MODULE ad_v2dbc_mod ! !git $Id$ !svn $Id: ad_v2dbc_im.F 1180 2023-07-13 02:42:10Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This subroutine sets adjoint lateral boundary conditions for ! ! vertically integrated V-velocity. It updates the specified ! ! "kout" index. ! ! ! ! BASIC STATE variables needed: zeta ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: ad_v2dbc, ad_v2dbc_tile CONTAINS ! !*********************************************************************** SUBROUTINE ad_v2dbc (ng, tile, kout) !*********************************************************************** ! USE mod_param USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, kout ! ! Local variable declarations. ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private ! storage arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J) directions and ! MAX(I,J) directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL ad_v2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs(ng), kstp(ng), kout, & & OCEAN(ng) % ubar, & & OCEAN(ng) % vbar, & & OCEAN(ng) % zeta, & & OCEAN(ng) % ad_ubar, & & OCEAN(ng) % ad_vbar, & & OCEAN(ng) % ad_zeta) RETURN END SUBROUTINE ad_v2dbc ! !*********************************************************************** SUBROUTINE ad_v2dbc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & krhs, kstp, kout, & & ubar, vbar, zeta, & & ad_ubar, ad_vbar, ad_zeta) !*********************************************************************** ! USE mod_param USE mod_boundary USE mod_clima USE mod_forces USE mod_grid USE mod_ncparam USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: krhs, kstp, kout ! real(r8), intent(in) :: ubar(LBi:,LBj:,:) real(r8), intent(in) :: vbar(LBi:,LBj:,:) real(r8), intent(in) :: zeta(LBi:,LBj:,:) real(r8), intent(inout) :: ad_ubar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_vbar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_zeta(LBi:,LBj:,:) ! ! Local variable declarations. ! integer :: Jmin, Jmax integer :: i, j, know real(r8) :: Ce, Cx, Ze real(r8) :: bry_pgr, bry_cor, bry_str, bry_val real(r8) :: cff, cff1, cff2, cff3, dt2d real(r8) :: obc_in, obc_out, tau real(r8) :: ad_Ce, ad_Cx real(r8) :: ad_bry_pgr, ad_bry_cor, ad_bry_str, ad_bry_val, ad_Ze real(r8) :: ad_cff, ad_cff1, ad_cff2, ad_cff3 real(r8) :: adfac real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: ad_grad ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Initialize adjoint private variables. !----------------------------------------------------------------------- ! ad_Ce=0.0_r8 ad_Cx=0.0_r8 ad_Ze=0.0_r8 ad_cff=0.0_r8 ad_cff1=0.0_r8 ad_cff2=0.0_r8 ad_cff3=0.0_r8 ad_bry_pgr=0.0_r8 ad_bry_cor=0.0_r8 ad_bry_str=0.0_r8 ad_bry_val=0.0_r8 ad_grad(LBi:UBi,LBj:UBj)=0.0_r8 ! !----------------------------------------------------------------------- ! Set time-indices !----------------------------------------------------------------------- ! IF (iif(ng).eq.1) THEN know=krhs dt2d=dtfast(ng) ELSE IF (PREDICTOR_2D_STEP(ng)) THEN know=krhs dt2d=2.0_r8*dtfast(ng) ELSE know=kstp dt2d=dtfast(ng) END IF ! !----------------------------------------------------------------------- ! Boundary corners. !----------------------------------------------------------------------- ! IF (.not.(EWperiodic(ng).or.NSperiodic(ng))) THEN IF (DOMAIN(ng)%NorthEast_Corner(tile)) THEN IF (LBC_apply(ng)%north(Iend+1).and. & & LBC_apply(ng)%east (Jend+1)) THEN !^ tl_vbar(Iend+1,Jend+1,kout)=0.5_r8* & !^ & (tl_vbar(Iend+1,Jend ,kout)+ & !^ & tl_vbar(Iend ,Jend+1,kout)) !^ adfac=0.5_r8*ad_vbar(Iend+1,Jend+1,kout) ad_vbar(Iend+1,Jend ,kout)=ad_vbar(Iend+1,Jend ,kout)+ & & adfac ad_vbar(Iend ,Jend+1,kout)=ad_vbar(Iend ,Jend+1,kout)+ & & adfac ad_vbar(Iend+1,Jend+1,kout)=0.0_r8 END IF END IF IF (DOMAIN(ng)%NorthWest_Corner(tile)) THEN IF (LBC_apply(ng)%north(Istr-1).and. & & LBC_apply(ng)%west (Jend+1)) THEN !^ tl_vbar(Istr-1,Jend+1,kout)=0.5_r8* & !^ & (tl_vbar(Istr-1,Jend ,kout)+ & !^ & tl_vbar(Istr ,Jend+1,kout)) !