MODULE ad_obc_volcons_mod ! !git $Id$ !svn $Id: ad_obc_volcons.F 1180 2023-07-13 02:42:10Z arango $ !================================================== Hernan G. Arango === ! Copyright (c) 2002-2023 The ROMS/TOMS Group Andrew M. Moore ! ! Licensed under a MIT/X style license ! ! See License_ROMS.md ! !======================================================================= ! ! ! This routines computes adjoint integral mass flux "obc_flux" ! ! across the open boundaries, which is needed to enforce global ! ! mass conservation constraint. ! ! ! !======================================================================= ! implicit none PRIVATE PUBLIC :: ad_obc_flux_tile, ad_set_DUV_bc_tile CONTAINS ! !*********************************************************************** SUBROUTINE ad_obc_flux (ng, tile, kinp) !*********************************************************************** ! USE mod_param USE mod_grid USE mod_ocean USE mod_stepping ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile, kinp ! ! Local variable declarations. ! integer :: IminS, ImaxS, JminS, JmaxS integer :: LBi, UBi, LBj, UBj, LBij, UBij ! ! Set horizontal starting and ending indices for automatic private ! storage arrays. ! IminS=BOUNDS(ng)%Istr(tile)-3 ImaxS=BOUNDS(ng)%Iend(tile)+3 JminS=BOUNDS(ng)%Jstr(tile)-3 JmaxS=BOUNDS(ng)%Jend(tile)+3 ! ! Determine array lower and upper bounds in the I- and J-directions. ! LBi=BOUNDS(ng)%LBi(tile) UBi=BOUNDS(ng)%UBi(tile) LBj=BOUNDS(ng)%LBj(tile) UBj=BOUNDS(ng)%UBj(tile) ! ! Set array lower and upper bounds for MIN(I,J) directions and ! MAX(I,J) directions. ! LBij=BOUNDS(ng)%LBij UBij=BOUNDS(ng)%UBij ! CALL ad_obc_flux_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & kinp, & & GRID(ng) % umask, & & GRID(ng) % vmask, & & GRID(ng) % h, & & GRID(ng) % ad_h, & & GRID(ng) % om_v, & & GRID(ng) % on_u, & & OCEAN(ng) % ubar, & & OCEAN(ng) % vbar, & & OCEAN(ng) % zeta, & & OCEAN(ng) % ad_ubar, & & OCEAN(ng) % ad_vbar, & & OCEAN(ng) % ad_zeta) RETURN END SUBROUTINE ad_obc_flux ! !*********************************************************************** SUBROUTINE ad_obc_flux_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & kinp, & & umask, vmask, & & h, ad_h, & & om_v, on_u, & & ubar, vbar, zeta, & & ad_ubar, ad_vbar, ad_zeta) !*********************************************************************** ! USE mod_param USE mod_parallel USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: kinp ! real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) real(r8), intent(in) :: h(LBi:,LBj:) real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: