#define PROJ_PARMS__ \ double Az, kRg, p0s, A, C, Ca, Cb, Cc, Cd; \ int rot; #define PJ_LIB__ #include PROJ_HEAD(labrd, "Laborde") "\n\tCyl, Sph\n\tSpecial for Madagascar"; #define EPS 1.e-10 FORWARD(e_forward); double V1, V2, ps, sinps, cosps, sinps2, cosps2, I1, I2, I3, I4, I5, I6, x2, y2, t; V1 = P->A * log( tan(FORTPI + .5 * lp.phi) ); t = P->e * sin(lp.phi); V2 = .5 * P->e * P->A * log ((1. + t)/(1. - t)); ps = 2. * (atan(exp(V1 - V2 + P->C)) - FORTPI); I1 = ps - P->p0s; cosps = cos(ps); cosps2 = cosps * cosps; sinps = sin(ps); sinps2 = sinps * sinps; I4 = P->A * cosps; I2 = .5 * P->A * I4 * sinps; I3 = I2 * P->A * P->A * (5. * cosps2 - sinps2) / 12.; I6 = I4 * P->A * P->A; I5 = I6 * (cosps2 - sinps2) / 6.; I6 *= P->A * P->A * (5. * cosps2 * cosps2 + sinps2 * (sinps2 - 18. * cosps2)) / 120.; t = lp.lam * lp.lam; xy.x = P->kRg * lp.lam * (I4 + t * (I5 + t * I6)); xy.y = P->kRg * (I1 + t * (I2 + t * I3)); x2 = xy.x * xy.x; y2 = xy.y * xy.y; V1 = 3. * xy.x * y2 - xy.x * x2; V2 = xy.y * y2 - 3. * x2 * xy.y; xy.x += P->Ca * V1 + P->Cb * V2; xy.y += P->Ca * V2 - P->Cb * V1; return (xy); } INVERSE(e_inverse); /* ellipsoid & spheroid */ double x2, y2, V1, V2, V3, V4, t, t2, ps, pe, tpe, s, I7, I8, I9, I10, I11, d, Re; int i; x2 = xy.x * xy.x; y2 = xy.y * xy.y; V1 = 3. * xy.x * y2 - xy.x * x2; V2 = xy.y * y2 - 3. * x2 * xy.y; V3 = xy.x * (5. * y2 * y2 + x2 * (-10. * y2 + x2 )); V4 = xy.y * (5. * x2 * x2 + y2 * (-10. * x2 + y2 )); xy.x += - P->Ca * V1 - P->Cb * V2 + P->Cc * V3 + P->Cd * V4; xy.y += P->Cb * V1 - P->Ca * V2 - P->Cd * V3 + P->Cc * V4; ps = P->p0s + xy.y / P->kRg; pe = ps + P->phi0 - P->p0s; for ( i = 20; i; --i) { V1 = P->A * log(tan(FORTPI + .5 * pe)); tpe = P->e * sin(pe); V2 = .5 * P->e * P->A * log((1. + tpe)/(1. - tpe)); t = ps - 2. * (atan(exp(V1 - V2 + P->C)) - FORTPI); pe += t; if (fabs(t) < EPS) break; } /* if (!i) { } else { } */ t = P->e * sin(pe); t = 1. - t * t; Re = P->one_es / ( t * sqrt(t) ); t = tan(ps); t2 = t * t; s = P->kRg * P->kRg; d = Re * P->k0 * P->kRg; I7 = t / (2. * d); I8 = t * (5. + 3. * t2) / (24. * d * s); d = cos(ps) * P->kRg * P->A; I9 = 1. / d; d *= s; I10 = (1. + 2. * t2) / (6. * d); I11 = (5. + t2 * (28. + 24. * t2)) / (120. * d * s); x2 = xy.x * xy.x; lp.phi = pe + x2 * (-I7 + I8 * x2); lp.lam = xy.x * (I9 + x2 * (-I10 + x2 * I11)); return (lp); } FREEUP; if (P) pj_dalloc(P); } ENTRY0(labrd) double Az, sinp, R, N, t; P->rot = pj_param(P->ctx, P->params, "bno_rot").i == 0; Az = pj_param(P->ctx, P->params, "razi").f; sinp = sin(P->phi0); t = 1. - P->es * sinp * sinp; N = 1. / sqrt(t); R = P->one_es * N / t; P->kRg = P->k0 * sqrt( N * R ); P->p0s = atan( sqrt(R / N) * tan(P->phi0) ); P->A = sinp / sin(P->p0s); t = P->e * sinp; P->C = .5 * P->e * P->A * log((1. + t)/(1. - t)) + - P->A * log( tan(FORTPI + .5 * P->phi0)) + log( tan(FORTPI + .5 * P->p0s)); t = Az + Az; P->Ca = (1. - cos(t)) * ( P->Cb = 1. / (12. * P->kRg * P->kRg) ); P->Cb *= sin(t); P->Cc = 3. * (P->Ca * P->Ca - P->Cb * P->Cb); P->Cd = 6. * P->Ca * P->Cb; P->inv = e_inverse; P->fwd = e_forward; ENDENTRY(P)