/* generate double bivariate Chebychev polynomial */ #include int bchgen(projUV a, projUV b, int nu, int nv, projUV **f, projUV(*func)(projUV)) { int i, j, k; projUV arg, *t, bma, bpa, *c; double d, fac; bma.u = 0.5 * (b.u - a.u); bma.v = 0.5 * (b.v - a.v); bpa.u = 0.5 * (b.u + a.u); bpa.v = 0.5 * (b.v + a.v); for ( i = 0; i < nu; ++i) { arg.u = cos(PI * (i + 0.5) / nu) * bma.u + bpa.u; for ( j = 0; j < nv; ++j) { arg.v = cos(PI * (j + 0.5) / nv) * bma.v + bpa.v; f[i][j] = (*func)(arg); if ((f[i][j]).u == HUGE_VAL) return(1); } } if (!(c = (projUV *) vector1(nu, sizeof(projUV)))) return 1; fac = 2. / nu; for ( j = 0; j < nv ; ++j) { for ( i = 0; i < nu; ++i) { arg.u = arg.v = 0.; for (k = 0; k < nu; ++k) { d = cos(PI * i * (k + .5) / nu); arg.u += f[k][j].u * d; arg.v += f[k][j].v * d; } arg.u *= fac; arg.v *= fac; c[i] = arg; } for (i = 0; i < nu; ++i) f[i][j] = c[i]; } pj_dalloc(c); if (!(c = (projUV*) vector1(nv, sizeof(projUV)))) return 1; fac = 2. / nv; for ( i = 0; i < nu; ++i) { t = f[i]; for (j = 0; j < nv; ++j) { arg.u = arg.v = 0.; for (k = 0; k < nv; ++k) { d = cos(PI * j * (k + .5) / nv); arg.u += t[k].u * d; arg.v += t[k].v * d; } arg.u *= fac; arg.v *= fac; c[j] = arg; } f[i] = c; c = t; } pj_dalloc(c); return(0); }