MODULE ad_wvelocity_mod ! !git $Id$ !svn $Id: ad_wvelocity.F 1151 2023-02-09 03:08:53Z arango $ !======================================================================= ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md Hernan G. Arango ! !=================================================== Andrew M. Moore === ! ! ! This subroutines computes vertical velocity (m/s) at W-points ! ! from the vertical mass flux (omega*hz/m*n). This computation ! ! is done solely for output purposes. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: ad_wvelocity CONTAINS ! !*********************************************************************** SUBROUTINE ad_wvelocity (ng, tile, Ninp) !*********************************************************************** ! USE mod_param USE mod_coupling USE mod_grid USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, Ninp ! ! Local variable declarations. ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private ! storage arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J) directions and ! MAX(I,J) directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL ad_wvelocity_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & Ninp, & & GRID(ng) % pm, & & GRID(ng) % pn, & & GRID(ng) % z_r, & & GRID(ng) % z_w, & & GRID(ng) % ad_z_r, & & GRID(ng) % ad_z_w, & & COUPLING(ng) % DU_avg1, & & COUPLING(ng) % DV_avg1, & & COUPLING(ng) % ad_DU_avg1, & & COUPLING(ng) % ad_DV_avg1, & & OCEAN(ng) % u, & & OCEAN(ng) % v, & & OCEAN(ng) % W, & & OCEAN(ng) % ad_u, & & OCEAN(ng) % ad_v, & & OCEAN(ng) % ad_W, & & OCEAN(ng) % ad_wvel) RETURN END SUBROUTINE ad_wvelocity ! !*********************************************************************** SUBROUTINE ad_wvelocity_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & Ninp, & & pm, pn, z_r, z_w, & & ad_z_r, ad_z_w, & & DU_avg1, DV_avg1, & & ad_DU_avg1, ad_DV_avg1, & & u, v, W, & & ad_u, ad_v, ad_W, & & ad_wvel) !*********************************************************************** ! USE mod_param USE mod_scalars ! USE bc_3d_mod, ONLY : bc_w3d_tile USE ad_bc_3d_mod, ONLY : ad_bc_w3d_tile USE ad_exchange_2d_mod USE mp_exchange_mod, ONLY : ad_mp_exchange2d, ad_mp_exchange3d ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: Ninp ! real(r8), intent(in) :: pm(LBi:,LBj:) real(r8), intent(in) :: pn(LBi:,LBj:) real(r8), intent(in) :: z_r(LBi:,LBj:,:) real(r8), intent(in) :: z_w(LBi:,LBj:,0:) real(r8), intent(in) :: DU_avg1(LBi:,LBj:) real(r8), intent(in) :: DV_avg1(LBi:,LBj:) real(r8), intent(in) :: u(LBi:,LBj:,:,:) real(r8), intent(in) :: v(LBi:,LBj:,:,:) real(r8), intent(in) :: W(LBi:,LBj:,0:) real(r8), intent(inout) :: ad_z_r(LBi:,LBj:,:) real(r8), intent(inout) :: ad_z_w(LBi:,LBj:,0:) real(r8), intent(inout) :: ad_DU_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_DV_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_u(LBi:,LBj:,:,:) real(r8), intent(inout) :: ad_v(LBi:,LBj:,:,:) real(r8), intent(inout) :: ad_W(LBi:,LBj:,0:) real(r8), intent(inout) :: ad_wvel(LBi:,LBj:,0:) ! ! Local variable declarations. ! integer :: i, j, k real(r8) :: cff1, cff2, cff3, cff4, cff5, slope , ad_slope real(r8) :: adfac, adfac1, adfac2, adfac3 real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: vert real(r8), dimension(IminS:ImaxS,JminS:JmaxS,N(ng)) :: ad_vert real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: wrk real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_wrk ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Compute adjoint "true" vertical velocity (m/s). !----------------------------------------------------------------------- ! CALL ad_mp_exchange3d (ng, tile, iADM, 1, & & LBi, UBi, LBj, UBj, 0, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_wvel) ! ! Set lateral boundary conditions. ! CALL ad_bc_w3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 0, N(ng), & & ad_wvel) ! ! Initialize local adjoint variables and arrays. ! ad_slope=0.0_r8 DO j=JminS,JmaxS DO i=IminS,ImaxS ad_wrk(i,j)=0.0_r8 END DO END DO DO k=1,N(ng) DO j=JminS,JmaxS DO i=IminS,ImaxS ad_vert(i,j,k)=0.0_r8 END DO END DO END DO ! ! Compute vert. ! DO k=1,N(ng) DO j=Jstr,Jend DO i=Istr,Iend+1 wrk(i,j)=u(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i-1,j,k))* & & (pm(i-1,j)+pm(i,j)) END DO DO i=Istr,Iend vert(i,j,k)=0.25_r8*(wrk(i,j)+wrk(i+1,j)) END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend wrk(i,j)=v(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i,j-1,k))* & & (pn(i,j-1)+pn(i,j)) END DO END DO DO j=Jstr,Jend DO i=Istr,Iend vert(i,j,k)=vert(i,j,k)+0.25_r8*(wrk(i,j)+wrk(i,j+1)) END DO END DO END DO ! cff1=3.0_r8/8.0_r8 cff2=3.0_r8/4.0_r8 cff3=1.0_r8/8.0_r8 cff4=9.0_r8/16.0_r8 cff5=1.0_r8/16.0_r8 J_LOOP : DO j=Jstr,Jend DO i=Istr,Iend wrk(i,j)=(DU_avg1(i,j)-DU_avg1(i+1,j)+ & & DV_avg1(i,j)-DV_avg1(i,j+1))/ & & (z_w(i,j,N(ng))-z_w(i,j,0)) END DO DO i=Istr,Iend slope=(z_w(i,j,N(ng))-z_r(i,j,N(ng) ))/ & & (z_r(i,j,N(ng))-z_r(i,j,N(ng)-1)) ! extrapolation slope !