ubar(LBi:,LBj:,:) real(r8), intent(in) :: vbar(LBi:,LBj:,:) real(r8), intent(in) :: zeta(LBi:,LBj:,:) real(r8), intent(inout) :: ad_h(LBi:,LBj:) real(r8), intent(inout) :: ad_ubar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_vbar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_zeta(LBi:,LBj:,:) ! ! Local variable declarations. ! integer :: i, j real(r8) :: cff, my_area, my_flux real(r8) :: adfac, ad_cff, ad_my_area, ad_my_flux real(r8), dimension(2) :: rbuffer character (len=3), dimension(2) :: op_handle ! ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Initialize adjoint private variables. !----------------------------------------------------------------------- ! ad_cff=0.0_r8 ! !----------------------------------------------------------------------- ! Perform adjoint global summation and compute correction velocity. !----------------------------------------------------------------------- ! IF (ANY(ad_VolCons(:,ng))) THEN !^ tl_ubar_xs=tl_bc_flux/bc_area- & !^ & tl_bc_area*ubar_xs/bc_area !^ ad_bc_area=-ad_ubar_xs*ubar_xs/bc_area ad_bc_flux=ad_ubar_xs/bc_area ad_ubar_xs=0.0_r8 !^ tl_bc_flux=tl_bc_flux+tl_my_flux !^ ad_my_flux=ad_bc_flux !^ tl_bc_area=tl_bc_area+tl_my_area !^ ad_my_area=ad_bc_area END IF ! !----------------------------------------------------------------------- ! Compute open segments cross-section area and mass flux. !----------------------------------------------------------------------- ! IF (ad_VolCons(inorth,ng)) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend cff=0.5_r8*om_v(i,Jend+1)* & & (zeta(i,Jend ,kinp)+h(i,Jend )+ & & zeta(i,Jend+1,kinp)+h(i,Jend+1)) cff=cff*vmask(i,Jend+1) !^ tl_my_flux=tl_my_flux- & !^ & tl_cff*vbar(i,Jend+1,kinp)- & !^ & cff*tl_vbar(i,Jend+1,kinp) !^ ad_vbar(i,Jend+1,kinp)=ad_vbar(i,Jend+1,kinp)- & & cff*ad_my_flux ad_cff=ad_cff-ad_my_flux*vbar(i,Jend+1,kinp) !^ tl_my_area=tl_my_area+tl_cff !^ ad_cff=ad_cff+ad_my_area !^ tl_cff=tl_cff*vmask(i,Jend+1) !^ ad_cff=ad_cff*vmask(i,Jend+1) !^ tl_cff=0.5_r8*om_v(i,Jend+1)* & !^ & (tl_zeta(i,Jend ,kinp)+tl_h(i,Jend )+ & !^ & tl_zeta(i,Jend+1,kinp)+tl_h(i,Jend+1)) !^ adfac=0.5_r8*om_v(i,Jend+1)*ad_cff ad_zeta(i,Jend ,kinp)=ad_zeta(i,Jend ,kinp)+adfac ad_zeta(i,Jend+1,kinp)=ad_zeta(i,Jend+1,kinp)+adfac ad_h(i,Jend )=ad_h(i,Jend )+adfac ad_h(i,Jend+1)=ad_h(i,Jend+1)+adfac ad_cff=0.0_r8 END DO END IF END IF IF (ad_VolCons(isouth,ng)) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend cff=0.5_r8*om_v(i,Jstr)* & & (zeta(i,Jstr-1,kinp)+h(i,Jstr-1)+ & & zeta(i,Jstr ,kinp)+h(i,Jstr )) cff=cff*vmask(i,Jstr) !^ tl_my_flux=tl_my_flux+ & !^ & tl_cff*vbar(i,JstrV-1,kinp)+ & !^ & cff*tl_vbar(i,JstrV-1,kinp) !^ ad_vbar(i,JstrV-1,kinp)=ad_vbar(i,JstrV-1,kinp)+ & & cff*ad_my_flux ad_cff=ad_cff+ad_my_flux*vbar(i,JstrV-1,kinp) !