Istr,Iend FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO ! ELSE IF (tl_Vadvection(itrc,ng)%CENTERED2) THEN ! ! Second-order, central differences vertical advective flux ! (Tunits m3/s). ! DO k=1,N(ng)-1 DO i=Istr,Iend FC(i,k)=W(i,j,k)* & & 0.5_r8*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc)) tl_FC(i,k)=0.5_r8* & & (tl_W(i,j,k)* & & (t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc))+ & & W(i,j,k)* & & (tl_t(i,j,k ,3,itrc)+ & & tl_t(i,j,k+1,3,itrc))) END DO END DO DO i=Istr,Iend FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO ! ELSE IF (tl_Vadvection(itrc,ng)%MPDATA) THEN ! ! First_order, upstream differences vertical advective flux ! (Tunits m3/s). ! CONTINUE ! not supported ! ELSE IF (tl_Vadvection(itrc,ng)%HSIMT) THEN ! ! Third High-order Spatial Interpolation at the Middle Temporal level ! (HSIMT; Wu and Zhu, 2010) with a Total Variation Diminishing (TVD) ! limiter vertical advection flux (Tunits m3/s). ! CONTINUE ! not supported ! ELSE IF ((tl_Vadvection(itrc,ng)%CENTERED4).or. & & (tl_Vadvection(itrc,ng)%SPLIT_U3)) THEN ! ! Fourth-order, central differences vertical advective flux ! (Tunits m3/s). ! cff1=0.5_r8 cff2=7.0_r8/12.0_r8 cff3=1.0_r8/12.0_r8 DO k=2,N(ng)-2 DO i=Istr,Iend FC(i,k)=W(i,j,k)* & & (cff2*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc))- & & cff3*(t(i,j,k-1,3,itrc)+ & & t(i,j,k+2,3,itrc))) tl_FC(i,k)=tl_W(i,j,k)* & & (cff2*(t(i,j,k ,3,itrc)+ & & t(i,j,k+1,3,itrc))- & & cff3*(t(i,j,k-1,3,itrc)+ & & t(i,j,k+2,3,itrc)))+ & & W(i,j,k)* & & (cff2*(tl_t(i,j,k ,3,itrc)+ & & tl_t(i,j,k+1,3,itrc))- & & cff3*(tl_t(i,j,k-1,3,itrc)+ & & tl_t(i,j,k+2,3,itrc))) END DO END DO DO i=Istr,Iend FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 FC(i,1)=W(i,j,1)* & & (cff1*t(i,j,1,3,itrc)+ & & cff2*t(i,j,2,3,itrc)- & & cff3*t(i,j,3,3,itrc)) tl_FC(i,1)=tl_W(i,j,1)* & & (cff1*t(i,j,1,3,itrc)+ & & cff2*t(i,j,2,3,itrc)- & & cff3*t(i,j,3,3,itrc))+ & & W(i,j,1)* & & (cff1*tl_t(i,j,1,3,itrc)+ & & cff2*tl_t(i,j,2,3,itrc)- & & cff3*tl_t(i,j,3,3,itrc)) FC(i,N(ng)-1)=W(i,j,N(ng)-1)* & & (cff1*t(i,j,N(ng) ,3,itrc)+ & & cff2*t(i,j,N(ng)-1,3,itrc)- & & cff3*t(i,j,N(ng)-2,3,itrc)) tl_FC(i,N(ng)-1)=tl_W(i,j,N(ng)-1)* & & (cff1*t(i,j,N(ng) ,3,itrc)+ & & cff2*t(i,j,N(ng)-1,3,itrc)- & & cff3*t(i,j,N(ng)-2,3,itrc))+ & & W(i,j,N(ng)-1)* & & (cff1*tl_t(i,j,N(ng) ,3,itrc)+ & & cff2*tl_t(i,j,N(ng)-1,3,itrc)- & & cff3*tl_t(i,j,N(ng)-2,3,itrc)) FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO END IF VADV_FLUX ! ! Time-step vertical advection term (m Tunits, or Tunits if ! conservative, parabolic splines diffusion). ! VADV_STEPPING : IF (tl_Vadvection(itrc,ng)%MPDATA) THEN CONTINUE ! not supported ELSE DO i=Istr,Iend CF(i,0)=dt(ng)*pm(i,j)*pn(i,j) END DO DO k=1,N(ng) DO i=Istr,Iend cff1=CF(i,0)*(FC(i,k)-FC(i,k-1)) tl_cff1=CF(i,0)*(tl_FC(i,k)-tl_FC(i,k-1)) !^ t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)-cff1 !^ tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)-tl_cff1 END DO END DO END IF VADV_STEPPING END DO J_LOOP1 END DO T_LOOP2 ! !