^ adfac=0.5_r8*ad_vbar(Istr-1,Jend+1,kout) ad_vbar(Istr-1,Jend ,kout)=ad_vbar(Istr-1,Jend ,kout)+ & & adfac ad_vbar(Istr ,Jend+1,kout)=ad_vbar(Istr ,Jend+1,kout)+ & & adfac ad_vbar(Istr-1,Jend+1,kout)=0.0_r8 END IF END IF IF (DOMAIN(ng)%SouthEast_Corner(tile)) THEN IF (LBC_apply(ng)%south(Iend+1).and. & & LBC_apply(ng)%east (Jstr )) THEN !^ tl_vbar(Iend+1,Jstr,kout)=0.5_r8* & !^ & (tl_vbar(Iend ,Jstr ,kout)+ & !^ & tl_vbar(Iend+1,Jstr+1,kout)) !^ adfac=0.5_r8*ad_vbar(Iend+1,Jstr,kout) ad_vbar(Iend ,Jstr ,kout)=ad_vbar(Iend ,Jstr ,kout)+ & & adfac ad_vbar(Iend+1,Jstr+1,kout)=ad_vbar(Iend+1,Jstr+1,kout)+ & & adfac ad_vbar(Iend+1,Jstr ,kout)=0.0_r8 END IF END IF IF (DOMAIN(ng)%SouthWest_Corner(tile)) THEN IF (LBC_apply(ng)%south(Istr-1).and. & & LBC_apply(ng)%west (Jstr )) THEN !^ tl_vbar(Istr-1,Jstr,kout)=0.5_r8* & !^ & (tl_vbar(Istr ,Jstr ,kout)+ & !^ & tl_vbar(Istr-1,Jstr+1,kout)) !^ adfac=0.5_r8*ad_vbar(Istr-1,Jstr,kout) ad_vbar(Istr ,Jstr ,kout)=ad_vbar(Istr ,Jstr ,kout)+ & & adfac ad_vbar(Istr-1,Jstr+1,kout)=ad_vbar(Istr-1,Jstr+1,kout)+ & & adfac ad_vbar(Istr-1,Jstr ,kout)=0.0_r8 END IF END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the eastern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN ! ! Eastern edge, implicit upstream radiation condition. ! IF (ad_LBC(ieast,isVbar,ng)%radiation) THEN IF (iic(ng).ne.0) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN !^ tl_vbar(Iend+1,j,kout)=tl_vbar(Iend+1,j,kout)* & !^ & GRID(ng)%vmask(Iend+1,j) !^ ad_vbar(Iend+1,j,kout)=ad_vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) IF (ad_LBC(ieast,isVbar,ng)%nudging) THEN !^ tl_vbar(Iend+1,j,kout)=tl_vbar(Iend+1,j,kout)- & !^ & tau*tl_vbar(Iend+1,j,know) !^ ad_vbar(Iend+1 ,j,know)=ad_vbar(Iend+1 ,j,know)- & & tau*ad_vbar(Iend+1,j,kout) END IF !^ tl_vbar(Iend+1,j,kout)=(cff*tl_vbar(Iend+1,j,know)+ & !^ & Cx *tl_vbar(Iend ,j,kout)- & !^ & MAX(Ce,0.0_r8)* & !^ & tl_grad(Iend+1,j-1)- & !^ & MIN(Ce,0.0_r8)* & !^ & tl_grad(Iend+1,j ))/ & !^ & (cff+Cx) !^ adfac=ad_vbar(Iend+1,j,kout)/(cff+Cx) ad_grad(Iend+1,j-1)=ad_grad(Iend+1,j-1)- & & MAX(Ce,0.0_r8)*adfac ad_grad(Iend+1,j )=ad_grad(Iend+1,j )- & & MIN(Ce,0.0_r8)*adfac ad_vbar(Iend ,j,kout)=ad_vbar(Iend ,j,kout)+Cx* adfac ad_vbar(Iend+1,j,know)=ad_vbar(Iend+1,j,know)+cff*adfac ad_vbar(Iend+1,j,kout)=0.0_r8 END IF END DO END IF ! ! Eastern edge, Chapman boundary condition. ! ELSE IF (ad_LBC(ieast,isVbar,ng)%Flather.or. & & ad_LBC(ieast,isVbar,ng)%reduced.or. & & ad_LBC(ieast,isVbar,ng)%Shchepetkin) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN cff=dt2d*0.5_r8*(GRID(ng)%pm(Iend,j-1)+ & & GRID(ng)%pm(Iend,j )) cff1=SQRT(g*0.5_r8*(GRID(ng)%h(Iend,j-1)+ & & zeta(Iend,j-1,know)+ & & GRID(ng)%h(Iend,j )+ & & zeta(Iend,j ,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) !^ tl_vbar(Iend+1,j,kout)=tl_vbar(Iend+1,j,kout)* & !^ & GRID(ng)%vmask(Iend+1,j) !^ ad_vbar(Iend+1,j,kout)=ad_vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) !^ tl_vbar(Iend+1,j,kout)=tl_cff2*(vbar(Iend+1,j,know)+ & !^ & Cx*vbar(Iend,j,kout))+ & !^ & cff2*(tl_vbar(Iend+1,j,know)+ & !^ & tl_Cx*vbar(Iend,j,kout)+ & !^ & Cx*tl_vbar(Iend,j,kout)) !^ adfac=cff2*ad_vbar(Iend+1,j,kout) ad_vbar(Iend ,j,kout)=ad_vbar(Iend ,j,kout)+Cx*adfac ad_vbar(Iend+1,j,know)=ad_vbar(Iend+1,j,know)+adfac ad_Cx=ad_Cx+vbar(Iend,j,kout)*adfac ad_cff2=ad_cff2+ & & (vbar(Iend+1,j,know)+ & & Cx*vbar(Iend,j,kout))*ad_vbar(Iend+1,j,kout) ad_vbar(Iend+1,j,kout)=0.0_r8 !^ tl_cff2=-cff2*cff2*tl_Cx !^ ad_Cx=ad_Cx-cff2*cff2*ad_cff2 ad_cff2=0.0_r8 !^ tl_Cx=cff*tl_cff1 !^ ad_cff1=ad_cff1+cff*ad_Cx ad_Cx=0.0_r8 !^ tl_cff1=0.25_r8*g*(GRID(ng)%tl_h(Iend,j-1)+ & !^ & tl_zeta(Iend,j-1,know)+ & !^ & GRID(ng)%tl_h(Iend,j )+ & !^ & tl_zeta(Iend,j ,know))/cff1 !^ adfac=0.25_r8*g*ad_cff1/cff1 GRID(ng)%ad_h(Iend,j-1)=GRID(ng)%ad_h(Iend,j-1)+adfac GRID(ng)%ad_h(Iend,j )=GRID(ng)%ad_h(Iend,j )+adfac ad_zeta(Iend,j-1,know)=ad_zeta(Iend,j-1,know)+adfac ad_zeta(Iend,j ,know)=ad_zeta(Iend,j ,know)+adfac ad_cff1=0.0_r8 END IF END DO ! ! Eastern edge, clamped boundary condition. ! ELSE IF (ad_LBC(ieast,isVbar,ng)%clamped) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN !^ tl_vbar(Iend+1,j,kout)=tl_vbar(Iend+1,j,kout)* & !^ & GRID(ng)%vmask(Iend+1,j) !