/****************************************************************************** * Project: PROJ.4 * Purpose: Implementation of the aea (Albers Equal Area) projection. * Author: Gerald Evenden * ****************************************************************************** * Copyright (c) 1995, Gerald Evenden * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. *****************************************************************************/ #define PROJ_PARMS__ \ double ec; \ double n; \ double c; \ double dd; \ double n2; \ double rho0; \ double rho; \ double phi1; \ double phi2; \ double *en; \ int ellips; #define PJ_LIB__ #include # define EPS10 1.e-10 # define TOL7 1.e-7 PROJ_HEAD(aea, "Albers Equal Area") "\n\tConic Sph&Ell\n\tlat_1= lat_2="; PROJ_HEAD(leac, "Lambert Equal Area Conic") "\n\tConic, Sph&Ell\n\tlat_1= south"; /* determine latitude angle phi-1 */ # define N_ITER 15 # define EPSILON 1.0e-7 # define TOL 1.0e-10 static double phi1_(double qs, double Te, double Tone_es) { int i; double Phi, sinpi, cospi, con, com, dphi; Phi = asin (.5 * qs); if (Te < EPSILON) return( Phi ); i = N_ITER; do { sinpi = sin (Phi); cospi = cos (Phi); con = Te * sinpi; com = 1. - con * con; dphi = .5 * com * com / cospi * (qs / Tone_es - sinpi / com + .5 / Te * log ((1. - con) / (1. + con))); Phi += dphi; } while (fabs(dphi) > TOL && --i); return( i ? Phi : HUGE_VAL ); } FORWARD(e_forward); /* ellipsoid & spheroid */ if ((P->rho = P->c - (P->ellips ? P->n * pj_qsfn(sin(lp.phi), P->e, P->one_es) : P->n2 * sin(lp.phi))) < 0.) F_ERROR P->rho = P->dd * sqrt(P->rho); xy.x = P->rho * sin( lp.lam *= P->n ); xy.y = P->rho0 - P->rho * cos(lp.lam); return (xy); } INVERSE(e_inverse) /* ellipsoid & spheroid */; if( (P->rho = hypot(xy.x, xy.y = P->rho0 - xy.y)) != 0.0 ) { if (P->n < 0.) { P->rho = -P->rho; xy.x = -xy.x; xy.y = -xy.y; } lp.phi = P->rho / P->dd; if (P->ellips) { lp.phi = (P->c - lp.phi * lp.phi) / P->n; if (fabs(P->ec - fabs(lp.phi)) > TOL7) { if ((lp.phi = phi1_(lp.phi, P->e, P->one_es)) == HUGE_VAL) I_ERROR } else lp.phi = lp.phi < 0. ? -HALFPI : HALFPI; } else if (fabs(lp.phi = (P->c - lp.phi * lp.phi) / P->n2) <= 1.) lp.phi = asin(lp.phi); else lp.phi = lp.phi < 0. ? -HALFPI : HALFPI; lp.lam = atan2(xy.x, xy.y) / P->n; } else { lp.lam = 0.; lp.phi = P->n > 0. ? HALFPI : - HALFPI; } return (lp); } FREEUP; if (P) { if (P->en) pj_dalloc(P->en); pj_dalloc(P); } } static PJ * setup(PJ *P) { double cosphi, sinphi; int secant; if (fabs(P->phi1 + P->phi2) < EPS10) E_ERROR(-21); P->n = sinphi = sin(P->phi1); cosphi = cos(P->phi1); secant = fabs(P->phi1 - P->phi2) >= EPS10; if( (P->ellips = (P->es > 0.))) { double ml1, m1; if (!(P->en = pj_enfn(P->es))) E_ERROR_0; m1 = pj_msfn(sinphi, cosphi, P->es); ml1 = pj_qsfn(sinphi, P->e, P->one_es); if (secant) { /* secant cone */ double ml2, m2; sinphi = sin(P->phi2); cosphi = cos(P->phi2); m2 = pj_msfn(sinphi, cosphi, P->es); ml2 = pj_qsfn(sinphi, P->e, P->one_es); P->n = (m1 * m1 - m2 * m2) / (ml2 - ml1); } P->ec = 1. - .5 * P->one_es * log((1. - P->e) / (1. + P->e)) / P->e; P->c = m1 * m1 + P->n * ml1; P->dd = 1. / P->n; P->rho0 = P->dd * sqrt(P->c - P->n * pj_qsfn(sin(P->phi0), P->e, P->one_es)); } else { if (secant) P->n = .5 * (P->n + sin(P->phi2)); P->n2 = P->n + P->n; P->c = cosphi * cosphi + P->n2 * sinphi; P->dd = 1. / P->n; P->rho0 = P->dd * sqrt(P->c - P->n2 * sin(P->phi0)); } P->inv = e_inverse; P->fwd = e_forward; return P; } ENTRY1(aea,en) P->phi1 = pj_param(P->ctx, P->params, "rlat_1").f; P->phi2 = pj_param(P->ctx, P->params, "rlat_2").f; ENDENTRY(setup(P)) ENTRY1(leac,en) P->phi2 = pj_param(P->ctx, P->params, "rlat_1").f; P->phi1 = pj_param(P->ctx, P->params, "bsouth").i ? - HALFPI: HALFPI; ENDENTRY(setup(P))