MODULE tkebc_mod ! !git $Id$ !svn $Id: tkebc_im.F 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This subroutine sets lateral boundary conditions for turbulent ! ! kinetic energy and turbulent length scale variables associated ! ! with the Mellor and Yamada or GOTM closures. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: tkebc_tile CONTAINS ! !*********************************************************************** SUBROUTINE tkebc (ng, tile, nout) !*********************************************************************** ! USE mod_param USE mod_mixing USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, nout ! ! Local variable declarations. ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private ! storage arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J) directions and ! MAX(I,J) directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL tkebc_tile (ng, tile, & & LBi, UBi, LBj, UBj, N(ng), & & IminS, ImaxS, JminS, JmaxS, & & nout, nstp(ng), & & MIXING(ng)% gls, & & MIXING(ng)% tke) RETURN END SUBROUTINE tkebc ! !*********************************************************************** SUBROUTINE tkebc_tile (ng, tile, & & LBi, UBi, LBj, UBj, UBk, & & IminS, ImaxS, JminS, JmaxS, & & nout, nstp, & & gls, tke) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_grid USE mod_ncparam USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj, UBk integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nout, nstp ! real(r8), intent(inout) :: gls(LBi:,LBj:,0:,:) real(r8), intent(inout) :: tke(LBi:,LBj:,0:,:) ! ! Local variable declarations. ! integer :: i, j, k real(r8), parameter :: eps = 1.0e-20_r8 real(r8) :: Ce, Cx, cff, dKde, dKdt, dKdx real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: grad real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: gradL ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN ! ! Western edge, implicit upstream radiation condition. ! IF (LBC(iwest,isMtke,ng)%radiation) THEN DO k=0,N(ng) DO j=Jstr,Jend+1 grad(Istr-1,j)=tke(Istr-1,j ,k,nstp)- & & tke(Istr-1,j-1,k,nstp) grad(Istr-1,j)=grad(Istr-1,j)* & & GRID(ng)%vmask(Istr-1,j) grad(Istr ,j)=tke(Istr ,j ,k,nstp)- & & tke(Istr ,j-1,k,nstp) grad(Istr ,j)=grad(Istr ,j)* & & GRID(ng)%vmask(Istr ,j) gradL(Istr-1,j)=gls(Istr-1,j ,k,nstp)- & & gls(Istr-1,j-1,k,nstp) gradL(Istr-1,j)=gradL(Istr-1,j)* & & GRID(ng)%vmask(Istr-1,j) gradL(Istr ,j)=gls(Istr ,j ,k,nstp)- & & gls(Istr ,j-1,k,nstp) gradL(Istr ,j)=gradL(Istr ,j)* & & GRID(ng)%vmask(Istr ,j) END DO DO j=Jstr,Jend IF (LBC_apply(ng)%west(j)) THEN dKdt=tke(Istr,j,k,nstp)-tke(Istr ,j,k,nout) dKdx=tke(Istr,j,k,nout)-tke(Istr+1,j,k,nout) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(Istr,j )+ & & grad(Istr,j+1))).gt.0.0_r8) THEN dKde=grad(Istr,j ) ELSE dKde=grad(Istr,j+1) END IF