^ ad_vbar(Iend+1,j,kout)=ad_vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) !^ tl_vbar(Iend+1,j,kout)=0.0_r8 !^ ad_vbar(Iend+1,j,kout)=0.0_r8 END IF END DO ! ! Eastern edge, gradient boundary condition. ! ELSE IF (ad_LBC(ieast,isVbar,ng)%gradient) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%east(j)) THEN !^ tl_vbar(Iend+1,j,kout)=tl_vbar(Iend+1,j,kout)* & !^ & GRID(ng)%vmask(Iend+1,j) !^ ad_vbar(Iend+1,j,kout)=ad_vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) !^ tl_vbar(Iend+1,j,kout)=tl_vbar(Iend,j,kout) !^ ad_vbar(Iend ,j,kout)=ad_vbar(Iend,j,kout)+ & & ad_vbar(Iend+1,j,kout) ad_vbar(Iend+1,j,kout)=0.0_r8 END IF END DO ! ! Eastern edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (ad_LBC(ieast,isVbar,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO j=Jmin,Jmax IF (LBC_apply(ng)%east(j)) THEN !^ tl_vbar(Iend+1,j,kout)=tl_vbar(Iend+1,j,kout)* & !^ & GRID(ng)%vmask(Iend+1,j) !^ ad_vbar(Iend+1,j,kout)=ad_vbar(Iend+1,j,kout)* & & GRID(ng)%vmask(Iend+1,j) !^ tl_vbar(Iend+1,j,kout)=gamma2(ng)*tl_vbar(Iend,j,kout) !^ ad_vbar(Iend ,j,kout)=ad_vbar(Iend,j,kout)+ & & gamma2(ng)*ad_vbar(Iend+1,j,kout) ad_vbar(Iend+1,j,kout)=0.0_r8 END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the western edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Western_Edge(tile)) THEN ! ! Western edge, implicit upstream radiation condition. ! IF (ad_LBC(iwest,isVbar,ng)%radiation) THEN IF (iic(ng).ne.0) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN !^ tl_vbar(Istr-1,j,kout)=tl_vbar(Istr-1,j,kout)* & !^ & GRID(ng)%vmask(Istr-1,j) !^ ad_vbar(Istr-1,j,kout)=ad_vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) IF (ad_LBC(iwest,isVbar,ng)%nudging) THEN !^ tl_vbar(Istr-1,j,kout)=tl_vbar(Istr-1,j,kout)- & !^ & tau*tl_vbar(1,j,know) !^ ad_vbar(Istr,j,know)=ad_vbar(Istr,j,know)- & & tau*ad_vbar(Istr-1,j,kout) END IF !^ tl_vbar(Istr-1,j,kout)=(cff*tl_vbar(Istr-1,j,know)+ & !^ & Cx *tl_vbar(1,j,kout)- & !^ & MAX(Ce,0.0_r8)* & !^ & tl_grad(Istr-1,j-1)- & !^ & MIN(Ce,0.0_r8)* & !^ & tl_grad(Istr-1,j ))/ & !^ & (cff+Cx) !^ adfac=ad_vbar(Istr-1,j,kout)/(cff+Cx) ad_grad(Istr-1,j-1)=ad_grad(Istr-1,j-1)- & & MAX(Ce,0.0_r8)*adfac ad_grad(Istr-1,j )=ad_grad(Istr-1,j )- & & MIN(Ce,0.0_r8)*adfac ad_vbar(Istr-1,j,know)=ad_vbar(Istr-1,j,know)+cff*adfac ad_vbar(Istr ,j,kout)=ad_vbar(Istr ,j,kout)+Cx *adfac ad_vbar(Istr-1,j,kout)=0.0_r8 END IF END DO END IF ! ! Western edge, Chapman boundary condition. ! ELSE IF (ad_LBC(iwest,isVbar,ng)%Flather.or. & & ad_LBC(iwest,isVbar,ng)%reduced.or. & & ad_LBC(iwest,isVbar,ng)%Shchepetkin) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN cff=dt2d*0.5_r8*(GRID(ng)%pm(Istr,j-1)+ & & GRID(ng)%pm(Istr,j )) cff1=SQRT(g*0.5_r8*(GRID(ng)%h(Istr,j-1)+ & & zeta(Istr,j-1,know)+ & & GRID(ng)%h(Istr,j )+ & & zeta(Istr,j ,know))) Cx=cff*cff1 cff2=1.0_r8/(1.0_r8+Cx) !^ tl_vbar(Istr-1,j,kout)=tl_vbar(Istr-1,j,kout)* & !^ & GRID(ng)%vmask(Istr-1,j) !^ ad_vbar(Istr-1,j,kout)=ad_vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) !^ tl_vbar(Istr-1,j,kout)=tl_cff2*(vbar(Istr-1,j,know)+ & !^ & Cx*vbar(Istr,j,kout))+ & !^ & cff2*(tl_vbar(Istr-1,j,know)+ & !^ & tl_Cx*vbar(Istr,j,kout)+ & !^ & Cx*tl_vbar(Istr,j,kout)) !^ adfac=cff2*ad_vbar(Istr-1,j,kout) ad_vbar(Istr-1,j,know)=ad_vbar(Istr-1,j,know)+adfac ad_vbar(Istr ,j,kout)=ad_vbar(Istr ,j,kout)+Cx*adfac ad_Cx=ad_Cx+vbar(Istr,j,kout)*adfac ad_cff2=ad_cff2+ & & (vbar(Istr-1,j,know)+ & & Cx*vbar(Istr,j,kout))*ad_vbar(Istr-1,j,kout) ad_vbar(Istr-1,j,kout)=0.0_r8 !^ tl_cff2=-cff2*cff2*tl_Cx !^ ad_Cx=ad_Cx-cff2*cff2*ad_cff2 ad_cff2=0.0_r8 !^ tl_Cx=cff*tl_cff1 !^ ad_cff1=ad_cff1+cff*ad_Cx ad_Cx=0.0_r8 !^ tl_cff1=0.25_r8*g*(GRID(ng)%tl_h(Istr,j-1)+ & !^ & tl_zeta(Istr,j-1,know)+ & !^ & GRID(ng)%tl_h(Istr,j )+ & !^ & tl_zeta(Istr,j ,know))/cff1 !^ adfac=0.25_r8*g*ad_cff1/cff1 GRID(ng)%ad_h(Istr,j-1)=GRID(ng)%ad_h(Istr,j-1)+adfac GRID(ng)%ad_h(Istr,j )=GRID(ng)%ad_h(Istr,j )+adfac ad_zeta(Istr,j-1,know)=ad_zeta(Istr,j-1,know)+adfac ad_zeta(Istr,j ,know)=ad_zeta(Istr,j ,know)+adfac ad_cff1=0.0_r8 END IF END DO ! ! Western edge, clamped boundary condition. ! ELSE IF (ad_LBC(iwest,isVbar,ng)%clamped) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN !^ tl_vbar(Istr-1,j,kout)=tl_vbar(Istr-1,j,kout)* & !^ & GRID(ng)%vmask(Istr-1,j) !^ ad_vbar(Istr-1,j,kout)=ad_vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) !^ tl_vbar(Istr-1,j,kout)=0.0_r8 !^ ad_vbar(Istr-1,j,kout)=0.0_r8 END IF END DO ! ! Western edge, gradient boundary condition. ! ELSE IF (ad_LBC(iwest,isVbar,ng)%gradient) THEN DO j=JstrV,Jend IF (LBC_apply(ng)%west(j)) THEN !^ tl_vbar(Istr-1,j,kout)=tl_vbar(Istr-1,j,kout)* & !^ & GRID(ng)%vmask(Istr-1,j) !^ ad_vbar(Istr-1,j,kout)=ad_vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) !^ tl_vbar(Istr-1,j,kout)=tl_vbar(Istr,j,kout) !^ ad_vbar(Istr ,j,kout)=ad_vbar(Istr,j,kout)+ & & ad_vbar(Istr-1,j,kout) ad_vbar(Istr-1,j,kout)=0.0_r8 END IF END DO ! ! Western edge, closed boundary condition: free slip (gamma2=1) or ! no slip (gamma2=-1). ! ELSE IF (ad_LBC(iwest,isVbar,ng)%closed) THEN IF (NSperiodic(ng)) THEN Jmin=JstrV Jmax=Jend ELSE Jmin=Jstr Jmax=JendR END IF DO j=Jmin,Jmax IF (LBC_apply(ng)%west(j)) THEN !^ tl_vbar(Istr-1,j,kout)=tl_vbar(Istr-1,j,kout)* & !^ & GRID(ng)%vmask(Istr-1,j) !^ ad_vbar(Istr-1,j,kout)=ad_vbar(Istr-1,j,kout)* & & GRID(ng)%vmask(Istr-1,j) !^ tl_vbar(Istr-1,j,kout)=gamma2(ng)*tl_vbar(Istr,j,kout) !^ ad_vbar(Istr ,j,kout)=ad_vbar(Istr,j,kout)+ & & gamma2(ng)*ad_vbar(Istr-1,j,kout) ad_vbar(Istr-1,j,kout)=0.0_r8 END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the northern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Northern_Edge(tile)) THEN ! ! Northern edge, implicit upstream radiation condition. ! IF (ad_LBC(inorth,isVbar,ng)%radiation) THEN IF (iic(ng).ne.0) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,kout)* & !^ & GRID(ng)%vmask(i,Jend+1) !^ ad_vbar(i,Jend+1,kout)=ad_vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) IF (ad_LBC(inorth,isVbar,ng)%nudging) THEN !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,kout)- & !^ & tau*tl_vbar(i,Jend+1,know) !^ ad_vbar(i,Jend+1 ,know)=ad_vbar(i,Jend+1 ,know)- & & tau*ad_vbar(i,Jend+1,kout) END IF !^ tl_vbar(i,Jend+1,kout)=(cff*tl_vbar(i,Jend+1,know)+ & !^ & Ce *tl_vbar(i,Jend ,kout)- & !^ & MAX(Cx,0.0_r8)* & !^ & tl_grad(i ,Jend+1)- & !^ & MIN(Cx,0.0_r8)* & !^ & tl_grad(i+1,Jend+1))/ & !^ & (cff+Ce) !^ adfac=ad_vbar(i,Jend+1,kout)/(cff+Ce) ad_grad(i ,Jend+1)=ad_grad(i ,Jend+1)- & & MAX(Cx,0.0_r8)*adfac ad_grad(i+1,Jend+1)=ad_grad(i+1,Jend+1)- & & MIN(Cx,0.0_r8)*adfac ad_vbar(i,Jend ,kout)=ad_vbar(i,Jend ,kout)+Ce*adfac ad_vbar(i,Jend+1,know)=ad_vbar(i,Jend+1,know)+cff*adfac ad_vbar(i,Jend+1,kout)=0.0_r8 END IF END DO END IF ! ! Northern edge, Flather boundary condition. ! ELSE IF (ad_LBC(inorth,isVbar,ng)%Flather) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jend )+ & & zeta(i,Jend ,know)+ & & GRID(ng)%h(i,Jend+1)+ & & zeta(i,Jend+1,know))) Ce=SQRT(g*cff) !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,kout)* & !^ & GRID(ng)%vmask(i,Jend+1) !^ ad_vbar(i,Jend+1,kout)=ad_vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) !^ tl_vbar(i,Jend+1,kout)=tl_bry_val+ & !^ & tl_Ce* & !^ & (0.5_r8*(zeta(i,Jend ,know)+ & !^ & zeta(i,Jend+1,know))- & !^ & BOUNDARY(ng)%zeta_north(i))+ & !^ & Ce* & !^ & (0.5_r8*(tl_zeta(i,Jend ,know)+ & !^ & tl_zeta(i,Jend+1,know))) !^ adfac=Ce*0.5_r8*ad_vbar(i,Jend+1,kout) ad_zeta(i,Jend ,know)=ad_zeta(i,Jend ,know)+adfac ad_zeta(i,Jend+1,know)=ad_zeta(i,Jend+1,know)+adfac ad_Ce=ad_Ce+ & & (0.5_r8*(zeta(i,Jend ,know)+ & & zeta(i,Jend+1,know))- & & BOUNDARY(ng)%zeta_north(i))*ad_vbar(i,Jend+1,kout) ad_bry_val=ad_bry_val+ad_vbar(i,Jend+1,kout) ad_vbar(i,Jend+1,kout)=0.0_r8 !^ tl_Ce=0.5_r8*g*tl_cff/Ce !^ ad_cff=ad_cff+0.5_r8*g*ad_Ce/Ce ad_Ce=0.0_r8 !^ tl_cff=-cff*cff*(0.5_r8*(GRID(ng)%tl_h(i,Jend )+ & !^ & tl_zeta(i,Jend ,know)+ & !^ & GRID(ng)%tl_h(i,Jend+1)+ & !^ & tl_zeta(i,Jend+1,know))) !^ adfac=-cff*cff*0.5_r8*ad_cff GRID(ng)%ad_h(i,Jend )=GRID(ng)%ad_h(i,Jend )+adfac GRID(ng)%ad_h(i,Jend+1)=GRID(ng)%ad_h(i,Jend+1)+adfac ad_zeta(i,Jend ,know)=ad_zeta(i,Jend ,know)+adfac ad_zeta(i,Jend+1,know)=ad_zeta(i,Jend+1,know)+adfac ad_cff=0.0_r8 !