^ tl_wvel(i,j,N(ng)-1)=pm(i,j)*pn(i,j)* & !^ & (tl_W(i,j,N(ng)-1)+ & !^ & tl_wrk(i,j)* & !^ & (z_w(i,j,N(ng)-1)-z_w(i,j,0))+ & !^ & wrk(i,j)* & !^ & (tl_z_w(i,j,N(ng)-1)-tl_z_w(i,j,0)))+ & !^ & cff1*tl_vert(i,j,N(ng) )+ & !^ & cff2*tl_vert(i,j,N(ng)-1)- & !^ & cff3*tl_vert(i,j,N(ng)-2) !^ adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,N(ng)-1) adfac1=wrk(i,j)*adfac ad_W(i,j,N(ng)-1)=ad_W(i,j,N(ng)-1)+adfac ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,N(ng)-1)-z_w(i,j,0))*adfac ad_z_w(i,j,N(ng)-1)=ad_z_w(i,j,N(ng)-1)+adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac1 ad_vert(i,j,N(ng) )=ad_vert(i,j,N(ng))+ & & cff1*ad_wvel(i,j,N(ng)-1) ad_vert(i,j,N(ng)-1)=ad_vert(i,j,N(ng)-1)+ & & cff2*ad_wvel(i,j,N(ng)-1) ad_vert(i,j,N(ng)-2)=ad_vert(i,j,N(ng)-2)- & & cff3*ad_wvel(i,j,N(ng)-1) ad_wvel(i,j,N(ng)-1)=0.0_r8 !^ tl_wvel(i,j,N(ng))=pm(i,j)*pn(i,j)* & !^ & (tl_wrk(i,j)* & !^ & (z_w(i,j,N(ng))-z_w(i,j,0))+ & !^ & wrk(i,j)* & !^ & (tl_z_w(i,j,N(ng))-tl_z_w(i,j,0)))+ & !^ & cff1*(tl_vert(i,j,N(ng))+ & !^ & tl_slope*(vert(i,j,N(ng) )- & !^ & vert(i,j,N(ng)-1))+ & !^ & slope*(tl_vert(i,j,N(ng) )- & !^ & tl_vert(i,j,N(ng)-1)))+ & !^ & cff2*tl_vert(i,j,N(ng) )- & !^ & cff3*tl_vert(i,j,N(ng)-1) !^ adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,N(ng)) adfac1=wrk(i,j)*adfac adfac2=cff1*ad_wvel(i,j,N(ng)) adfac3=slope*adfac2 ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,N(ng))-z_w(i,j,0))*adfac ad_z_w(i,j,N(ng))=ad_z_w(i,j,N(ng))+adfac1 ad_z_w(i,j,0 )=ad_z_w(i,j,0 )-adfac1 ad_vert(i,j,N(ng))=ad_vert(i,j,N(ng))+adfac2 ad_slope=ad_slope+ & & (vert(i,j,N(ng) )-vert(i,j,N(ng)-1))*adfac2 ad_vert(i,j,N(ng) )=ad_vert(i,j,N(ng) )+ & & adfac3+cff2*ad_wvel(i,j,N(ng)) ad_vert(i,j,N(ng)-1)=ad_vert(i,j,N(ng)-1)- & & adfac3-cff3*ad_wvel(i,j,N(ng)) ad_wvel(i,j,N(ng))=0.0_r8 !^ tl_slope=(tl_z_w(i,j,N(ng))-tl_z_r(i,j,N(ng) ))/ & !^ & (z_r(i,j,N(ng))-z_r(i,j,N(ng)-1))- & !^ & (tl_z_r(i,j,N(ng))-tl_z_r(i,j,N(ng)-1))*slope/ & !^ & (z_r(i,j,N(ng))-z_r(i,j,N(ng)-1)) !^ adfac1=ad_slope/(z_r(i,j,N(ng))-z_r(i,j,N(ng)-1)) adfac2=slope*adfac1 ad_z_w(i,j,N(ng))=ad_z_w(i,j,N(ng))+adfac1 ad_z_r(i,j,N(ng) )=ad_z_r(i,j,N(ng) )-adfac1-adfac2 ad_z_r(i,j,N(ng)-1)=ad_z_r(i,j,N(ng)-1)+adfac2 ad_slope=0.0_r8 END DO DO k=2,N(ng)-2 DO i=Istr,Iend !