#define PJ_LIB__ #include #include #include #include #include #include /* Conversions for the California Cooperative Oceanic Fisheries Investigations Line/Station coordinate system following the algorithm of: Eber, L.E., and R.P. Hewitt. 1979. Conversion algorithms for the CALCOFI station grid. California Cooperative Oceanic Fisheries Investigations Reports 20:135-137. (corrected for typographical errors). http://www.calcofi.org/publications/calcofireports/v20/Vol_20_Eber___Hewitt.pdf They assume 1 unit of CalCOFI Line == 1/5 degree in longitude or meridional units at reference point O, and similarly 1 unit of CalCOFI Station == 1/15 of a degree at O. By convention, CalCOFI Line/Station conversions use Clarke 1866 but we use whatever ellipsoid is provided. */ PROJ_HEAD(calcofi, "Cal Coop Ocean Fish Invest Lines/Stations") "\n\tCyl, Sph&Ell"; #define EPS10 1.e-10 #define DEG_TO_LINE 5 #define DEG_TO_STATION 15 #define LINE_TO_RAD 0.0034906585039886592 #define STATION_TO_RAD 0.0011635528346628863 #define PT_O_LINE 80 /* reference point O is at line 80, */ #define PT_O_STATION 60 /* station 60, */ #define PT_O_LAMBDA -2.1144663887911301 /* lon -121.15 and */ #define PT_O_PHI 0.59602993955606354 /* lat 34.15 */ #define ROTATION_ANGLE 0.52359877559829882 /*CalCOFI angle of 30 deg in rad */ FORWARD(e_forward); /* ellipsoid */ double oy; /* pt O y value in Mercator */ double l1; /* l1 and l2 are distances calculated using trig that sum to the east/west distance between point O and point xy */ double l2; double ry; /* r is the point on the same station as o (60) and the same line as xy xy, r, o form a right triangle */ /* if the user has specified +lon_0 or +k0 for some reason, we're going to ignore it so that xy is consistent with point O */ lp.lam = lp.lam + P->lam0; if (fabs(fabs(lp.phi) - HALFPI) <= EPS10) F_ERROR; xy.x = lp.lam; xy.y = -log(pj_tsfn(lp.phi, sin(lp.phi), P->e)); /* Mercator transform xy*/ oy = -log(pj_tsfn(PT_O_PHI, sin(PT_O_PHI), P->e)); l1 = (xy.y - oy) * tan(ROTATION_ANGLE); l2 = -xy.x - l1 + PT_O_LAMBDA; ry = l2 * cos(ROTATION_ANGLE) * sin(ROTATION_ANGLE) + xy.y; ry = pj_phi2(P->ctx, exp(-ry), P->e); /*inverse Mercator*/ xy.x = PT_O_LINE - RAD_TO_DEG * (ry - PT_O_PHI) * DEG_TO_LINE / cos(ROTATION_ANGLE); xy.y = PT_O_STATION + RAD_TO_DEG * (ry - lp.phi) * DEG_TO_STATION / sin(ROTATION_ANGLE); /* set a = 1, x0 = 0, and y0 = 0 so that no further unit adjustments are done */ P->a = 1; P->x0 = 0; P->y0 = 0; return (xy); } FORWARD(s_forward); /* spheroid */ double oy; double l1; double l2; double ry; lp.lam = lp.lam + P->lam0; if (fabs(fabs(lp.phi) - HALFPI) <= EPS10) F_ERROR; xy.x = lp.lam; xy.y = log(tan(FORTPI + .5 * lp.phi)); oy = log(tan(FORTPI + .5 * PT_O_PHI)); l1 = (xy.y - oy) * tan(ROTATION_ANGLE); l2 = -xy.x - l1 + PT_O_LAMBDA; ry = l2 * cos(ROTATION_ANGLE) * sin(ROTATION_ANGLE) + xy.y; ry = HALFPI - 2. * atan(exp(-ry)); xy.x = PT_O_LINE - RAD_TO_DEG * (ry - PT_O_PHI) * DEG_TO_LINE / cos(ROTATION_ANGLE); xy.y = PT_O_STATION + RAD_TO_DEG * (ry - lp.phi) * DEG_TO_STATION / sin(ROTATION_ANGLE); P->a = 1; P->x0 = 0; P->y0 = 0; return (xy); } INVERSE(e_inverse); /* ellipsoid */ double ry; /* y value of point r */ double oymctr; /* Mercator-transformed y value of point O */ double rymctr; /* Mercator-transformed ry */ double xymctr; /* Mercator-transformed xy.y */ double l1; double l2; /* turn x and y back into Line/Station */ xy.x /= P->ra; xy.y /= P->ra; ry = PT_O_PHI - LINE_TO_RAD * (xy.x - PT_O_LINE) * cos(ROTATION_ANGLE); lp.phi = ry - STATION_TO_RAD * (xy.y - PT_O_STATION) * sin(ROTATION_ANGLE); oymctr = -log(pj_tsfn(PT_O_PHI, sin(PT_O_PHI), P->e)); rymctr = -log(pj_tsfn(ry, sin(ry), P->e)); xymctr = -log(pj_tsfn(lp.phi, sin(lp.phi), P->e)); l1 = (xymctr - oymctr) * tan(ROTATION_ANGLE); l2 = (rymctr - xymctr) / (cos(ROTATION_ANGLE) * sin(ROTATION_ANGLE)); lp.lam = PT_O_LAMBDA - (l1 + l2); P->over = 1; return (lp); } INVERSE(s_inverse); /* spheroid */ double ry; double oymctr; double rymctr; double xymctr; double l1; double l2; xy.x /= P->ra; xy.y /= P->ra; ry = PT_O_PHI - LINE_TO_RAD * (xy.x - PT_O_LINE) * cos(ROTATION_ANGLE); lp.phi = ry - STATION_TO_RAD * (xy.y - PT_O_STATION) * sin(ROTATION_ANGLE); oymctr = log(tan(FORTPI + .5 * PT_O_PHI)); rymctr = log(tan(FORTPI + .5 * ry)); xymctr = log(tan(FORTPI + .5 * lp.phi)); l1 = (xymctr - oymctr) * tan(ROTATION_ANGLE); l2 = (rymctr - xymctr) / (cos(ROTATION_ANGLE) * sin(ROTATION_ANGLE)); lp.lam = PT_O_LAMBDA - (l1 + l2); P->over = 1; return (lp); } FREEUP; if (P) pj_dalloc(P); } ENTRY0(calcofi) if (P->es) { /* ellipsoid */ P->inv = e_inverse; P->fwd = e_forward; } else { /* sphere */ P->inv = s_inverse; P->fwd = s_forward; } ENDENTRY(P)