^ tl_bry_val=0.0_r8 !^ ad_bry_val=0.0_r8 END IF END DO ! ! Northern edge, Shchepetkin boundary condition (Maison et al., 2010). ! ELSE IF (ad_LBC(inorth,isVbar,ng)%Shchepetkin) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN cff=0.5_r8*(GRID(ng)%h(i,Jend )+ & & GRID(ng)%h(i,Jend+1)) cff1=SQRT(g/cff) Ce=dt2d*cff1*cff*0.5_r8*(GRID(ng)%pn(i,Jend )+ & & GRID(ng)%pn(i,Jend+1)) Ze=(0.5_r8+Ce)*zeta(i,Jend ,know)+ & & (0.5_r8-Ce)*zeta(i,Jend+1,know) IF (Ce.gt.Co) THEN cff2=(1.0_r8-Co/Ce)**2 cff3=zeta(i,Jend,kout)+ & & Ce*zeta(i,Jend+1,know)- & & (1.0_r8+Ce)*zeta(i,Jend,know) Ze=Ze+cff2*cff3 END IF !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,kout)* & !^ & GRID(ng)%vmask(i,Jend+1) !^ ad_vbar(i,Jend+1,kout)=ad_vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) !^ tl_vbar(i,Jend+1,kout)=0.5_r8* & !^ & ((1.0_r8-Ce)* & !^ & tl_vbar(i,Jend+1,know)+ & !^ & tl_Ce*(vbar(i,Jend ,know)- & !^ & vbar(i,Jend+1,know))+ & !^ & Ce*tl_vbar(i,Jend,know)+ & !^ & tl_bry_val+ & !^ & tl_cff1* & !^ & (Ze-BOUNDARY(ng)%zeta_north(i))- & !^ & cff1*tl_ze) !^ adfac=0.5_r8*ad_vbar(i,Jend+1,kout) ad_vbar(i,Jend+1,know)=ad_vbar(i,Jend+1,know)+ & & (1.0_r8-Ce)*adfac ad_vbar(i,Jend ,know)=ad_vbar(i,Jend ,know)+ & & Ce*adfac ad_Ce=ad_Ce+ & & (vbar(i,Jend ,know)- & & vbar(i,Jend+1,know))*adfac ad_cff1=ad_cff1+ & & (Ze-BOUNDARY(ng)%zeta_north(i))*adfac ad_ze=ad_ze-cff1*adfac ad_vbar(i,Jend+1,kout)=0.0_r8 IF (Ce.gt.Co) THEN !^ tl_Ze=tl_Ze+cff2*tl_cff3+ & !^ & tl_cff2*cff3 !^ ad_cff2=ad_cff2+cff3*ad_Ze ad_cff3=ad_cff3+cff2*ad_Ze !^ tl_cff3=tl_zeta(i,Jend,kout)+ & !^ & Ce*tl_zeta(i,Jend+1,know)+ & !^ & tl_Ce*(zeta(i,Jend ,know)+ & !^ & zeta(i,Jend+1,know))- & !^ & (1.0_r8+Ce)*tl_zeta(i,Jend,know) !^ ad_zeta(i,Jend ,kout)=ad_zeta(i,Jend ,kout)+ & & ad_cff3 ad_zeta(i,Jend ,know)=ad_zeta(i,Jend ,know)- & & (1.0_r8+Ce)*ad_cff3 ad_zeta(i,Jend+1,know)=ad_zeta(i,Jend+1,know)+ & & Ce*ad_cff3 ad_Ce=ad_Ce+ & & (zeta(i,Jend ,know)+ & & zeta(i,Jend+1,know))*ad_cff3 ad_cff3=0.0_r8 !^ tl_cff2=2.0_r8*cff2*Co*tl_Ce/(Ce*Ce) !^ ad_Ce=ad_Ce+ & & 2.0_r8*cff2*Co*ad_cff2/(Ce*Ce) ad_cff2=0.0_r8 END IF !^ tl_Ze=(0.5_r8+Ce)*tl_zeta(i,Jend ,know)+ & !^ & (0.5_r8-Ce)*tl_zeta(i,Jend+1,know)+ & !^ & tl_Ce*(zeta(i,Jend ,know)- & !^ & zeta(i,Jend+1,know)) !^ ad_zeta(i,Jend ,know)=ad_zeta(i,Jend ,know)+ & & (0.5_r8+Ce)*ad_Ze ad_zeta(i,Jend+1,know)=ad_zeta(i,Jend+1,know)+ & & (0.5_r8-Ce)*ad_Ze ad_Ce=ad_Ce+ & & (zeta(i,Jend ,know)- & & zeta(i,Jend+1,know))*ad_Ze ad_Ze=0.0_r8 !^ tl_Ce=dt2d*0.5_r8*(GRID(ng)%pn(i,Jend )+ & !^ & GRID(ng)%pn(i,Jend+1))* & !^ & (cff1*tl_cff+ & !^ & tl_cff1*cff) !^ adfac=dt2d*0.5_r8*(GRID(ng)%pn(i,Jend )+ & & GRID(ng)%pn(i,Jend+1))*ad_Ce ad_cff=ad_cff+cff1*adfac ad_cff1=ad_cff1+cff*adfac ad_Ce=0.0_r8 !^ tl_cff1=-0.5_r8*cff1*tl_cff/cff !^ ad_cff=ad_cff- & & 0.5_r8*cff1*ad_cff1/cff ad_cff1=0.0_r8 !^ tl_cff=0.5_r8*(GRID(ng)%tl_h(i,Jend )+ & !^ & GRID(ng)%tl_h(i,Jend+1)) !^ adfac=0.5_r8*ad_cff GRID(ng)%ad_h(i,Jend )=GRID(ng)%ad_h(i,Jend )+adfac GRID(ng)%ad_h(i,Jend+1)=GRID(ng)%ad_h(i,Jend+1)+adfac ad_cff=0.0_r8 !^ tl_bry_val=0.0_r8 !^ ad_bry_val=0.0_r8 END IF END DO ! ! Northern edge, clamped boundary condition. ! ELSE IF (ad_LBC(inorth,isVbar,ng)%clamped) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,kout)* & !^ & GRID(ng)%vmask(i,Jend+1) !^ ad_vbar(i,Jend+1,kout)=ad_vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) !^ tl_vbar(i,Jend+1,kout)=0.0_r8 !^ ad_vbar(i,Jend+1,kout)=0.0_r8 END IF END DO ! ! Northern edge, gradient boundary condition. ! ELSE IF (ad_LBC(inorth,isVbar,ng)%gradient) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,kout)* & !^ & GRID(ng)%vmask(i,Jend+1) !^ ad_vbar(i,Jend+1,kout)=ad_vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend,kout) !^ ad_vbar(i,Jend ,kout)=ad_vbar(i,Jend,kout)+ & & ad_vbar(i,Jend+1,kout) ad_vbar(i,Jend+1,kout)=0.0_r8 END IF END DO ! ! Northern edge, reduced-physics boundary condition. ! ELSE IF (ad_LBC(inorth,isVbar,ng)%reduced) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jend )+ & & zeta(i,Jend ,know)+ & & GRID(ng)%h(i,Jend+1)+ & & zeta(i,Jend+1,know))) !