^ tl_wvel(i,j,k)=pm(i,j)*pn(i,j)* & !^ & (tl_W(i,j,k)+ & !^ & tl_wrk(i,j)*(z_w(i,j,k)-z_w(i,j,0))+ & !^ & wrk(i,j)*(tl_z_w(i,j,k)-tl_z_w(i,j,0)))+ & !^ & cff4*(tl_vert(i,j,k )+tl_vert(i,j,k+1))- & !^ & cff5*(tl_vert(i,j,k-1)+tl_vert(i,j,k+2)) !^ adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,k) adfac1=wrk(i,j)*adfac adfac2=cff4*ad_wvel(i,j,k) adfac3=cff5*ad_wvel(i,j,k) ad_W(i,j,k)=ad_W(i,j,k)+adfac ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,k)-z_w(i,j,0))*adfac ad_z_w(i,j,k)=ad_z_w(i,j,k)+adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac1 ad_vert(i,j,k )=ad_vert(i,j,k )+adfac2 ad_vert(i,j,k+1)=ad_vert(i,j,k+1)+adfac2 ad_vert(i,j,k-1)=ad_vert(i,j,k-1)-adfac3 ad_vert(i,j,k+2)=ad_vert(i,j,k+2)-adfac3 ad_wvel(i,j,k)=0.0_r8 END DO END DO DO i=Istr,Iend slope=(z_r(i,j,1)-z_w(i,j,0))/ & & (z_r(i,j,2)-z_r(i,j,1)) ! extrapolation slope !^ tl_wvel(i,j,1)=pm(i,j)*pn(i,j)* & !^ & (tl_W(i,j,1)+ & !^ & tl_wrk(i,j)*(z_w(i,j,1)-z_w(i,j,0))+ & !^ & wrk(i,j)*(tl_z_w(i,j,1)-tl_z_w(i,j,0)))+ & !^ & cff1*tl_vert(i,j,1)+ & !^ & cff2*tl_vert(i,j,2)- & !^ & cff3*tl_vert(i,j,3) !^ adfac=pm(i,j)*pn(i,j)*ad_wvel(i,j,1) adfac1=wrk(i,j)*adfac ad_W(i,j,1)=ad_W(i,j,1)+adfac ad_wrk(i,j)=ad_wrk(i,j)+(z_w(i,j,1)-z_w(i,j,0))*adfac ad_z_w(i,j,1)=ad_z_w(i,j,1)+adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac1 ad_vert(i,j,1)=ad_vert(i,j,1)+cff1*ad_wvel(i,j,1) ad_vert(i,j,2)=ad_vert(i,j,2)+cff2*ad_wvel(i,j,1) ad_vert(i,j,3)=ad_vert(i,j,3)-cff3*ad_wvel(i,j,1) ad_wvel(i,j,1)=0.0_r8 !^ tl_wvel(i,j,0)=cff1*(tl_vert(i,j,1)- & !^ & tl_slope*(vert(i,j,2)- & !^ & vert(i,j,1))- & !^ & slope*(tl_vert(i,j,2)- & !^ & tl_vert(i,j,1)))+ & !^ & cff2*tl_vert(i,j,1)- & !^ & cff3*tl_vert(i,j,2) !^ adfac=cff1*ad_wvel(i,j,0) adfac1=slope*adfac ad_vert(i,j,1)=ad_vert(i,j,1)+adfac ad_slope=ad_slope-(vert(i,j,2)-vert(i,j,1))*adfac ad_vert(i,j,2)=ad_vert(i,j,2)-adfac1 ad_vert(i,j,1)=ad_vert(i,j,1)+adfac1 ad_vert(i,j,1)=ad_vert(i,j,1)+cff2*ad_wvel(i,j,0) ad_vert(i,j,2)=ad_vert(i,j,2)-cff3*ad_wvel(i,j,0) ad_wvel(i,j,0)=0.0_r8 !^ tl_slope=(tl_z_r(i,j,1)-tl_z_w(i,j,0))/ & !^ & (z_r(i,j,2)-z_r(i,j,1))- & !^ & (tl_z_r(i,j,2)-tl_z_r(i,j,1))*slope/ & !^ & (z_r(i,j,2)-z_r(i,j,1)) !^ adfac=ad_slope/(z_r(i,j,2)-z_r(i,j,1)) adfac1=slope*adfac ad_z_r(i,j,1)=ad_z_r(i,j,1)+adfac ad_z_w(i,j,0)=ad_z_w(i,j,0)-adfac ad_z_r(i,j,2)=ad_z_r(i,j,2)-adfac1 ad_z_r(i,j,1)=ad_z_r(i,j,1)+adfac1 ad_slope=0.0_r8 END DO DO i=Istr,Iend !