#define PROJ_PARMS__ \ int noskew; #define PJ_LIB__ # include PROJ_HEAD(bipc, "Bipolar conic of western hemisphere") "\n\tConic Sph."; # define EPS 1e-10 # define EPS10 1e-10 # define ONEEPS 1.000000001 # define NITER 10 # define lamB -.34894976726250681539 # define n .63055844881274687180 # define F 1.89724742567461030582 # define Azab .81650043674686363166 # define Azba 1.82261843856185925133 # define T 1.27246578267089012270 # define rhoc 1.20709121521568721927 # define cAzc .69691523038678375519 # define sAzc .71715351331143607555 # define C45 .70710678118654752469 # define S45 .70710678118654752410 # define C20 .93969262078590838411 # define S20 -.34202014332566873287 # define R110 1.91986217719376253360 # define R104 1.81514242207410275904 FORWARD(s_forward); /* spheroid */ double cphi, sphi, tphi, t, al, Az, z, Av, cdlam, sdlam, r; int tag; cphi = cos(lp.phi); sphi = sin(lp.phi); cdlam = cos(sdlam = lamB - lp.lam); sdlam = sin(sdlam); if (fabs(fabs(lp.phi) - HALFPI) < EPS10) { Az = lp.phi < 0. ? PI : 0.; tphi = HUGE_VAL; } else { tphi = sphi / cphi; Az = atan2(sdlam , C45 * (tphi - cdlam)); } if( (tag = (Az > Azba)) ) { cdlam = cos(sdlam = lp.lam + R110); sdlam = sin(sdlam); z = S20 * sphi + C20 * cphi * cdlam; if (fabs(z) > 1.) { if (fabs(z) > ONEEPS) F_ERROR else z = z < 0. ? -1. : 1.; } else z = acos(z); if (tphi != HUGE_VAL) Az = atan2(sdlam, (C20 * tphi - S20 * cdlam)); Av = Azab; xy.y = rhoc; } else { z = S45 * (sphi + cphi * cdlam); if (fabs(z) > 1.) { if (fabs(z) > ONEEPS) F_ERROR else z = z < 0. ? -1. : 1.; } else z = acos(z); Av = Azba; xy.y = -rhoc; } if (z < 0.) F_ERROR; r = F * (t = pow(tan(.5 * z), n)); if ((al = .5 * (R104 - z)) < 0.) F_ERROR; al = (t + pow(al, n)) / T; if (fabs(al) > 1.) { if (fabs(al) > ONEEPS) F_ERROR else al = al < 0. ? -1. : 1.; } else al = acos(al); if (fabs(t = n * (Av - Az)) < al) r /= cos(al + (tag ? t : -t)); xy.x = r * sin(t); xy.y += (tag ? -r : r) * cos(t); if (P->noskew) { t = xy.x; xy.x = -xy.x * cAzc - xy.y * sAzc; xy.y = -xy.y * cAzc + t * sAzc; } return (xy); } INVERSE(s_inverse); /* spheroid */ double t, r, rp, rl, al, z, fAz, Az, s, c, Av; int neg, i; if (P->noskew) { t = xy.x; xy.x = -xy.x * cAzc + xy.y * sAzc; xy.y = -xy.y * cAzc - t * sAzc; } if( (neg = (xy.x < 0.)) ) { xy.y = rhoc - xy.y; s = S20; c = C20; Av = Azab; } else { xy.y += rhoc; s = S45; c = C45; Av = Azba; } rl = rp = r = hypot(xy.x, xy.y); fAz = fabs(Az = atan2(xy.x, xy.y)); for (i = NITER; i ; --i) { z = 2. * atan(pow(r / F,1 / n)); al = acos((pow(tan(.5 * z), n) + pow(tan(.5 * (R104 - z)), n)) / T); if (fAz < al) r = rp * cos(al + (neg ? Az : -Az)); if (fabs(rl - r) < EPS) break; rl = r; } if (! i) I_ERROR; Az = Av - Az / n; lp.phi = asin(s * cos(z) + c * sin(z) * cos(Az)); lp.lam = atan2(sin(Az), c / tan(z) - s * cos(Az)); if (neg) lp.lam -= R110; else lp.lam = lamB - lp.lam; return (lp); } FREEUP; if (P) pj_dalloc(P); } ENTRY0(bipc) P->noskew = pj_param(P->ctx, P->params, "bns").i; P->inv = s_inverse; P->fwd = s_forward; P->es = 0.; ENDENTRY(P)