MODULE ad_set_massflux_mod ! !git $Id$ !svn $Id: ad_set_massflux.F 1180 2023-07-13 02:42:10Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routine computes adjoint horizontal mass fluxes, Hz*u/n and ! ! Hz*v/m. ! ! ! ! BASIC STATE variables required: Hz, u, v ! ! Dependend variables: ad_Huon, ad_Hvom ! ! Independend variables: ad_Hz, ad_u, ad_v ! ! ! !======================================================================= ! implicit none ! PRIVATE PUBLIC :: ad_set_massflux ! CONTAINS ! !*********************************************************************** SUBROUTINE ad_set_massflux (ng, tile, model) !*********************************************************************** ! USE mod_param USE mod_grid USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, model ! ! Local variable declarations. ! character (len=*), parameter :: MyFile = & & "ROMS/Adjoint/ad_set_massflux.F" ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private ! storage arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J) directions and ! MAX(I,J) directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL wclock_on (ng, model, 12, 51, MyFile) CALL ad_set_massflux_tile (ng, tile, model, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs(ng), & & OCEAN(ng) % u, & & OCEAN(ng) % v, & & OCEAN(ng) % ad_u, & & OCEAN(ng) % ad_v, & & GRID(ng) % Hz, & & GRID(ng) % ad_Hz, & & GRID(ng) % om_v, & & GRID(ng) % on_u, & & GRID(ng) % ad_Huon, & & GRID(ng) % ad_Hvom) CALL wclock_off (ng, model, 12, 74, MyFile) ! RETURN END SUBROUTINE ad_set_massflux ! !*********************************************************************** SUBROUTINE ad_set_massflux_tile (ng, tile, model, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & nrhs, & & u, v, & & ad_u, ad_v, & & Hz, ad_Hz, & & om_v, on_u, & & ad_Huon, ad_Hvom) !*********************************************************************** ! USE mod_param USE mod_scalars ! USE ad_exchange_3d_mod USE mp_exchange_mod, ONLY : ad_mp_exchange3d ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, model integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: nrhs ! real(r8), intent(in) :: u(LBi:,LBj:,:,:) real(r8), intent(in) :: v(LBi:,LBj:,:,:) real(r8), intent(in) :: Hz(LBi:,LBj:,:) real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(inout) :: ad_u(LBi:,LBj:,:,:) real(r8), intent(inout) :: ad_v(LBi:,LBj:,:,:) real(r8), intent(inout) :: ad_Hz(LBi:,LBj:,:) real(r8), intent(inout) :: ad_Huon(LBi:,LBj:,:) real(r8), intent(inout) :: ad_Hvom(LBi:,LBj:,:) ! ! Local variable declarations. ! integer :: i, j, k real(r8) :: adfac, adfac1 ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Compute horizontal mass fluxes, Hz*u/n and Hz*v/m. !----------------------------------------------------------------------- ! ! Exchange boundary information. ! !^ CALL mp_exchange3d (ng, tile, model, 2, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_Huon, tl_Hvom) !^ CALL ad_mp_exchange3d (ng, tile, model, 2, & & LBi, UBi, LBj, UBj, 1, N(ng), & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_Huon, ad_Hvom) ! IF (EWperiodic(ng).or.NSperiodic(ng)) THEN !^ CALL exchange_v3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & tl_Hvom) !^ CALL ad_exchange_v3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & ad_Hvom) !^ CALL exchange_u3d_tile (ng, tile, & !^ & LBi, UBi, LBj, UBj, 1, N(ng), & !^ & tl_Huon) !^ CALL ad_exchange_u3d_tile (ng, tile, & & LBi, UBi, LBj, UBj, 1, N(ng), & & ad_Huon) END IF ! ! Compute adjoint horizontal mass fluxes. ! DO k=1,N(ng) DO j=JstrP,JendT DO i=IstrT,IendT !^ tl_Hvom(i,j,k)=0.5_r8*om_v(i,j)* & !^ & ((Hz(i,j,k)+Hz(i,j-1,k))* & !^ & tl_v(i,j,k,nrhs)+ & !^ & (tl_Hz(i,j,k)+tl_Hz(i,j-1,k))* & !^ & v(i,j,k,nrhs)) !^ adfac=0.5_r8*om_v(i,j)*ad_Hvom(i,j,k) adfac1=adfac*v(i,j,k,nrhs) ad_v(i,j,k,nrhs)=ad_v(i,j,k,nrhs)+ & & adfac*(Hz(i,j,k)+Hz(i,j-1,k)) ad_Hz(i,j-1,k)=ad_Hz(i,j-1,k)+adfac1 ad_Hz(i,j ,k)=ad_Hz(i,j ,k)+adfac1 ad_Hvom(i,j,k)=0.0_r8 END DO END DO DO j=JstrT,JendT DO i=IstrP,IendT !^ tl_Huon(i,j,k)=0.5_r8*on_u(i,j)* & !^ & ((Hz(i,j,k)+Hz(i-1,j,k))* & !^ & tl_u(i,j,k,nrhs)+ & !^ & (tl_Hz(i,j,k)+tl_Hz(i-1,j,k))* & !^ & u(i,j,k,nrhs)) !^ adfac=0.5_r8*on_u(i,j)*ad_Huon(i,j,k) adfac1=adfac*u(i,j,k,nrhs) ad_u(i,j,k,nrhs)=ad_u(i,j,k,nrhs)+ & & adfac*(Hz(i,j,k)+Hz(i-1,j,k)) ad_Hz(i-1,j,k)=ad_Hz(i-1,j,k)+adfac1 ad_Hz(i ,j,k)=ad_Hz(i ,j,k)+adfac1 ad_Huon(i,j,k)=0.0_r8 END DO END DO END DO ! RETURN END SUBROUTINE ad_set_massflux_tile END MODULE ad_set_massflux_mod