^ tl_wrk(i,j)=(tl_DU_avg1(i,j)-tl_DU_avg1(i+1,j)+ & !^ & tl_DV_avg1(i,j)-tl_DV_avg1(i,j+1))/ & !^ & (z_w(i,j,N(ng))-z_w(i,j,0))- & !^ & (tl_z_w(i,j,N(ng))-tl_z_w(i,j,0))*wrk(i,j)/ & !^ & (z_w(i,j,N(ng))-z_w(i,j,0)) !^ adfac=ad_wrk(i,j)/(z_w(i,j,N(ng))-z_w(i,j,0)) adfac1=wrk(i,j)*adfac ad_DU_avg1(i ,j)=ad_DU_avg1(i ,j)+adfac ad_DU_avg1(i+1,j)=ad_DU_avg1(i+1,j)-adfac ad_DV_avg1(i,j )=ad_DV_avg1(i,j )+adfac ad_DV_avg1(i,j+1)=ad_DV_avg1(i,j+1)-adfac ad_z_w(i,j,N(ng))=ad_z_w(i,j,N(ng))-adfac1 ad_z_w(i,j,0)=ad_z_w(i,j,0)+adfac1 ad_wrk(i,j)=0.0_r8 END DO END DO J_LOOP DO k=1,N(ng) DO j=Jstr,Jend DO i=Istr,Iend !^ tl_vert(i,j,k)=tl_vert(i,j,k)+ & !^ & 0.25_r8*(tl_wrk(i,j)+tl_wrk(i,j+1)) !^ adfac=0.25_r8*ad_vert(i,j,k) ad_wrk(i,j )=ad_wrk(i,j )+adfac ad_wrk(i,j+1)=ad_wrk(i,j+1)+adfac END DO END DO DO j=Jstr,Jend+1 DO i=Istr,Iend !^ tl_wrk(i,j)=(pn(i,j-1)+pn(i,j))* & !^ & (tl_v(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i,j-1,k))+ & !^ & v(i,j,k,Ninp)*(tl_z_r(i,j,k)-tl_z_r(i,j-1,k))) !^ adfac=(pn(i,j-1)+pn(i,j))*ad_wrk(i,j) adfac1=v(i,j,k,Ninp)*adfac ad_v(i,j,k,Ninp)=ad_v(i,j,k,Ninp)+ & & (z_r(i,j,k)-z_r(i,j-1,k))*adfac ad_z_r(i,j ,k)=ad_z_r(i,j ,k)+adfac1 ad_z_r(i,j-1,k)=ad_z_r(i,j-1,k)-adfac1 ad_wrk(i,j)=0.0_r8 END DO END DO DO j=Jstr,Jend DO i=Istr,Iend !^ tl_vert(i,j,k)=0.25_r8*(tl_wrk(i,j)+tl_wrk(i+1,j)) !^ adfac=0.25_r8*ad_vert(i,j,k) ad_wrk(i ,j)=ad_wrk(i ,j)+adfac ad_wrk(i+1,j)=ad_wrk(i+1,j)+adfac ad_vert(i,j,k)=0.0_r8 END DO DO i=Istr,Iend+1 !^ tl_wrk(i,j)=(pm(i-1,j)+pm(i,j))* & !^ & (tl_u(i,j,k,Ninp)*(z_r(i,j,k)-z_r(i-1,j,k))+ & !^ & u(i,j,k,Ninp)*(tl_z_r(i,j,k)-tl_z_r(i-1,j,k))) !^ adfac=(pm(i-1,j)+pm(i,j))*ad_wrk(i,j) adfac1=u(i,j,k,Ninp)*adfac ad_u(i,j,k,Ninp)=ad_u(i,j,k,Ninp)+ & & (z_r(i,j,k)-z_r(i-1,j,k))*adfac ad_z_r(i ,j,k)=ad_z_r(i ,j,k)+adfac1 ad_z_r(i-1,j,k)=ad_z_r(i-1,j,k)-adfac1 ad_wrk(i,j)=0.0_r8 END DO END DO END DO ! ! Exchange time-averaged fields. ! CALL ad_mp_exchange2d (ng, tile, iADM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_DU_avg1, ad_DV_avg1) IF (EWperiodic(ng).or.NSperiodic(ng)) THEN CALL ad_exchange_u2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DU_avg1) CALL ad_exchange_v2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_DV_avg1) END IF RETURN END SUBROUTINE ad_wvelocity_tile END MODULE ad_wvelocity_mod