^ tl_my_area=tl_my_area+tl_cff !^ ad_cff=ad_cff+ad_my_area !^ tl_cff=tl_cff*vmask(i,Jstr) !^ ad_cff=ad_cff*vmask(i,Jstr) !^ tl_cff=0.5_r8*om_v(i,Jstr)* & !^ & (tl_zeta(i,Jstr-1,kinp)+tl_h(i,Jstr-1)+ & !^ & tl_zeta(i,Jstr ,kinp)+tl_h(i,Jstr )) !^ adfac=0.5_r8*om_v(i,Jstr)*ad_cff ad_zeta(i,Jstr-1,kinp)=ad_zeta(i,Jstr-1,kinp)+adfac ad_zeta(i,Jstr ,kinp)=ad_zeta(i,Jstr ,kinp)+adfac ad_h(i,Jstr-1)=ad_h(i,Jstr-1)+adfac ad_h(i,Jstr )=ad_h(i,Jstr )+adfac ad_cff=0.0_r8 END DO END IF END IF IF (ad_VolCons(ieast,ng)) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend cff=0.5_r8*on_u(Iend+1,j)* & & (zeta(Iend ,j,kinp)+h(Iend ,j)+ & & zeta(Iend+1,j,kinp)+h(Iend+1,j)) cff=cff*umask(Iend+1,j) !^ tl_my_flux=tl_my_flux- & !^ & tl_cff*ubar(Iend+1,j,kinp)- & !^ & cff*tl_ubar(Iend+1,j,kinp) !^ ad_ubar(Iend+1,j,kinp)=ad_ubar(Iend+1,j,kinp)- & & cff*ad_my_flux ad_cff=ad_cff-ad_my_flux*ubar(Iend+1,j,kinp) !^ tl_my_area=tl_my_area+tl_cff !^ ad_cff=ad_cff+ad_my_area !^ tl_cff=tl_cff*umask(Iend+1,j) !^ ad_cff=ad_cff*umask(Iend+1,j) !^ tl_cff=0.5_r8*on_u(Iend+1,j)* & !^ & (tl_zeta(Iend ,j,kinp)+tl_h(Iend ,j)+ & !^ & tl_zeta(Iend+1,j,kinp)+tl_h(Iend+1,j)) !^ adfac=0.5_r8*on_u(Iend+1,j)*ad_cff ad_zeta(Iend ,j,kinp)=ad_zeta(Iend ,j,kinp)+adfac ad_zeta(Iend+1,j,kinp)=ad_zeta(Iend+1,j,kinp)+adfac ad_h(Iend ,j)=ad_h(Iend ,j)+adfac ad_h(Iend+1,j)=ad_h(Iend+1,j)+adfac ad_cff=0.0_r8 END DO END IF END IF IF (ad_VolCons(iwest,ng)) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend cff=0.5_r8*on_u(Istr,j)* & & (zeta(Istr-1,j,kinp)+h(Istr-1,j)+ & & zeta(Istr ,j,kinp)+h(Istr ,j)) cff=cff*umask(Istr,j) !^ tl_my_flux=tl_my_flux+ & !^ & tl_cff*ubar(Istr,j,kinp)+ & !^ & cff*tl_ubar(Istr,j,kinp) !^ ad_ubar(Istr,j,kinp)=ad_ubar(Istr,j,kinp)+ & & cff*ad_my_flux ad_cff=ad_cff+ad_my_flux*ubar(Istr,j,kinp) !^ tl_my_area=tl_my_area+tl_cff !^ ad_cff=ad_cff+ad_my_area !^ tl_cff=tl_cff*umask(Istr,j) !^ ad_cff=ad_cff*umask(Istr,j) !^ tl_cff=0.5_r8*on_u(Istr,j)* & !^ & (tl_zeta(Istr-1,j,kinp)+tl_h(Istr-1,j)+ & !^ & tl_zeta(Istr ,j,kinp)+tl_h(Istr ,j)) !^ adfac=0.5_r8*on_u(Istr,j)*ad_cff ad_zeta(Istr-1,j,kinp)=ad_zeta(Istr-1,j,kinp)+adfac ad_zeta(Istr ,j,kinp)=ad_zeta(Istr ,j,kinp)+adfac ad_h(Istr-1,j)=ad_h(Istr-1,j)+adfac ad_h(Istr-1,j)=ad_h(Istr-1,j)+adfac ad_cff=0.0_r8 END DO END IF END IF !^ tl_my_area=0.0_r8 !^ tl_my_flux=0.0_r8 !^ ad_my_area=0.0_r8 ad_my_flux=0.0_r8 RETURN END SUBROUTINE ad_obc_flux_tile ! !*********************************************************************** SUBROUTINE ad_set_DUV_bc_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & kinp, & & umask, vmask, & & om_v, on_u, & & ubar, vbar, & & ad_ubar, ad_vbar, & & Drhs, Duon, Dvom, & & ad_Drhs, ad_Duon, ad_Dvom) !