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,kout)* & !^ & GRID(ng)%vmask(i,Jend+1) !^ ad_vbar(i,Jend+1,kout)=ad_vbar(i,Jend+1,kout)* & & GRID(ng)%vmask(i,Jend+1) !^ tl_vbar(i,Jend+1,kout)=tl_vbar(i,Jend+1,know)+ & !^ & dt2d*(tl_bry_pgr+ & !^ & tl_bry_cor+ & !^ & tl_bry_str) !^ adfac=dt2d*ad_vbar(i,Jend+1,kout) ad_bry_pgr=ad_bry_pgr+adfac ad_bry_cor=ad_bry_cor+adfac ad_bry_str=ad_bry_str+adfac ad_vbar(i,Jend+1,know)=ad_vbar(i,Jend+1,know)+ & & ad_vbar(i,Jend+1,kout) ad_vbar(i,Jend+1,kout)=0.0_r8 !^ tl_bry_str=tl_cff*(FORCES(ng)%svstr(i,Jend+1)- & !^ & FORCES(ng)%bvstr(i,Jend+1))+ & !^ & cff*(FORCES(ng)%tl_svstr(i,Jend+1)- & !^ & FORCES(ng)%tl_bvstr(i,Jend+1)) !^ adfac=cff*ad_bry_str FORCES(ng)%ad_svstr(i,Jend+1)= & & FORCES(ng)%ad_svstr(i,Jend+1)+ & & adfac FORCES(ng)%ad_bvstr(i,Jend+1)= & & FORCES(ng)%ad_bvstr(i,Jend+1)- & & adfac ad_cff=ad_cff+(FORCES(ng)%svstr(i,Jend+1)- & & FORCES(ng)%bvstr(i,Jend+1))*ad_bry_str ad_bry_str=0.0_r8 !^ tl_cff=-cff*cff*0.5_r8*(GRID(ng)%tl_h(i,Jend )+ & !^ & tl_zeta(i,Jend ,know)+ & !^ & GRID(ng)%tl_h(i,Jend+1)+ & !^ & tl_zeta(i,Jend+1,know)) !^ adfac=-cff*cff*0.5_r8*ad_cff ad_zeta(i,Jend ,know)=ad_zeta(i,Jend ,know)+adfac ad_zeta(i,Jend+1,know)=ad_zeta(i,Jend+1,know)+adfac GRID(ng)%ad_h(i,Jend )=GRID(ng)%ad_h(i,Jend )+adfac GRID(ng)%ad_h(i,Jend+1)=GRID(ng)%ad_h(i,Jend+1)+adfac ad_cff=0.0_r8 !^ tl_bry_cor=-0.125_r8*(tl_ubar(i ,Jend ,know)+ & !^ & tl_ubar(i+1,Jend ,know)+ & !^ & tl_ubar(i ,Jend+1,know)+ & !^ & tl_ubar(i+1,Jend+1,know))* & !^ & (GRID(ng)%f(i,Jend )+ & !^ & GRID(ng)%f(i,Jend+1)) !^ adfac=-0.125_r8*(GRID(ng)%f(i,Jend )+ & & GRID(ng)%f(i,Jend+1))*ad_bry_cor ad_ubar(i ,Jend ,know)=ad_ubar(i ,Jend ,know)+adfac ad_ubar(i+1,Jend ,know)=ad_ubar(i+1,Jend ,know)+adfac ad_ubar(i ,Jend+1,know)=ad_ubar(i ,Jend+1,know)+adfac ad_ubar(i+1,Jend+1,know)=ad_ubar(i+1,Jend+1,know)+adfac ad_bry_cor=0.0_r8 IF (ad_LBC(inorth,isFsur,ng)%acquire) THEN !^ tl_bry_pgr=g*tl_zeta(i,Jend,know)* & !^ & 0.5_r8*GRID(ng)%pn(i,Jend) !^ ad_zeta(i,Jend,know)=ad_zeta(i,Jend,know)+ & & g*0.5_r8*GRID(ng)%pn(i,Jend)* & & ad_bry_pgr ad_bry_pgr=0.0_r8 ELSE !^ tl_bry_pgr=-g*(tl_zeta(i,Jend+1,know)- & !^ & tl_zeta(i,Jend ,know))* & !^ & 0.5_r8*(GRID(ng)%pn(i,Jend )+ & !^ & GRID(ng)%pn(i,Jend+1)) !^ adfac=-g*0.5_r8*(GRID(ng)%pn(i,Jend )+ & & GRID(ng)%pn(i,Jend+1))*ad_bry_pgr ad_zeta(i,Jend ,know)=ad_zeta(i,Jend ,know)-adfac ad_zeta(i,Jend+1,know)=ad_zeta(i,Jend+1,know)+adfac ad_bry_pgr=0.0_r8 END IF END IF END DO ! ! Northern edge, closed boundary condition. ! ELSE IF (ad_LBC(inorth,isVbar,ng)%closed) THEN DO i=Istr,Iend IF (LBC_apply(ng)%north(i)) THEN !^ tl_vbar(i,Jend+1,kout)=0.0_r8 !^ ad_vbar(i,Jend+1,kout)=0.0_r8 END IF END DO END IF END IF ! !----------------------------------------------------------------------- ! Lateral boundary conditions at the southern edge. !----------------------------------------------------------------------- ! IF (DOMAIN(ng)%Southern_Edge(tile)) THEN ! ! Southern edge, implicit upstream radiation condition. ! IF (ad_LBC(isouth,isVbar,ng)%radiation) THEN IF (iic(ng).ne.0) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,kout)* & !^ & GRID(ng)%vmask(i,Jstr) !^ ad_vbar(i,Jstr,kout)=ad_vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) IF (ad_LBC(isouth,isVbar,ng)%nudging) THEN !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,kout)- & !^ & tau*tl_vbar(i,Jstr,know) !^ ad_vbar(i,Jstr,know)=ad_vbar(i,Jstr,know)- & & tau*ad_vbar(i,Jstr,kout) END IF !^ tl_vbar(i,Jstr,kout)=(cff*tl_vbar(i,Jstr ,know)+ & !^ & Ce *tl_vbar(i,Jstr+1,kout)- & !^ & MAX(Cx,0.0_r8)* & !^ & tl_grad(i ,Jstr)- & !^ & MIN(Cx,0.0_r8)* & !^ & tl_grad(i+1,Jstr))/ & !^ & (cff+Ce) !^ adfac=ad_vbar(i,Jstr,kout)/(cff+Ce) ad_grad(i ,Jstr)=ad_grad(i ,Jstr)-MAX(Cx,0.0_r8)*adfac ad_grad(i+1,Jstr)=ad_grad(i+1,Jstr)-MIN(Cx,0.0_r8)*adfac ad_vbar(i,Jstr ,know)=ad_vbar(i,Jstr ,know)+cff*adfac ad_vbar(i,Jstr-1,kout)=ad_vbar(i,Jstr-1,kout)+Ce *adfac ad_vbar(i,Jstr ,kout)=0.0_r8 END IF END DO END IF ! ! Southern edge, Flather boundary condition. ! ELSE IF (ad_LBC(isouth,isVbar,ng)%Flather) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jstr-1)+ & & zeta(i,Jstr-1,know)+ & & GRID(ng)%h(i,Jstr )+ & & zeta(i,Jstr ,know))) Ce=SQRT(g*cff) !