/* ** libproj -- library of cartographic projections ** ** Copyright (c) 2004 Gerald I. Evenden ** Copyright (c) 2012 Martin Raspaud */ /* ** See also (section 4.4.3.2): ** http://www.eumetsat.int/en/area4/msg/news/us_doc/cgms_03_26.pdf ** ** Permission is hereby granted, free of charge, to any person obtaining ** a copy of this software and associated documentation files (the ** "Software"), to deal in the Software without restriction, including ** without limitation the rights to use, copy, modify, merge, publish, ** distribute, sublicense, and/or sell copies of the Software, and to ** permit persons to whom the Software is furnished to do so, subject to ** the following conditions: ** ** The above copyright notice and this permission notice shall be ** included in all copies or substantial portions of the Software. ** ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ** SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define PROJ_PARMS__ \ double h; \ double radius_p; \ double radius_p2; \ double radius_p_inv2; \ double radius_g; \ double radius_g_1; \ double C; \ char * sweep_axis; \ int flip_axis; #define PJ_LIB__ #include PROJ_HEAD(geos, "Geostationary Satellite View") "\n\tAzi, Sph&Ell\n\th="; FORWARD(s_forward); /* spheroid */ double Vx, Vy, Vz, tmp; /* Calculation of the three components of the vector from satellite to ** position on earth surface (lon,lat).*/ tmp = cos(lp.phi); Vx = cos (lp.lam) * tmp; Vy = sin (lp.lam) * tmp; Vz = sin (lp.phi); /* Check visibility.*/ if (((P->radius_g - Vx) * Vx - Vy * Vy - Vz * Vz) < 0.) F_ERROR; /* Calculation based on view angles from satellite.*/ tmp = P->radius_g - Vx; if(P->flip_axis) { xy.x = P->radius_g_1 * atan(Vy / hypot(Vz, tmp)); xy.y = P->radius_g_1 * atan(Vz / tmp); } else { xy.x = P->radius_g_1 * atan(Vy / tmp); xy.y = P->radius_g_1 * atan(Vz / hypot(Vy, tmp)); } return (xy); } FORWARD(e_forward); /* ellipsoid */ double r, Vx, Vy, Vz, tmp; /* Calculation of geocentric latitude. */ lp.phi = atan (P->radius_p2 * tan (lp.phi)); /* Calculation of the three components of the vector from satellite to ** position on earth surface (lon,lat).*/ r = (P->radius_p) / hypot(P->radius_p * cos (lp.phi), sin (lp.phi)); Vx = r * cos (lp.lam) * cos (lp.phi); Vy = r * sin (lp.lam) * cos (lp.phi); Vz = r * sin (lp.phi); /* Check visibility. */ if (((P->radius_g - Vx) * Vx - Vy * Vy - Vz * Vz * P->radius_p_inv2) < 0.) F_ERROR; /* Calculation based on view angles from satellite. */ tmp = P->radius_g - Vx; if(P->flip_axis) { xy.x = P->radius_g_1 * atan (Vy / hypot (Vz, tmp)); xy.y = P->radius_g_1 * atan (Vz / tmp); } else { xy.x = P->radius_g_1 * atan (Vy / tmp); xy.y = P->radius_g_1 * atan (Vz / hypot (Vy, tmp)); } return (xy); } INVERSE(s_inverse); /* spheroid */ double Vx, Vy, Vz, a, b, det, k; /* Setting three components of vector from satellite to position.*/ Vx = -1.0; if(P->flip_axis) { Vz = tan (xy.y / (P->radius_g - 1.0)); Vy = tan (xy.x / (P->radius_g - 1.0)) * sqrt (1.0 + Vz * Vz); } else { Vy = tan (xy.x / (P->radius_g - 1.0)); Vz = tan (xy.y / (P->radius_g - 1.0)) * sqrt (1.0 + Vy * Vy); } /* Calculation of terms in cubic equation and determinant.*/ a = Vy * Vy + Vz * Vz + Vx * Vx; b = 2 * P->radius_g * Vx; if ((det = (b * b) - 4 * a * P->C) < 0.) I_ERROR; /* Calculation of three components of vector from satellite to position.*/ k = (-b - sqrt(det)) / (2 * a); Vx = P->radius_g + k * Vx; Vy *= k; Vz *= k; /* Calculation of longitude and latitude.*/ lp.lam = atan2 (Vy, Vx); lp.phi = atan (Vz * cos (lp.lam) / Vx); return (lp); } INVERSE(e_inverse); /* ellipsoid */ double Vx, Vy, Vz, a, b, det, k; /* Setting three components of vector from satellite to position.*/ Vx = -1.0; if(P->flip_axis) { Vz = tan (xy.y / P->radius_g_1); Vy = tan (xy.x / P->radius_g_1) * hypot(1.0, Vz); } else { Vy = tan (xy.x / P->radius_g_1); Vz = tan (xy.y / P->radius_g_1) * hypot(1.0, Vy); } /* Calculation of terms in cubic equation and determinant.*/ a = Vz / P->radius_p; a = Vy * Vy + a * a + Vx * Vx; b = 2 * P->radius_g * Vx; if ((det = (b * b) - 4 * a * P->C) < 0.) I_ERROR; /* Calculation of three components of vector from satellite to position.*/ k = (-b - sqrt(det)) / (2. * a); Vx = P->radius_g + k * Vx; Vy *= k; Vz *= k; /* Calculation of longitude and latitude.*/ lp.lam = atan2 (Vy, Vx); lp.phi = atan (Vz * cos (lp.lam) / Vx); lp.phi = atan (P->radius_p_inv2 * tan (lp.phi)); return (lp); } FREEUP; if (P) free(P); } ENTRY0(geos) if ((P->h = pj_param(P->ctx, P->params, "dh").f) <= 0.) E_ERROR(-30); if (P->phi0) E_ERROR(-46); P->sweep_axis = pj_param(P->ctx, P->params, "ssweep").s; if (P->sweep_axis == NULL) P->flip_axis = 0; else { if (P->sweep_axis[1] != '\0' || (P->sweep_axis[0] != 'x' && P->sweep_axis[0] != 'y')) E_ERROR(-49); if (P->sweep_axis[0] == 'x') P->flip_axis = 1; else P->flip_axis = 0; } P->radius_g_1 = P->h / P->a; P->radius_g = 1. + P->radius_g_1; P->C = P->radius_g * P->radius_g - 1.0; if (P->es) { P->radius_p = sqrt (P->one_es); P->radius_p2 = P->one_es; P->radius_p_inv2 = P->rone_es; P->inv = e_inverse; P->fwd = e_forward; } else { P->radius_p = P->radius_p2 = P->radius_p_inv2 = 1.0; P->inv = s_inverse; P->fwd = s_forward; } ENDENTRY(P)