/****************************************************************************** * Project: PROJ.4 * Purpose: Implementation of the aitoff (Aitoff) and wintri (Winkel Tripel) * projections. * Author: Gerald Evenden * ****************************************************************************** * Copyright (c) 1995, Gerald Evenden * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. *****************************************************************************/ #define PROJ_PARMS__ \ double cosphi1; \ int mode; #define PJ_LIB__ #include #ifndef M_PI # define M_PI 3.14159265358979323846 #endif #ifndef M_PI_2 # define M_PI_2 1.57079632679489661923 #endif PROJ_HEAD(aitoff, "Aitoff") "\n\tMisc Sph"; PROJ_HEAD(wintri, "Winkel Tripel") "\n\tMisc Sph\n\tlat_1"; FORWARD(s_forward); /* spheroid */ double c, d; if((d = acos(cos(lp.phi) * cos(c = 0.5 * lp.lam)))) {/* basic Aitoff */ xy.x = 2. * d * cos(lp.phi) * sin(c) * (xy.y = 1. / sin(d)); xy.y *= d * sin(lp.phi); } else xy.x = xy.y = 0.; if (P->mode) { /* Winkel Tripel */ xy.x = (xy.x + lp.lam * P->cosphi1) * 0.5; xy.y = (xy.y + lp.phi) * 0.5; } return (xy); } /*********************************************************************************** * * Inverse functions added by Drazen Tutic and Lovro Gradiser based on paper: * * I.Özbug Biklirici and Cengizhan Ipbüker. A General Algorithm for the Inverse * Transformation of Map Projections Using Jacobian Matrices. In Proceedings of the * Third International Symposium Mathematical & Computational Applications, * pages 175{182, Turkey, September 2002. * * Expected accuracy is defined by EPSILON = 1e-12. Should be appropriate for * most applications of Aitoff and Winkel Tripel projections. * * Longitudes of 180W and 180E can be mixed in solution obtained. * * Inverse for Aitoff projection in poles is undefined, longitude value of 0 is assumed. * * Contact : dtutic@geof.hr * Date: 2015-02-16 * ************************************************************************************/ INVERSE(s_inverse); /* sphere */ int iter, MAXITER = 10, round = 0, MAXROUND = 20; double EPSILON = 1e-12, D, C, f1, f2, f1p, f1l, f2p, f2l, dp, dl, sl, sp, cp, cl, x, y; if ((fabs(xy.x) < EPSILON) && (fabs(xy.y) < EPSILON )) { lp.phi = 0.; lp.lam = 0.; return (lp); } /* intial values for Newton-Raphson method */ lp.phi = xy.y; lp.lam = xy.x; do { iter = 0; do { sl = sin(lp.lam * 0.5); cl = cos(lp.lam * 0.5); sp = sin(lp.phi); cp = cos(lp.phi); D = cp * cl; C = 1. - D * D; D = acos(D) / pow(C, 1.5); f1 = 2. * D * C * cp * sl; f2 = D * C * sp; f1p = 2.* (sl * cl * sp * cp / C - D * sp * sl); f1l = cp * cp * sl * sl / C + D * cp * cl * sp * sp; f2p = sp * sp * cl / C + D * sl * sl * cp; f2l = 0.5 * (sp * cp * sl / C - D * sp * cp * cp * sl * cl); if (P->mode) { /* Winkel Tripel */ f1 = 0.5 * (f1 + lp.lam * P->cosphi1); f2 = 0.5 * (f2 + lp.phi); f1p *= 0.5; f1l = 0.5 * (f1l + P->cosphi1); f2p = 0.5 * (f2p + 1.); f2l *= 0.5; } f1 -= xy.x; f2 -= xy.y; dl = (f2 * f1p - f1 * f2p) / (dp = f1p * f2l - f2p * f1l); dp = (f1 * f2l - f2 * f1l) / dp; while (dl > M_PI) dl -= M_PI; /* set to interval [-M_PI, M_PI] */ while (dl < -M_PI) dl += M_PI; /* set to interval [-M_PI, M_PI] */ lp.phi -= dp; lp.lam -= dl; } while ((fabs(dp) > EPSILON || fabs(dl) > EPSILON) && (iter++ < MAXITER)); if (lp.phi > M_PI_2) lp.phi -= 2.*(lp.phi-M_PI_2); /* correct if symmetrical solution for Aitoff */ if (lp.phi < -M_PI_2) lp.phi -= 2.*(lp.phi+M_PI_2); /* correct if symmetrical solution for Aitoff */ if ((fabs(fabs(lp.phi) - M_PI_2) < EPSILON) && (!P->mode)) lp.lam = 0.; /* if pole in Aitoff, return longitude of 0 */ /* calculate x,y coordinates with solution obtained */ if((D = acos(cos(lp.phi) * cos(C = 0.5 * lp.lam)))) {/* Aitoff */ x = 2. * D * cos(lp.phi) * sin(C) * (y = 1. / sin(D)); y *= D * sin(lp.phi); } else x = y = 0.; if (P->mode) { /* Winkel Tripel */ x = (x + lp.lam * P->cosphi1) * 0.5; y = (y + lp.phi) * 0.5; } /* if too far from given values of x,y, repeat with better approximation of phi,lam */ } while (((fabs(xy.x-x) > EPSILON) || (fabs(xy.y-y) > EPSILON)) && (round++ < MAXROUND)); if (iter == MAXITER && round == MAXROUND) fprintf(stderr, "Warning: Accuracy of 1e-12 not reached. Last increments: dlat=%e and dlon=%e\n", dp, dl); return (lp); } FREEUP; if (P) pj_dalloc(P); } static PJ * setup(PJ *P) { P->inv = s_inverse; P->fwd = s_forward; P->es = 0.; return P; } ENTRY0(aitoff) P->mode = 0; ENDENTRY(setup(P)) ENTRY0(wintri) P->mode = 1; if (pj_param(P->ctx, P->params, "tlat_1").i) { if ((P->cosphi1 = cos(pj_param(P->ctx, P->params, "rlat_1").f)) == 0.) E_ERROR(-22) } else /* 50d28' or acos(2/pi) */ P->cosphi1 = 0.636619772367581343; ENDENTRY(setup(P))