MODULE ad_set_zeta_mod ! !git $Id$ !svn $Id: ad_set_zeta.F 1151 2023-02-09 03:08:53Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routine sets adjoint free-surface to its fast-time averaged ! ! value. ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: ad_set_zeta ! CONTAINS ! !*********************************************************************** SUBROUTINE ad_set_zeta (ng, tile) !*********************************************************************** ! USE mod_param USE mod_coupling USE mod_ocean ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & "ROMS/Adjoint/ad_set_zeta.F" ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private ! storage arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J) directions and ! MAX(I,J) directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL wclock_on (ng, iADM, 12, 46, MyFile) CALL ad_set_zeta_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & COUPLING(ng) % ad_Zt_avg1, & & OCEAN(ng) % ad_zeta, & & OCEAN(ng) % ad_zeta_sol) CALL wclock_off (ng, iADM, 12, 55, MyFile) ! RETURN END SUBROUTINE ad_set_zeta ! !*********************************************************************** SUBROUTINE ad_set_zeta_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & ad_Zt_avg1, ad_zeta, ad_zeta_sol) !*********************************************************************** ! USE mod_param USE mod_scalars ! USE ad_exchange_2d_mod, ONLY : ad_exchange_r2d_tile USE mp_exchange_mod, ONLY : ad_mp_exchange2d ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS ! real(r8), intent(inout) :: ad_Zt_avg1(LBi:,LBj:) real(r8), intent(inout) :: ad_zeta(LBi:,LBj:,:) real(r8), intent(out) :: ad_zeta_sol(LBi:,LBj:) ! ! Local variable declarations. ! integer :: i, j ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Prepare to time-step adjoint 2D equations: set initial free-surface ! to its fast-time averaged values (which corresponds to the time ! step "n"). !----------------------------------------------------------------------- ! !^ CALL mp_exchange2d (ng, tile, iTLM, 2, & !^ & LBi, UBi, LBj, UBj, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_zeta(:,:,1), & !^ & tl_zeta(:,:,2)) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 2, & & LBi, UBi, LBj, UBj, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_zeta(:,:,1), & & ad_zeta(:,:,2)) ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !^ CALL exchange_r2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_zeta(:,:,2)) !^ CALL ad_exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_zeta(:,:,2)) !^ CALL exchange_r2d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, & !^ & tl_zeta(:,:,1)) !^ CALL ad_exchange_r2d_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & ad_zeta(:,:,1)) END IF ! ! Save the adjoint free-surface solution for the current time-step ! (sum of time indices 1 and 2). ! DO j=JstrR,JendR DO i=IstrR,IendR ad_zeta_sol(i,j)=ad_zeta(i,j,1)+ad_zeta(i,j,2) END DO END DO ! DO j=JstrR,JendR DO i=IstrR,IendR !^ tl_zeta(i,j,2)=tl_Zt_avg1(i,j) !^ tl_zeta(i,j,1)=tl_Zt_avg1(i,j) !^ ad_Zt_avg1(i,j)=ad_Zt_avg1(i,j)+ & & ad_zeta(i,j,1)+ad_zeta(i,j,2) ad_zeta(i,j,2)=0.0_r8 ad_zeta(i,j,1)=0.0_r8 END DO END DO ! RETURN END SUBROUTINE ad_set_zeta_tile END MODULE ad_set_zeta_mod