*********************************************************************** ! USE mod_param USE mod_scalars USE mod_parallel ! USE mp_exchange_mod, ONLY : ad_mp_exchange2d USE distribute_mod, ONLY : mp_reduce ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: kinp ! real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) real(r8), intent(in) :: om_v(LBi:,LBj:) real(r8), intent(in) :: on_u(LBi:,LBj:) real(r8), intent(in) :: ubar(LBi:,LBj:,:) real(r8), intent(in) :: vbar(LBi:,LBj:,:) real(r8), intent(in) :: Drhs(IminS:,JminS:) real(r8), intent(in) :: Duon(IminS:,JminS:) real(r8), intent(in) :: Dvom(IminS:,JminS:) real(r8), intent(inout) :: ad_ubar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_vbar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_Drhs(IminS:,JminS:) real(r8), intent(inout) :: ad_Duon(IminS:,JminS:) real(r8), intent(inout) :: ad_Dvom(IminS:,JminS:) ! ! Local variable declarations. ! integer :: NSUB, i, j real(r8) :: adfac, adfac1, adfac2, adfac3 real(r8) :: ad_my_ubar_xs real(r8) :: rbuffer character (len=3) :: op_handle ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Set vertically integrated mass fluxes "Duon" and "Dvom" along ! the open boundaries in such a way that the integral volume is ! conserved. This is done by applying "ubar_xs" correction to ! the velocities. !----------------------------------------------------------------------- ! ad_my_ubar_xs=0.0_r8 ! ! Do a special exchange to avoid having three ghost points for high ! order numerical stencil. ! IF (ad_VolCons(isouth,ng).or.ad_VolCons(inorth,ng)) THEN !^ CALL mp_exchange2d (ng, tile, iTLM, 1, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_Dvom) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 1, & & IminS, ImaxS, JminS, JmaxS, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_Dvom) END IF IF (ad_VolCons(iwest,ng).or.ad_VolCons(ieast,ng)) THEN !^ CALL mp_exchange2d (ng, tile, iTLM, 1, & !^ & IminS, ImaxS, JminS, JmaxS, & !^ & NghostPoints, & !^ & EWperiodic(ng), NSperiodic(ng), & !^ & tl_Duon) !^ CALL ad_mp_exchange2d (ng, tile, iADM, 1, & & IminS, ImaxS, JminS, JmaxS, & & NghostPoints, & & EWperiodic(ng), NSperiodic(ng), & & ad_Duon) END IF IF (ad_VolCons(inorth,ng)) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=-2+IstrU,MIN(Iend+1,Lm(ng))+1 !^ tl_Dvom(i,Jend+1)=tl_Dvom(i,Jend+1)*vmask(i,Jend+1) !^ ad_Dvom(i,Jend+1)=ad_Dvom(i,Jend+1)*vmask(i,Jend+1) !^ tl_Dvom(i,Jend+1)=0.5_r8* & !^ & ((tl_Drhs(i,Jend+1)+tl_Drhs(i,Jend))* & !^ & (vbar(i,Jend+1,kinp)+ubar_xs)+ & !^ & (Drhs(i,Jend+1)+Drhs(i,Jend))* & !^ & (tl_vbar(i,Jend+1,kinp)+tl_ubar_xs))* & !^ & om_v(i,Jend+1) !