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,kout)* & !^ & GRID(ng)%vmask(i,Jstr) !^ ad_vbar(i,Jstr,kout)=ad_vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) !^ tl_vbar(i,Jstr,kout)=tl_bry_val- & !^ & tl_Ce* & !^ & (0.5_r8*(zeta(i,Jstr-1,know)+ & !^ & zeta(i,Jstr ,know))- & !^ & BOUNDARY(ng)%zeta_south(i))- & !^ & Ce* & !^ & (0.5_r8*(tl_zeta(i,Jstr-1,know)+ & !^ & tl_zeta(i,Jstr ,know))) !^ adfac=Ce*0.5_r8*ad_vbar(i,Jstr,kout) ad_zeta(i,Jstr-1,know)=ad_zeta(i,Jstr-1,know)-adfac ad_zeta(i,Jstr ,know)=ad_zeta(i,Jstr ,know)-adfac ad_Ce=ad_Ce- & & (0.5_r8*(zeta(i,Jstr-1,know)+ & & zeta(i,Jstr ,know))- & & BOUNDARY(ng)%zeta_south(i))*ad_vbar(i,Jstr,kout) ad_bry_val=ad_bry_val+ad_vbar(i,Jstr,kout) ad_vbar(i,Jstr,kout)=0.0_r8 !^ tl_Ce=0.5_r8*g*tl_cff/Ce !^ ad_cff=ad_cff+0.5_r8*g*ad_Ce/Ce ad_Ce=0.0_r8 !^ tl_cff=-cff*cff*(0.5_r8*(GRID(ng)%tl_h(i,Jstr-1)+ & !^ & tl_zeta(i,Jstr-1,know)+ & !^ & GRID(ng)%tl_h(i,Jstr )+ & !^ & tl_zeta(i,Jstr ,know))) !^ adfac=-cff*cff*0.5_r8*ad_cff GRID(ng)%ad_h(i,Jstr-1)=GRID(ng)%ad_h(i,Jstr-1)+adfac GRID(ng)%ad_h(i,Jstr )=GRID(ng)%ad_h(i,Jstr )+adfac ad_zeta(i,Jstr-1,know)=ad_zeta(i,Jstr-1,know)+adfac ad_zeta(i,Jstr ,know)=ad_zeta(i,Jstr ,know)+adfac ad_cff=0.0_r8 !^ tl_bry_val=0.0_r8 !^ ad_bry_val=0.0_r8 END IF END DO ! ! Southern edge, Shchepetkin boundary condition (Maison et al., 2010). ! ELSE IF (ad_LBC(isouth,isVbar,ng)%Shchepetkin) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN cff=0.5_r8*(GRID(ng)%h(i,Jstr-1)+ & & GRID(ng)%h(i,Jstr )) cff1=SQRT(g/cff) Ce=dt2d*cff1*cff*0.5_r8*(GRID(ng)%pn(i,Jstr-1)+ & & GRID(ng)%pn(i,Jstr )) Ze=(0.5_r8+Ce)*zeta(i,Jstr ,know)+ & & (0.5_r8-Ce)*zeta(i,Jstr-1,know) IF (Ce.gt.Co) THEN cff2=(1.0_r8-Co/Ce)**2 cff3=zeta(i,Jstr,kout)+ & & Ce*zeta(i,Jstr-1,know)- & & (1.0_r8+Ce)*zeta(i,Jstr,know) Ze=Ze+cff2*cff3 END IF !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,kout)* & !^ & GRID(ng)%vmask(i,Jstr) !^ ad_vbar(i,Jstr,kout)=ad_vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) !^ tl_vbar(i,Jstr,kout)=0.5_r8* & !^ & ((1.0_r8-Ce)* & !^ & tl_vbar(i,Jstr,know)- & !^ & tl_Ce*(vbar(i,Jstr ,know)- & !^ & vbar(i,Jstr+1,know))+ & !^ & Ce*tl_vbar(i,Jstr+1,know)+ & !^ & tl_bry_val- & !^ & tl_cff1* & !^ & (Ze-BOUNDARY(ng)%zeta_south(i))- & !^ & cff1*tl_Ze) !^ adfac=0.5_r8*ad_vbar(i,Jstr,kout) ad_vbar(i,Jstr ,know)=ad_vbar(i,Jstr,know)+ & & (1.0_r8-Ce)*adfac ad_vbar(i,Jstr+1,know)=ad_vbar(i,Jstr+1,know)+ & & Ce*adfac ad_Ce=ad_Ce- & & (vbar(i,Jstr ,know)- & & vbar(i,Jstr+1,know))*adfac ad_bry_val=ad_bry_val+adfac ad_cff1=ad_cff1- & & (Ze-BOUNDARY(ng)%zeta_south(i))*adfac ad_Ze=ad_Ze+cff1*adfac ad_vbar(i,Jstr,kout)=0.0_r8 IF (Ce.gt.Co) THEN !^ tl_Ze=tl_Ze+cff2*tl_cff3+ & !^ & tl_cff2*cff3 !^ ad_cff2=ad_cff2+cff3*ad_Ze ad_cff3=ad_cff3+cff2*ad_Ze !^ tl_cff3=tl_zeta(i,Jstr,kout)+ & !^ & Ce*tl_zeta(i,Jstr-1,know)+ & !^ & tl_Ce*(zeta(i,Jstr-1,know)+ & !^ & zeta(i,Jstr ,know))- & !^ & (1.0_r8+Ce)*tl_zeta(i,Jstr,know) !^ ad_zeta(i,Jstr ,kout)=ad_zeta(i,Jstr ,kout)+ & & ad_cff3 ad_zeta(i,Jstr ,know)=ad_zeta(i,Jstr ,know)- & & (1.0_r8+Ce)*ad_cff3 ad_zeta(i,Jstr-1,know)=ad_zeta(i,Jstr-1,know)+ & & Ce*ad_cff3 ad_Ce=ad_Ce+ & & (zeta(i,Jstr-1,know)+ & & zeta(i,Jstr ,know))*ad_cff3 ad_cff3=0.0_r8 !^ tl_cff2=2.0_r8*cff2*Co*tl_Ce/(Ce*Ce) !^ ad_Ce=ad_Ce+ & & 2.0_r8*cff2*Co*ad_cff2/(Ce*Ce) ad_cff2=0.0_r8 END IF !^ tl_Ze=(0.5_r8+Ce)*tl_zeta(i,Jstr ,know)+ & !^ & (0.5_r8-Ce)*tl_zeta(i,Jstr-1,know)+ & !^ & tl_Ce*(zeta(i,Jstr ,know)- & !^ & zeta(i,Jstr-1,know)) !^ ad_zeta(i,Jstr ,know)=ad_zeta(i,Jstr ,know)+ & & (0.5_r8+Ce)*ad_Ze ad_zeta(i,Jstr-1,know)=ad_zeta(i,Jstr-1,know)+ & & (0.5_r8-Ce)*ad_Ze ad_Ce=ad_Ce+ & & (zeta(i,Jstr ,know)- & & zeta(i,Jstr-1,know))*ad_Ze ad_Ze=0.0_r8 !^ tl_Ce=dt2d*0.5_r8*(GRID(ng)%pn(i,Jstr-1)+ & !^ & GRID(ng)%pn(i,Jstr ))* & !^ & (cff1*tl_cff+ & !^ & tl_cff1*cff) !^ adfac=dt2d*0.5_r8*(GRID(ng)%pn(i,Jstr-1)+ & & GRID(ng)%pn(i,Jstr ))*ad_Ce ad_cff=ad_cff+cff1*adfac ad_cff1=ad_cff1+cff*adfac ad_Ce=0.0_r8 !