----------------------------------------------------------------------- ! Add tracer divergence due to cell-centered (LwSrc) point sources. !----------------------------------------------------------------------- ! ! When LTracerSrc is .true. the inflowing concentration is Tsrc. ! When LtracerSrc is .false. we add tracer mass to compensate for the ! added volume to keep the receiving cell concentration unchanged. ! J. Levin (Jupiter Intelligence Inc.) and J. Wilkin ! ! Dsrc(is) = 2, flow across grid cell w-face (positive or negative) ! IF (LwSrc(ng)) THEN DO itrc=1,NT(ng) IF (.not.((tl_Hadvection(itrc,ng)%MPDATA).and. & & (tl_Vadvection(itrc,ng)%MPDATA))) THEN DO is=1,Nsrc(ng) IF (INT(SOURCES(ng)%Dsrc(is)).eq.2) THEN Isrc=SOURCES(ng)%Isrc(is) Jsrc=SOURCES(ng)%Jsrc(is) IF (((Istr.le.Isrc).and.(Isrc.le.Iend+1)).and. & & ((Jstr.le.Jsrc).and.(Jsrc.le.Jend+1))) THEN DO k=1,N(ng) cff=dt(ng)*pm(Isrc,Jsrc)*pn(Isrc,Jsrc) IF (LtracerSrc(itrc,ng)) THEN cff3=SOURCES(ng)%Tsrc(is,k,itrc) tl_cff3=SOURCES(ng)%tl_Tsrc(is,k,itrc) ELSE cff3=t(Isrc,Jsrc,k,3,itrc) tl_cff3=tl_t(Isrc,Jsrc,k,3,itrc) END IF !^ t(Isrc,Jsrc,k,nnew,itrc)=t(Isrc,Jsrc,k,nnew,itrc)+ & !^ & cff*SOURCES(ng)%Qsrc(is,k)*& !^ & cff3 !^ tl_t(Isrc,Jsrc,k,nnew,itrc)= & & tl_t(Isrc,Jsrc,k,nnew,itrc)+ & & cff*(SOURCES(ng)%tl_Qsrc(is,k)* & & cff3+ & & SOURCES(ng)%Qsrc(is,k)* & & tl_cff3) END DO END IF END IF END DO END IF END DO END IF ! !----------------------------------------------------------------------- ! Time-step vertical diffusion term. !----------------------------------------------------------------------- ! J_LOOP2 : DO j=Jstr,Jend ! start pipelined J-loop DO itrc=1,NT(ng) ltrc=MIN(NAT,itrc) ! ! Compute off-diagonal coefficients FC [lambda*dt*Akt/Hz] for the ! implicit vertical diffusion terms at future time step, located ! at horizontal RHO-points and vertical W-points. ! Also set FC at the top and bottom levels. ! ! NOTE: The original code solves the tridiagonal system A*t=r where ! A is a matrix and t and r are vectors. We need to solve the ! tangent linear C of this system which is A*tl_t+tl_A*t=tl_r. ! Here, tl_A*t and tl_r are known, so we must solve for tl_t ! by inverting A*tl_t=tl_r-tl_A*t. ! cff=-dt(ng)*lambda DO k=1,N(ng)-1 DO i=Istr,Iend cff1=1.0_r8/(z_r(i,j,k+1)-z_r(i,j,k)) tl_cff1=-cff1*cff1*(tl_z_r(i,j,k+1)-tl_z_r(i,j,k)) FC(i,k)=cff*cff1*Akt(i,j,k,ltrc) tl_FC(i,k)=cff*(tl_cff1*Akt(i,j,k,ltrc)+ & & cff1*tl_Akt(i,j,k,ltrc)) END DO END DO DO i=Istr,Iend FC(i,0)=0.0_r8 tl_FC(i,0)=0.0_r8 FC(i,N(ng))=0.0_r8 tl_FC(i,N(ng))=0.0_r8 END DO ! ! Compute diagonal matrix coefficients BC. ! DO k=1,N(ng) DO i=Istr,Iend BC(i,k)=Hz(i,j,k)-FC(i,k)-FC(i,k-1) tl_BC(i,k)=tl_Hz(i,j,k)-tl_FC(i,k)-tl_FC(i,k-1) END DO END DO ! ! Solve the tangent linear tridiagonal system. ! (DC is a tangent linear variable here). ! DO k=2,N(ng)-1 DO i=Istr,Iend DC(i,k)=tl_t(i,j,k,nnew,itrc)- & & (tl_FC(i,k-1)*t(i,j,k-1,nnew,itrc)+ & & tl_BC(i,k )*t(i,j,k ,nnew,itrc)+ & & tl_FC(i,k )*t(i,j,k+1,nnew,itrc)) END DO END DO DO i=Istr,Iend DC(i,1)=tl_t(i,j,1,nnew,itrc)- & & (tl_BC(i,1)*t(i,j,1,nnew,itrc)+ & & tl_FC(i,1)*t(i,j,2,nnew,itrc)) DC(i,N(ng))=tl_t(i,j,N(ng),nnew,itrc)- & & (tl_FC(i,N(ng)-1)*t(i,j,N(ng)-1,nnew,itrc)+ & & tl_BC(i,N(ng) )*t(i,j,N(ng) ,nnew,itrc)) END DO ! DO i=Istr,Iend cff=1.0_r8/BC(i,1) CF(i,1)=cff*FC(i,1) DC(i,1)=cff*DC(i,1) END DO DO k=2,N(ng)-1 DO i=Istr,Iend cff=1.0_r8/(BC(i,k)-FC(i,k-1)*CF(i,k-1)) CF(i,k)=cff*FC(i,k) DC(i,k)=cff*(DC(i,k)-FC(i,k-1)*DC(i,k-1)) END DO END DO ! ! Compute new solution by back substitution. ! (DC is a tangent linear variable here). ! DO i=Istr,Iend DC(i,N(ng))=(DC(i,N(ng))-FC(i,N(ng)-1)*DC(i,N(ng)-1))/ & & (BC(i,N(ng))-FC(i,N(ng)-1)*CF(i,N(ng)-1)) tl_t(i,j,N(ng),nnew,itrc)=DC(i,N(ng)) END DO DO k=N(ng)-1,1,-1 DO i=Istr,Iend DC(i,k)=DC(i,k)-CF(i,k)*DC(i,k+1) tl_t(i,j,k,nnew,itrc)=DC(i,k) END DO END DO END DO END DO J_LOOP2 ! !----------------------------------------------------------------------- ! Apply lateral boundary conditions and, if appropriate, nudge ! to tracer data and apply Land/Sea mask. !----------------------------------------------------------------------- ! ! Initialize tracer counter index. The "tclm" array is only allocated ! to the NTCLM fields that need to be processed. This is done to ! reduce memory. ! ic=0 ! DO itrc=1,NT(ng) ! ! Set compact reduced memory tracer index for nudging coefficients and ! climatology arrays. ! IF (LtracerCLM(itrc,ng).and.LnudgeTCLM(itrc,ng)) THEN ic=ic+1 END IF ! ! Set lateral boundary conditions. ! !^ CALL t3dbc_tile (ng, tile, itrc, ic, & !^ & LBi, UBi, LBj, UBj, N(ng), NT(ng), & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & nstp, nnew, & !^ & t) !^ CALL tl_t3dbc_tile (ng, tile, itrc, ic, & & LBi, UBi, LBj, UBj, N(ng), NT(ng), & & IminS, ImaxS, JminS, JmaxS, & & nstp, nnew, & & tl_t) ! ! Nudge towards tracer climatology. ! IF (LtracerCLM(itrc,ng).and.LnudgeTCLM(itrc,ng)) THEN DO k=1,N(ng) DO j=JstrR,JendR DO i=IstrR,IendR !^ t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)+ & !^ & dt(ng)* & !^ & CLIMA(ng)%Tnudgcof(i,j,k,ic)* & !^ & (CLIMA(ng)%tclm(i,j,k,ic)- & !^ & t(i,j,k,nnew,itrc)) !^ tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)- & & dt(ng)* & & CLIMA(ng)%Tnudgcof(i,j,k,ic)* & & tl_t(i,j,k,nnew,itrc) END DO END DO END DO END IF ! ! Apply Land/Sea mask. ! DO k=1,N(ng) DO j=JstrR,JendR DO i=IstrR,IendR !^ t(i,j,k,nnew,itrc)=t(i,j,k,nnew,itrc)*rmask(i,j) !^ tl_t(i,j,k,nnew,itrc)=tl_t(i,j,k,nnew,itrc)*rmask(i,j) END DO END DO END DO ! ! Apply periodic boundary conditions. ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !^ CALL exchange_r3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & t(:,:,:,nnew,itrc)) !^ CALL exchange_r3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & tl_t(:,:,:,nnew,itrc)) END IF END DO ! ! Exchange boundary data. ! !^ CALL mp_exchange4d (ng, tile, iNLM, 1, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), 1, NT(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & t(:,:,:,nnew,:)) !^ CALL mp_exchange4d (ng, tile, iTLM, 1, & & LBi, UBi, LBj, UBj, 1, N(ng), 1, NT(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & tl_t(:,:,:,nnew,:)) ! RETURN END SUBROUTINE tl_step3d_t_tile END MODULE tl_step3d_t_mod