^ adfac=0.5_r8*om_v(i,Jend+1)*ad_Dvom(i,Jend+1) adfac1=adfac*(vbar(i,Jend+1,kinp)+ubar_xs) adfac2=adfac*(Drhs(i,Jend+1)+Drhs(i,Jend)) ad_Drhs(i,Jend+1)=ad_Drhs(i,Jend+1)+adfac1 ad_Drhs(i,Jend )=ad_Drhs(i,Jend )+adfac1 ad_vbar(i,Jend+1,kinp)=ad_vbar(i,Jend+1,kinp)+adfac2 ad_my_ubar_xs=ad_my_ubar_xs+adfac2 ad_Dvom(i,Jend+1)=0.0_r8 END DO END IF END IF IF (ad_VolCons(isouth,ng)) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=-2+IstrU,MIN(Iend+1,Lm(ng))+1 !^ tl_Dvom(i,Jstr)=tl_Dvom(i,Jstr)*vmask(i,Jstr) !^ ad_Dvom(i,Jstr)=ad_Dvom(i,Jstr)*vmask(i,Jstr) !^ tl_Dvom(i,Jstr)=0.5_r8* & !^ & ((tl_Drhs(i,Jstr)+tl_Drhs(i,Jstr-1))* & !^ & (vbar(i,Jstr,kinp)-ubar_xs)+ & !^ & (Drhs(i,Jstr)+Drhs(i,Jstr-1))* & !^ & (tl_vbar(i,Jstr,kinp)-tl_ubar_xs))* & !^ & om_v(i,Jstr) !^ adfac=0.5_r8*om_v(i,Jstr)*ad_Dvom(i,Jstr) adfac1=adfac*(vbar(i,Jstr,kinp)-ubar_xs) adfac2=adfac*(Drhs(i,Jstr)+Drhs(i,Jstr-1)) ad_Drhs(i,Jstr-1)=ad_Drhs(i,Jstr-1)+adfac1 ad_Drhs(i,Jstr )=ad_Drhs(i,Jstr )+adfac1 ad_vbar(i,Jstr,kinp)=ad_vbar(i,Jstr,kinp)+adfac2 ad_my_ubar_xs=ad_my_ubar_xs-adfac2 ad_Dvom(i,Jstr)=0.0_r8 END DO END IF END IF IF (ad_VolCons(ieast,ng)) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=-2+JstrV,MIN(Jend+1,Mm(ng))+1 !^ tl_Duon(Iend+1,j)=tl_Duon(Iend+1,j)*umask(Iend+1,j) !^ ad_Duon(Iend+1,j)=ad_Duon(Iend+1,j)*umask(Iend+1,j) !^ tl_Duon(Iend+1,j)=0.5_r8* & !^ & ((tl_Drhs(Iend+1,j)+tl_Drhs(Iend,j))* & !^ & (ubar(Iend+1,j,kinp)+ubar_xs)+ & !^ & (Drhs(Iend+1,j)+Drhs(Iend,j))* & !^ & (tl_ubar(Iend+1,j,kinp)+tl_ubar_xs))* & !^ & on_u(Iend+1,j) !^ adfac=0.5_r8*on_u(Iend+1,j)*ad_Duon(Iend+1,j) adfac1=adfac*(ubar(Iend+1,j,kinp)+ubar_xs) adfac2=adfac*(Drhs(Iend+1,j)+Drhs(Iend,j)) ad_Drhs(Iend ,j)=ad_Drhs(Iend ,j)+adfac1 ad_Drhs(Iend+1,j)=ad_Drhs(Iend+1,j)+adfac1 ad_ubar(Iend+1,j,kinp)=ad_ubar(Iend+1,j,kinp)+adfac2 ad_my_ubar_xs=ad_my_ubar_xs+adfac2 ad_Duon(Iend+1,j)=0.0_r8 END DO END IF END IF IF (ad_VolCons(iwest,ng)) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=-2+JstrV,MIN(Jend+1,Mm(ng))+1 !^ tl_Duon(Istr,j)=tl_Duon(Istr,j)*umask(Istr,j) !^ ad_Duon(Istr,j)=ad_Duon(Istr,j)*umask(Istr,j) !^ tl_Duon(Istr,j)=0.5_r8* & !^ & ((tl_Drhs(Istr,j)+tl_Drhs(Istr-1,j))* & !^ & (ubar(Istr,j,kinp)-ubar_xs)+ & !^ & (Drhs(Istr,j)+Drhs(Istr-1,j))* & !^ & (tl_ubar(Istr,j,kinp)-tl_ubar_xs))* & !^ & on_u(Istr,j) !^ adfac=0.5_r8*on_u(Istr,j)*ad_Duon(Istr,j) adfac1=adfac*(ubar(Istr,j,kinp)-ubar_xs) adfac2=adfac*(Drhs(Istr,j)+Drhs(Istr-1,j)) ad_Drhs(Istr-1,j)=ad_Drhs(Istr-1,j)+adfac1 ad_Drhs(Istr ,j)=ad_Drhs(Istr ,j)+adfac1 ad_ubar(Istr,j,kinp)=ad_ubar(Istr,j,kinp)+adfac2 ad_my_ubar_xs=ad_my_ubar_xs-adfac2 ad_Duon(Istr,j)=0.0_r8 END DO END IF END IF ! !----------------------------------------------------------------------- ! Perform global summation and compute correction velocity. !