cff=MAX(dKdx*dKdx+dKde*dKde,eps) Cx=dKdt*dKdx Ce=MIN(cff,MAX(dKdt*dKde,-cff)) tke(Istr-1,j,k,nout)=(cff*tke(Istr-1,j,k,nstp)+ & & Cx *tke(Istr ,j,k,nout)- & & MAX(Ce,0.0_r8)* & & grad(Istr-1,j )- & & MIN(Ce,0.0_r8)* & & grad(Istr-1,j+1))/ & & (cff+Cx) tke(Istr-1,j,k,nout)=tke(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) dKdt=gls(Istr,j,k,nstp)-gls(Istr ,j,k,nout) dKdx=gls(Istr,j,k,nout)-gls(Istr+1,j,k,nout) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(Istr,j )+ & & gradL(Istr,j+1))).gt.0.0_r8) THEN dKde=gradL(Istr,j ) ELSE dKde=gradL(Istr,j+1) END IF cff=MAX(dKdx*dKdx+dKde*dKde,eps) Cx=dKdt*dKdx Ce=MIN(cff,MAX(dKdt*dKde,-cff)) gls(Istr-1,j,k,nout)=(cff*gls(Istr-1,j,k,nstp)+ & & Cx *gls(Istr ,j,k,nout)- & & MAX(Ce,0.0_r8)* & & gradL(Istr-1,j )- & & MIN(Ce,0.0_r8)* & & gradL(Istr-1,j+1))/ & & (cff+Cx) gls(Istr-1,j,k,nout)=gls(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) END IF END DO END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (LBC(iwest,isMtke,ng)%gradient) THEN DO k=0,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%west(j)) THEN tke(Istr-1,j,k,nout)=tke(Istr,j,k,nout) tke(Istr-1,j,k,nout)=tke(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) gls(Istr-1,j,k,nout)=gls(Istr,j,k,nout) gls(Istr-1,j,k,nout)=gls(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) END IF END DO END DO ! ! Western edge, closed boundary condition. ! ELSE IF (LBC(iwest,isMtke,ng)%closed) THEN DO k=0,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%west(j)) THEN tke(Istr-1,j,k,nout)=tke(Istr,j,k,nout) tke(Istr-1,j,k,nout)=tke(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) gls(Istr-1,j,k,nout)=gls(Istr,j,k,nout) gls(Istr-1,j,k,nout)=gls(Istr-1,j,k,nout)* & & GRID(ng)%rmask(Istr-1,j) END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN ! ! Eastern edge, implicit upstream radiation condition. ! IF (LBC(ieast,isMtke,ng)%radiation) THEN DO k=0,N(ng) DO j=Jstr,Jend+1 grad(Iend ,j)=tke(Iend ,j ,k,nstp)- & & tke(Iend ,j-1,k,nstp) grad(Iend ,j)=grad(Iend ,j)* & & GRID(ng)%vmask(Iend ,j) grad(Iend+1,j)=tke(Iend+1,j ,k,nstp)- & & tke(Iend+1,j-1,k,nstp) grad(Iend+1,j)=grad(Iend+1,j)* & & GRID(ng)%vmask(Iend+1,j) gradL(Iend ,j)=gls(Iend ,j ,k,nstp)- & & gls(Iend ,j-1,k,nstp) gradL(Iend ,j)=gradL(Iend ,j)* & & GRID(ng)%vmask(Iend ,j) gradL(Iend+1,j)=gls(Iend+1,j ,k,nstp)- & & gls(Iend+1,j-1,k,nstp) gradL(Iend+1,j)=gradL(Iend+1,j)* & & GRID(ng)%vmask(Iend+1,j) END DO DO j=Jstr,Jend IF (LBC_apply(ng)%east(j)) THEN dKdt=tke(Iend,j,k,nstp)-tke(Iend ,j,k,nout) dKdx=tke(Iend,j,k,nout)-tke(Iend-1,j,k,nout) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(Iend,j )+ & & grad(Iend,j+1))).gt.0.0_r8) THEN dKde=grad(Iend,j ) ELSE dKde=grad(Iend,j+1) END IF cff=MAX(dKdx*dKdx+dKde*dKde,eps) Cx=dKdt*dKdx Ce=MIN(cff,MAX(dKdt*dKde,-cff)) tke(Iend+1,j,k,nout)=(cff*tke(Iend+1,j,k,nstp)+ & & Cx *tke(Iend ,j,k,nout)- & & MAX(Ce,0.0_r8)* & & grad(Iend+1,j )- & & MIN(Ce,0.0_r8)* & & grad(Iend+1,j+1))/ & & (cff+Cx) tke(Iend+1,j,k,nout)=tke(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) dKdt=gls(Iend,j,k,nstp)-gls(Iend ,j,k,nout) dKdx=gls(Iend,j,k,nout)-gls(Iend-1,j,k,nout) IF ((dKdt*dKdx).