typedef struct { double r, Az; } VECT; #define PROJ_PARMS__ \ struct { /* control point data */ \ double phi, lam; \ double cosphi, sinphi; \ VECT v; \ XY p; \ double Az; \ } c[3]; \ XY p; \ double beta_0, beta_1, beta_2; #define PJ_LIB__ #include PROJ_HEAD(chamb, "Chamberlin Trimetric") "\n\tMisc Sph, no inv." "\n\tlat_1= lon_1= lat_2= lon_2= lat_3= lon_3="; #include #define THIRD 0.333333333333333333 #define TOL 1e-9 static VECT /* distance and azimuth from point 1 to point 2 */ vect(projCtx ctx, double dphi, double c1, double s1, double c2, double s2, double dlam) { VECT v; double cdl, dp, dl; cdl = cos(dlam); if (fabs(dphi) > 1. || fabs(dlam) > 1.) v.r = aacos(ctx, s1 * s2 + c1 * c2 * cdl); else { /* more accurate for smaller distances */ dp = sin(.5 * dphi); dl = sin(.5 * dlam); v.r = 2. * aasin(ctx,sqrt(dp * dp + c1 * c2 * dl * dl)); } if (fabs(v.r) > TOL) v.Az = atan2(c2 * sin(dlam), c1 * s2 - s1 * c2 * cdl); else v.r = v.Az = 0.; return v; } static double /* law of cosines */ lc(projCtx ctx, double b,double c,double a) { return aacos(ctx, .5 * (b * b + c * c - a * a) / (b * c)); } FORWARD(s_forward); /* spheroid */ double sinphi, cosphi, a; VECT v[3]; int i, j; sinphi = sin(lp.phi); cosphi = cos(lp.phi); for (i = 0; i < 3; ++i) { /* dist/azimiths from control */ v[i] = vect(P->ctx, lp.phi - P->c[i].phi, P->c[i].cosphi, P->c[i].sinphi, cosphi, sinphi, lp.lam - P->c[i].lam); if ( ! v[i].r) break; v[i].Az = adjlon(v[i].Az - P->c[i].v.Az); } if (i < 3) /* current point at control point */ xy = P->c[i].p; else { /* point mean of intersepts */ xy = P->p; for (i = 0; i < 3; ++i) { j = i == 2 ? 0 : i + 1; a = lc(P->ctx,P->c[i].v.r, v[i].r, v[j].r); if (v[i].Az < 0.) a = -a; if (! i) { /* coord comp unique to each arc */ xy.x += v[i].r * cos(a); xy.y -= v[i].r * sin(a); } else if (i == 1) { a = P->beta_1 - a; xy.x -= v[i].r * cos(a); xy.y -= v[i].r * sin(a); } else { a = P->beta_2 - a; xy.x += v[i].r * cos(a); xy.y += v[i].r * sin(a); } } xy.x *= THIRD; /* mean of arc intercepts */ xy.y *= THIRD; } return xy; } FREEUP; if (P) pj_dalloc(P); } ENTRY0(chamb) int i, j; char line[10]; for (i = 0; i < 3; ++i) { /* get control point locations */ (void)sprintf(line, "rlat_%d", i+1); P->c[i].phi = pj_param(P->ctx, P->params, line).f; (void)sprintf(line, "rlon_%d", i+1); P->c[i].lam = pj_param(P->ctx, P->params, line).f; P->c[i].lam = adjlon(P->c[i].lam - P->lam0); P->c[i].cosphi = cos(P->c[i].phi); P->c[i].sinphi = sin(P->c[i].phi); } for (i = 0; i < 3; ++i) { /* inter ctl pt. distances and azimuths */ j = i == 2 ? 0 : i + 1; P->c[i].v = vect(P->ctx,P->c[j].phi - P->c[i].phi, P->c[i].cosphi, P->c[i].sinphi, P->c[j].cosphi, P->c[j].sinphi, P->c[j].lam - P->c[i].lam); if (! P->c[i].v.r) E_ERROR(-25); /* co-linearity problem ignored for now */ } P->beta_0 = lc(P->ctx,P->c[0].v.r, P->c[2].v.r, P->c[1].v.r); P->beta_1 = lc(P->ctx,P->c[0].v.r, P->c[1].v.r, P->c[2].v.r); P->beta_2 = PI - P->beta_0; P->p.y = 2. * (P->c[0].p.y = P->c[1].p.y = P->c[2].v.r * sin(P->beta_0)); P->c[2].p.y = 0.; P->c[0].p.x = - (P->c[1].p.x = 0.5 * P->c[0].v.r); P->p.x = P->c[2].p.x = P->c[0].p.x + P->c[2].v.r * cos(P->beta_0); P->es = 0.; P->fwd = s_forward; ENDENTRY(P)