----------------------------------------------------------------------- ! IF (ANY(ad_VolCons(:,ng))) THEN NSUB=1 ! distributed-memory !$OMP CRITICAL (AD_OBC_VOLUME) IF (tile_count.eq.0) THEN adfac3=0.0_r8 END IF adfac3=adfac3+ad_my_ubar_xs tile_count=tile_count+1 IF (tile_count.eq.NSUB) THEN tile_count=0 rbuffer=adfac3 op_handle='SUM' CALL mp_reduce (ng, iADM, 1, rbuffer, op_handle) adfac3=rbuffer IF (iif(ng).eq.nfast(ng)+1) THEN ad_ubar_xs=ad_ubar_xs+adfac3 ELSE ad_ubar_xs=adfac3 ENDIF END IF !$OMP END CRITICAL (AD_OBC_VOLUME) END IF RETURN END SUBROUTINE ad_set_DUV_bc_tile ! !*********************************************************************** SUBROUTINE ad_conserve_mass_tile (ng, tile, & & LBi, UBi, LBj, UBj, & & IminS, ImaxS, JminS, JmaxS, & & kinp, & & umask, vmask, & & ad_ubar, ad_vbar) !*********************************************************************** ! USE mod_param USE mod_scalars ! ! Imported variable declarations. ! integer, intent(in) :: ng, tile integer, intent(in) :: LBi, UBi, LBj, UBj integer, intent(in) :: IminS, ImaxS, JminS, JmaxS integer, intent(in) :: kinp ! real(r8), intent(in) :: umask(LBi:,LBj:) real(r8), intent(in) :: vmask(LBi:,LBj:) real(r8), intent(inout) :: ad_ubar(LBi:,LBj:,:) real(r8), intent(inout) :: ad_vbar(LBi:,LBj:,:) ! ! Local variable declarations. ! integer :: i, j ! !----------------------------------------------------------------------- ! Set lower and upper tile bounds and staggered variables bounds for ! this horizontal domain partition. Notice that if tile=-1, it will ! set the values for the global grid. !----------------------------------------------------------------------- ! integer :: Istr, IstrB, IstrP, IstrR, IstrT, IstrM, IstrU integer :: Iend, IendB, IendP, IendR, IendT integer :: Jstr, JstrB, JstrP, JstrR, JstrT, JstrM, JstrV integer :: Jend, JendB, JendP, JendR, JendT integer :: Istrm3, Istrm2, Istrm1, IstrUm2, IstrUm1 integer :: Iendp1, Iendp2, Iendp2i, Iendp3 integer :: Jstrm3, Jstrm2, Jstrm1, JstrVm2, JstrVm1 integer :: Jendp1, Jendp2, Jendp2i, Jendp3 ! Istr =BOUNDS(ng) % Istr (tile) IstrB =BOUNDS(ng) % IstrB (tile) IstrM =BOUNDS(ng) % IstrM (tile) IstrP =BOUNDS(ng) % IstrP (tile) IstrR =BOUNDS(ng) % IstrR (tile) IstrT =BOUNDS(ng) % IstrT (tile) IstrU =BOUNDS(ng) % IstrU (tile) Iend =BOUNDS(ng) % Iend (tile) IendB =BOUNDS(ng) % IendB (tile) IendP =BOUNDS(ng) % IendP (tile) IendR =BOUNDS(ng) % IendR (tile) IendT =BOUNDS(ng) % IendT (tile) Jstr =BOUNDS(ng) % Jstr (tile) JstrB =BOUNDS(ng) % JstrB (tile) JstrM =BOUNDS(ng) % JstrM (tile) JstrP =BOUNDS(ng) % JstrP (tile) JstrR =BOUNDS(ng) % JstrR (tile) JstrT =BOUNDS(ng) % JstrT (tile) JstrV =BOUNDS(ng) % JstrV (tile) Jend =BOUNDS(ng) % Jend (tile) JendB =BOUNDS(ng) % JendB (tile) JendP =BOUNDS(ng) % JendP (tile) JendR =BOUNDS(ng) % JendR (tile) JendT =BOUNDS(ng) % JendT (tile) ! Istrm3 =BOUNDS(ng) % Istrm3 (tile) ! Istr-3 Istrm2 =BOUNDS(ng) % Istrm2 (tile) ! Istr-2 Istrm1 =BOUNDS(ng) % Istrm1 (tile) ! Istr-1 IstrUm2=BOUNDS(ng) % IstrUm2(tile) ! IstrU-2 IstrUm1=BOUNDS(ng) % IstrUm1(tile) ! IstrU-1 Iendp1 =BOUNDS(ng) % Iendp1 (tile) ! Iend+1 Iendp2 =BOUNDS(ng) % Iendp2 (tile) ! Iend+2 Iendp2i=BOUNDS(ng) % Iendp2i(tile) ! Iend+2 interior Iendp3 =BOUNDS(ng) % Iendp3 (tile) ! Iend+3 Jstrm3 =BOUNDS(ng) % Jstrm3 (tile) ! Jstr-3 Jstrm2 =BOUNDS(ng) % Jstrm2 (tile) ! Jstr-2 Jstrm1 =BOUNDS(ng) % Jstrm1 (tile) ! Jstr-1 JstrVm2=BOUNDS(ng) % JstrVm2(tile) ! JstrV-2 JstrVm1=BOUNDS(ng) % JstrVm1(tile) ! JstrV-1 Jendp1 =BOUNDS(ng) % Jendp1 (tile) ! Jend+1 Jendp2 =BOUNDS(ng) % Jendp2 (tile) ! Jend+2 Jendp2i=BOUNDS(ng) % Jendp2i(tile) ! Jend+2 interior Jendp3 =BOUNDS(ng) % Jendp3 (tile) ! Jend+3 ! !----------------------------------------------------------------------- ! Corrects velocities across the open boundaries to enforce global ! mass conservation constraint. !----------------------------------------------------------------------- ! IF (ad_VolCons(inorth,ng)) THEN IF (DOMAIN(ng)%Northern_Edge(tile)) THEN DO i=Istr,Iend !^ vbar(i,Jend+1,kinp)=vbar(i,Jend+1,kinp)* & !^ & vmask(i,Jend+1) !^ ad_vbar(i,Jend+1,kinp)=ad_vbar(i,Jend+1,kinp)* & & vmask(i,Jend+1) !^ tl_vbar(i,Jend+1,kinp)=(tl_vbar(i,Jend+1,kinp)+tl_ubar_xs) !^ ad_ubar_xs=ad_ubar_xs+ad_vbar(i,Jend+1,kinp) END DO END IF END IF IF (ad_VolCons(isouth,ng)) THEN IF (DOMAIN(ng)%Southern_Edge(tile)) THEN DO i=Istr,Iend !^ tl_vbar(i,Jstr,kinp)=tl_vbar(i,Jstr,kinp)* & !^ & vmask(i,Jstr) !^ ad_vbar(i,Jstr,kinp)=ad_vbar(i,Jstr,kinp)* & & vmask(i,Jstr) !^ tl_vbar(i,Jstr,kinp)=(tl_vbar(i,Jstr,kinp)-tl_ubar_xs) !^ ad_ubar_xs=ad_ubar_xs-ad_vbar(i,Jstr,kinp) END DO END IF END IF IF (ad_VolCons(ieast,ng)) THEN IF (DOMAIN(ng)%Eastern_Edge(tile)) THEN DO j=Jstr,Jend !^ tl_ubar(Iend+1,j,kinp)=tl_ubar(Iend+1,j,kinp)* & !^ & umask(Iend+1,j) !^ ad_ubar(Iend+1,j,kinp)=ad_ubar(Iend+1,j,kinp)* & & umask(Iend+1,j) !^ tl_ubar(Iend+1,j,kinp)=tl_ubar(Iend+1,j,kinp)+tl_ubar_xs !^ ad_ubar_xs=ad_ubar_xs+ad_ubar(Iend+1,j,kinp) END DO END IF END IF IF (ad_VolCons(iwest,ng)) THEN IF (DOMAIN(ng)%Western_Edge(tile)) THEN DO j=Jstr,Jend !^ tl_ubar(Istr,j,kinp)=tl_ubar(Istr,j,kinp)* & !^ & umask(Istr,j) !^ ad_ubar(Istr,j,kinp)=ad_ubar(Istr,j,kinp)* & & umask(Istr,j) !^ tl_ubar(Istr,j,kinp)=tl_ubar(Istr,j,kinp)-tl_ubar_xs !^ ad_ubar_xs=ad_ubar_xs-ad_ubar(Istr,j,kinp) END DO END IF END IF RETURN END SUBROUTINE ad_conserve_mass_tile END MODULE ad_obc_volcons_mod