^ tl_cff1=-0.5_r8*cff1*tl_cff/cff !^ ad_cff=ad_cff- & & 0.5_r8*cff1*ad_cff1/cff ad_cff1=0.0_r8 !^ tl_cff=0.5_r8*(GRID(ng)%tl_h(i,Jstr-1)+ & !^ & GRID(ng)%tl_h(i,Jstr )) !^ adfac=0.5_r8*ad_cff GRID(ng)%ad_h(i,Jstr-1)=GRID(ng)%ad_h(i,Jstr-1)+adfac GRID(ng)%ad_h(i,Jstr )=GRID(ng)%ad_h(i,Jstr )+adfac ad_cff=0.0_r8 !^ tl_bry_val=0.0_r8 !^ ad_bry_val=0.0_r8 END IF END DO ! ! Southern edge, clamped boundary condition. ! ELSE IF (ad_LBC(isouth,isVbar,ng)%clamped) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,kout)* & !^ & GRID(ng)%vmask(i,Jstr) !^ ad_vbar(i,Jstr,kout)=ad_vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) !^ tl_vbar(i,Jstr,kout)=0.0_r8 !^ ad_vbar(i,Jstr,kout)=0.0_r8 END IF END DO ! ! Southern edge, gradient boundary condition. ! ELSE IF (ad_LBC(isouth,isVbar,ng)%gradient) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,kout)* & !^ & GRID(ng)%vmask(i,Jstr) !^ ad_vbar(i,Jstr,kout)=ad_vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr+1,kout) !^ ad_vbar(i,Jstr+1,kout)=ad_vbar(i,Jstr+1,kout)+ & & ad_vbar(i,Jstr,kout) ad_vbar(i,Jstr ,kout)=0.0_r8 END IF END DO ! ! Southern edge, reduced-physics boundary condition. ! ELSE IF (ad_LBC(isouth,isVbar,ng)%reduced) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN cff=1.0_r8/(0.5_r8*(GRID(ng)%h(i,Jstr-1)+ & & zeta(i,Jstr-1,know)+ & & GRID(ng)%h(i,Jstr )+ & & zeta(i,Jstr ,know))) !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,kout)* & !^ & GRID(ng)%vmask(i,Jstr) !^ ad_vbar(i,Jstr,kout)=ad_vbar(i,Jstr,kout)* & & GRID(ng)%vmask(i,Jstr) !^ tl_vbar(i,Jstr,kout)=tl_vbar(i,Jstr,know)+ & !^ & dt2d*(tl_bry_pgr+ & !^ & tl_bry_cor+ & !^ & tl_bry_str) !^ adfac=dt2d*ad_vbar(i,Jstr,kout) ad_bry_pgr=ad_bry_pgr+adfac ad_bry_cor=ad_bry_cor+adfac ad_bry_str=ad_bry_str+adfac ad_vbar(i,Jstr,know)=ad_vbar(i,Jstr,know)+ & & ad_vbar(i,Jstr,kout) ad_vbar(i,Jstr,kout)=0.0_r8 !^ tl_bry_str=tl_cff*(FORCES(ng)%svstr(i,Jstr)- & !^ & FORCES(ng)%bvstr(i,Jstr))+ & !^ & cff*(FORCES(ng)%tl_svstr(i,Jstr)- & !^ & FORCES(ng)%tl_bvstr(i,Jstr)) !^ adfac=cff*ad_bry_str FORCES(ng)%ad_svstr(i,Jstr)=FORCES(ng)%ad_svstr(i,Jstr)+ & & adfac FORCES(ng)%ad_bvstr(i,Jstr)=FORCES(ng)%ad_bvstr(i,Jstr)- & & adfac ad_cff=ad_cff+(FORCES(ng)%svstr(i,Jstr)- & & FORCES(ng)%bvstr(i,Jstr))*ad_bry_str ad_bry_str=0.0_r8 !^ tl_cff=-cff*cff*0.5_r8*(GRID(ng)%tl_h(i,Jstr-1)+ & !^ & tl_zeta(i,Jstr-1,know)+ & !^ & GRID(ng)%tl_h(i,Jstr )+ & !^ & tl_zeta(i,Jstr ,know)) !^ adfac=-cff*cff*0.5_r8*ad_cff ad_zeta(i,Jstr-1,know)=ad_zeta(i,Jstr-1,know)+adfac ad_zeta(i,Jstr ,know)=ad_zeta(i,Jstr ,know)+adfac GRID(ng)%ad_h(i,Jstr-1)=GRID(ng)%ad_h(i,Jstr-1)+adfac GRID(ng)%ad_h(i,Jstr )=GRID(ng)%ad_h(i,Jstr )+adfac ad_cff=0.0_r8 !^ tl_bry_cor=-0.125_r8*(tl_ubar(i ,Jstr-1,know)+ & !^ & tl_ubar(i+1,Jstr-1,know)+ & !^ & tl_ubar(i ,Jstr ,know)+ & !^ & tl_ubar(i+1,Jstr ,know))* & !^ & (GRID(ng)%f(i,Jstr-1)+ & !^ & GRID(ng)%f(i,Jstr )) !^ adfac=-0.125_r8*(GRID(ng)%f(i,Jstr-1)+ & & GRID(ng)%f(i,Jstr ))*ad_bry_cor ad_ubar(i ,Jstr-1,know)=ad_ubar(i ,Jstr-1,know)+adfac ad_ubar(i+1,Jstr-1,know)=ad_ubar(i+1,Jstr-1,know)+adfac ad_ubar(i ,Jstr ,know)=ad_ubar(i ,Jstr ,know)+adfac ad_ubar(i+1,Jstr ,know)=ad_ubar(i+1,Jstr ,know)+adfac ad_bry_cor=0.0_r8 IF (ad_LBC(isouth,isFsur,ng)%acquire) THEN !^ tl_bry_pgr=-g*tl_zeta(i,Jstr,know)* & !^ & 0.5_r8*GRID(ng)%pn(i,Jstr) !^ ad_zeta(i,Jstr,know)=ad_zeta(i,Jstr,know)- & & g*0.5_r8*GRID(ng)%pn(i,Jstr)* & & ad_bry_pgr ad_bry_pgr=0.0_r8 ELSE !^ tl_bry_pgr=-g*(tl_zeta(i,Jstr ,know)- & !^ & tl_zeta(i,Jstr-1,know))* & !^ & 0.5_r8*(GRID(ng)%pn(i,Jstr-1)+ & !^ & GRID(ng)%pn(i,Jstr )) !^ adfac=-g*0.5_r8*(GRID(ng)%pn(i,Jstr-1)+ & & GRID(ng)%pn(i,Jstr ))*ad_bry_pgr ad_zeta(i,Jstr-1,know)=ad_zeta(i,Jstr-1,know)-adfac ad_zeta(i,Jstr ,know)=ad_zeta(i,Jstr ,know)+adfac ad_bry_pgr=0.0_r8 END IF END IF END DO ! ! Southern edge, closed boundary condition. ! ELSE IF (ad_LBC(isouth,isVbar,ng)%closed) THEN DO i=Istr,Iend IF (LBC_apply(ng)%south(i)) THEN !^ tl_vbar(i,Jstr,kout)=0.0_r8 !^ ad_vbar(i,Jstr,kout)=0.0_r8 END IF END DO END IF END IF RETURN END SUBROUTINE ad_v2dbc_tile END MODULE ad_v2dbc_mod