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(Iend,j )+ & & gradL(Iend,j+1))).gt.0.0_r8) THEN dKde=gradL(Iend,j ) ELSE dKde=gradL(Iend,j+1) END IF cff=MAX(dKdx*dKdx+dKde*dKde,eps) Cx=dKdt*dKdx Ce=MIN(cff,MAX(dKdt*dKde,-cff)) gls(Iend+1,j,k,nout)=(cff*gls(Iend+1,j,k,nstp)+ & & Cx *gls(Iend ,j,k,nout)- & & MAX(Ce,0.0_r8)* & & gradL(Iend+1,j )- & & MIN(Ce,0.0_r8)* & & gradL(Iend+1,j+1))/ & & (cff+Cx) gls(Iend+1,j,k,nout)=gls(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) END IF END DO END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (LBC(ieast,isMtke,ng)%gradient) THEN DO k=0,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%east(j)) THEN tke(Iend+1,j,k,nout)=tke(Iend,j,k,nout) tke(Iend+1,j,k,nout)=tke(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) gls(Iend+1,j,k,nout)=gls(Iend,j,k,nout) gls(Iend+1,j,k,nout)=gls(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) END IF END DO END DO ! ! Eastern edge, closed boundary condition. ! ELSE IF (LBC(ieast,isMtke,ng)%closed) THEN DO k=0,N(ng) DO j=Jstr,Jend IF (LBC_apply(ng)%east(j)) THEN tke(Iend+1,j,k,nout)=tke(Iend,j,k,nout) tke(Iend+1,j,k,nout)=tke(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) gls(Iend+1,j,k,nout)=gls(Iend,j,k,nout) gls(Iend+1,j,k,nout)=gls(Iend+1,j,k,nout)* & & GRID(ng)%rmask(Iend+1,j) END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN ! ! Southern edge, implicit upstream radiation condition. ! IF (LBC(isouth,isMtke,ng)%radiation) THEN DO k=0,N(ng) DO i=Istr,Iend+1 grad(i,Jstr )=tke(i ,Jstr ,k,nstp)- & & tke(i-1,Jstr ,k,nstp) grad(i,Jstr )=grad(i,Jstr )*GRID(ng)%umask(i,Jstr ) grad(i,Jstr-1)=tke(i ,Jstr-1,k,nstp)- & & tke(i-1,Jstr-1,k,nstp) grad(i,Jstr-1)=grad(i,Jstr-1)*GRID(ng)%umask(i,Jstr-1) gradL(i,Jstr )=gls(i ,Jstr ,k,nstp)- & & gls(i-1,Jstr ,k,nstp) gradL(i,Jstr )=gradL(i,Jstr )*GRID(ng)%umask(i,Jstr ) gradL(i,Jstr-1)=gls(i ,Jstr-1,k,nstp)- & & gls(i-1,Jstr-1,k,nstp) gradL(i,Jstr-1)=gradL(i,Jstr-1)*GRID(ng)%umask(i,Jstr-1) END DO DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN dKdt=tke(i,Jstr,k,nstp)-tke(i,Jstr ,k,nout) dKde=tke(i,Jstr,k,nout)-tke(i,Jstr+1,k,nout) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(i ,Jstr)+ & & grad(i+1,Jstr))).gt.0.0_r8) THEN dKdx=grad(i ,Jstr) ELSE dKdx=grad(i+1,Jstr) END IF cff=MAX(dKdx*dKdx+dKde*dKde, eps) Cx=MIN(cff,MAX(dKdt*dKdx,-cff)) Ce=dKdt*dKde tke(i,Jstr-1,k,nout)=(cff*tke(i,Jstr-1,k,nstp)+ & & Ce *tke(i,Jstr ,k,nout)- & & MAX(Cx,0.0_r8)* & & grad(i ,Jstr-1)- & & MIN(Cx,0.0_r8)* & & grad(i+1,Jstr-1))/ & & (cff+Ce) tke(i,Jstr-1,k,nout)=tke(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) dKdt=gls(i,Jstr,k,nstp)-gls(i,Jstr ,k,nout) dKde=gls(i,Jstr,k,nout)-gls(i,Jstr+1,k,nout) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(i ,Jstr)+ & & gradL(i+1,Jstr))).gt.0.0_r8) THEN dKdx=gradL(i ,Jstr) ELSE dKdx=gradL(i+1,Jstr) END IF cff=MAX(dKdx*dKdx+dKde*dKde,eps) Cx=MIN(cff,MAX(dKdt*dKdx,-cff)) Ce=dKdt*dKde gls(i,Jstr-1,k,nout)=(cff*gls(i,Jstr-1,k,nstp)+ & & Ce *gls(i,Jstr ,k,nout)- & & MAX(Cx,0.0_r8)* & & gradL(i ,Jstr-1)- & & MIN(Cx,0.0_r8)* & & gradL(i+1,Jstr-1))/ & & (cff+Ce) gls(i,Jstr-1,k,nout)=gls(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) END IF END DO END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (LBC(isouth,isMtke,ng)%gradient) THEN DO k=0,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN tke(i,Jstr-1,k,nout)=tke(i,Jstr,k,nout) tke(i,Jstr-1,k,nout)=tke(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) gls(i,Jstr-1,k,nout)=gls(i,Jstr,k,nout) gls(i,Jstr-1,k,nout)=gls(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) END IF END DO END DO ! ! Southern edge, closed boundary condition. ! ELSE IF (LBC(isouth,isMtke,ng)%closed) THEN DO k=0,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN tke(i,Jstr-1,k,nout)=tke(i,Jstr,k,nout) tke(i,Jstr-1,k,nout)=tke(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) gls(i,Jstr-1,k,nout)=gls(i,Jstr,k,nout) gls(i,Jstr-1,k,nout)=gls(i,Jstr-1,k,nout)* & & GRID(ng)%rmask(i,Jstr-1) END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN ! ! Northern edge, implicit upstream radiation condition. ! IF (LBC(inorth,isMtke,ng)%radiation) THEN DO k=0,N(ng) DO i=Istr,Iend+1 grad(i,Jend )=tke(i ,Jend ,k,nstp)- & & tke(i-1,Jend ,k,nstp) grad(i,Jend )=grad(i,Jend )* & & GRID(ng)%umask(i,Jend ) grad(i,Jend+1)=tke(i ,Jend+1,k,nstp)- & & tke(i-1,Jend+1,k,nstp) grad(i,Jend+1)=grad(i,Jend+1)* & & GRID(ng)%umask(i,Jend+1) gradL(i,Jend )=gls(i ,Jend ,k,nstp)- & & gls(i-1,Jend ,k,nstp) gradL(i,Jend )=gradL(i,Jend )* & & GRID(ng)%umask(i,Jend ) gradL(i,Jend+1)=gls(i ,Jend+1,k,nstp)- & & gls(i-1,Jend+1,k,nstp) gradL(i,Jend+1)=gradL(i,Jend+1)* & & GRID(ng)%umask(i,Jend+1) END DO DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN dKdt=tke(i,Jend,k,nstp)-tke(i,Jend ,k,nout) dKde=tke(i,Jend,k,nout)-tke(i,Jend-1,k,nout) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(grad(i ,Jend)+ & & grad(i+1,Jend))).gt.0.0_r8) THEN dKdx=grad(i ,Jend) ELSE dKdx=grad(i+1,Jend) END IF cff=MAX(dKdx*dKdx+dKde*dKde,eps) Cx=MIN(cff,MAX(dKdt*dKdx,-cff)) Ce=dKdt*dKde tke(i,Jend+1,k,nout)=(cff*tke(i,Jend+1,k,nstp)+ & & Ce *tke(i,Jend ,k,nout)- & & MAX(Cx,0.0_r8)* & & grad(i ,Jend+1)- & & MIN(Cx,0.0_r8)* & & grad(i+1,Jend+1))/ & & (cff+Ce) tke(i,Jend+1,k,nout)=tke(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) dKdt=gls(i,Jend,k,nstp)-gls(i,Jend ,k,nout) dKde=gls(i,Jend,k,nout)-gls(i,Jend-1,k,nout) IF ((dKdt*dKde).lt.0.0_r8) dKdt=0.0_r8 IF ((dKdt*(gradL(i ,Jend)+ & & gradL(i+1,Jend))).gt.0.0_r8) THEN dKdx=gradL(i ,Jend) ELSE dKdx=gradL(i+1,Jend) END IF cff=MAX(dKdx*dKdx+dKde*dKde,eps) Cx=MIN(cff,MAX(dKdt*dKdx,-cff)) Ce=dKdt*dKde gls(i,Jend+1,k,nout)=(cff*gls(i,Jend+1,k,nstp)+ & & Ce *gls(i,Jend ,k,nout)- & & MAX(Cx,0.0_r8)* & & gradL(i ,Jend+1)- & & MIN(Cx,0.0_r8)* & & gradL(i+1,Jend+1))/ & & (cff+Ce) gls(i,Jend+1,k,nout)=gls(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) END IF END DO END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (LBC(inorth,isMtke,ng)%gradient) THEN DO k=0,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN tke(i,Jend+1,k,nout)=tke(i,Jend,k,nout) tke(i,Jend+1,k,nout)=tke(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) gls(i,Jend+1,k,nout)=gls(i,Jend,k,nout) gls(i,Jend+1,k,nout)=gls(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) END IF END DO END DO ! ! Northern edge, closed boundary condition. ! ELSE IF (LBC(inorth,isMtke,ng)%closed) THEN DO k=0,N(ng) DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN tke(i,Jend+1,k,nout)=tke(i,Jend,k,nout) tke(i,Jend+1,k,nout)=tke(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) gls(i,Jend+1,k,nout)=gls(i,Jend,k,nout) gls(i,Jend+1,k,nout)=gls(i,Jend+1,k,nout)* & & GRID(ng)%rmask(i,Jend+1) END IF END DO END DO END IF END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr-1).and. & & LBC_apply(ng)%west (Jstr-1)) THEN DO k=0,N(ng) tke(Istr-1,Jstr-1,k,nout)=0.5_r8* & & (tke(Istr ,Jstr-1,k,nout)+ & & tke(Istr-1,Jstr ,k,nout)) gls(Istr-1,Jstr-1,k,nout)=0.5_r8* & & (gls(Istr ,Jstr-1,k,nout)+ & & gls(Istr-1,Jstr ,k,nout)) END DO END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr-1)) THEN DO k=0,N(ng) tke(Iend+1,Jstr-1,k,nout)=0.5_r8* & & (tke(Iend ,Jstr-1,k,nout)+ & & tke(Iend+1,Jstr ,k,nout)) gls(Iend+1,Jstr-1,k,nout)=0.5_r8* & & (gls(Iend ,Jstr-1,k,nout)+ & & gls(Iend+1,Jstr ,k,nout)) END DO END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr-1).and. & & LBC_apply(ng)%west (Jend+1)) THEN DO k=0,N(ng) tke(Istr-1,Jend+1,k,nout)=0.5_r8* & & (tke(Istr ,Jend+1,k,nout)+ & & tke(Istr-1,Jend ,k,nout)) gls(Istr-1,Jend+1,k,nout)=0.5_r8* & & (gls(Istr ,Jend+1,k,nout)+ & & gls(Istr-1,Jend ,k,nout)) END DO END IF END IF IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN DO k=0,N(ng) tke(Iend+1,Jend+1,k,nout)=0.5_r8* & & (tke(Iend ,Jend+1,k,nout)+ & & tke(Iend+1,Jend ,k,nout)) gls(Iend+1,Jend+1,k,nout)=0.5_r8* & & (gls(Iend ,Jend+1,k,nout)+ & & gls(Iend+1,Jend ,k,nout)) END DO END IF END IF END IF RETURN END SUBROUTINE tkebc_tile END MODULE tkebc_mod