!!!!! ========================================================== !!!!! ! subroutine 'moninedmf' computes subgrid vertical mixing by turbulence ! ! for the convective boundary layer, the scheme adopts eddy-diffusion ! mass-flux (edmf) parameterization (siebesma et al., 2007) to take into ! account nonlocal transport by large eddies. to reduce the tropical wind rmse, ! a hybrid scheme is used, in which the edmf scheme is used only for strongly ! unstable pbl while the current operational vertical diffusion scheme is called ! for the weakly unstable pbl. ! subroutine moninedmf(ix,im,km,ntrac,ntcw,dv,du,tau,rtg, & u1,v1,t1,q1,swh,hlw,xmu, & psk,rbsoil,zorl,u10m,v10m,fm,fh, & tsea,qss,heat,evap,stress,spd1,kpbl, & prsi,del,prsl,prslk,phii,phil,delt,dspheat, & dusfc,dvsfc,dtsfc,dqsfc,hpbl,hgamt,hgamq,dkt, & kinver,xkzm_m,xkzm_h,xkzm_s,lprnt,ipr) ! use machine , only : kind_phys use funcphys , only : fpvs use physcons, grav => con_g, rd => con_rd, cp => con_cp &, hvap => con_hvap, fv => con_fvirt implicit none ! ! arguments ! logical lprnt integer ipr integer ix, im, km, ntrac, ntcw, kpbl(im), kinver(im) ! real(kind=kind_phys) delt, xkzm_m, xkzm_h, xkzm_s real(kind=kind_phys) dv(im,km), du(im,km), & tau(im,km), rtg(im,km,ntrac), & u1(ix,km), v1(ix,km), & t1(ix,km), q1(ix,km,ntrac), & swh(ix,km), hlw(ix,km), & xmu(im), psk(im), & rbsoil(im), zorl(im), & u10m(im), v10m(im), & fm(im), fh(im), & tsea(im), qss(im), & spd1(im), & prsi(ix,km+1), del(ix,km), & prsl(ix,km), prslk(ix,km), & phii(ix,km+1), phil(ix,km), & dusfc(im), dvsfc(im), & dtsfc(im), dqsfc(im), & hpbl(im), hpblx(im), & hgamt(im), hgamq(im) ! logical dspheat ! flag for tke dissipative heating ! ! locals ! integer i,iprt,is,iun,k,kk,km1,kmpbl,latd,lond integer lcld(im),icld(im),kcld(im),krad(im) integer kx1(im), kpblx(im) ! ! real(kind=kind_phys) betaq(im), betat(im), betaw(im), real(kind=kind_phys) evap(im), heat(im), phih(im), & phim(im), rbdn(im), rbup(im), & stress(im),beta(im), sflux(im), & z0(im), crb(im), wstar(im), & zol(im), ustmin(im), ustar(im), & thermal(im),wscale(im), wscaleu(im) ! real(kind=kind_phys) theta(im,km),thvx(im,km), thlvx(im,km), & qlx(im,km), thetae(im,km), & qtx(im,km), bf(im,km-1), diss(im,km), & radx(im,km-1), & govrth(im), hrad(im), ! & hradm(im), radmin(im), vrad(im), & radmin(im), vrad(im), & zd(im), zdd(im), thlvx1(im) ! real(kind=kind_phys) rdzt(im,km-1),dktx(im,km-1), & zi(im,km+1), zl(im,km), xkzo(im,km-1), & dku(im,km-1), dkt(im,km-1), xkzmo(im,km-1), & cku(im,km-1), ckt(im,km-1), & ti(im,km-1), shr2(im,km-1), & al(im,km-1), ad(im,km), & au(im,km-1), a1(im,km), & a2(im,km*ntrac) ! real(kind=kind_phys) tcko(im,km), qcko(im,km,ntrac), & ucko(im,km), vcko(im,km), xmf(im,km) ! real(kind=kind_phys) prinv(im), rent(im) ! logical pblflg(im), sfcflg(im), scuflg(im), flg(im) logical ublflg(im), pcnvflg(im) ! ! pcnvflg: true for convective(strongly unstable) pbl ! ublflg: true for unstable but not convective(strongly unstable) pbl ! real(kind=kind_phys) aphi16, aphi5, bvf2, wfac, & cfac, conq, cont, conw, & dk, dkmax, dkmin, & dq1, dsdz2, dsdzq, dsdzt, & dsdzu, dsdzv, & dsig, dt2, dthe1, dtodsd, & dtodsu, dw2, dw2min, g, & gamcrq, gamcrt, gocp, & gravi, f0, & prnum, prmax, prmin, pfac, crbcon, & qmin, tdzmin, qtend, crbmin,crbmax, & rbint, rdt, rdz, qlmin, & ri, rimin, rl2, rlam, rlamun, & rone, rzero, sfcfrac, & spdk2, sri, zol1, zolcr, zolcru, & robn, ttend, & utend, vk, vk2, & ust3, wst3, & vtend, zfac, vpert, cteit, & rentf1, rentf2, radfac, & zfmin, zk, tem, tem1, tem2, & xkzm, xkzmu, xkzminv, & ptem, ptem1, ptem2, tx1(im), tx2(im) ! real(kind=kind_phys) zstblmax,h1, h2, qlcr, actei, & cldtime cc parameter(gravi=1.0/grav) parameter(g=grav) parameter(gocp=g/cp) parameter(cont=cp/g,conq=hvap/g,conw=1.0/g) ! for del in pa ! parameter(cont=1000.*cp/g,conq=1000.*hvap/g,conw=1000./g) ! for del in kpa parameter(rlam=30.0,vk=0.4,vk2=vk*vk) parameter(prmin=0.25,prmax=4.,zolcr=0.2,zolcru=-0.5) parameter(dw2min=0.0001,dkmin=0.0,dkmax=1000.,rimin=-100.) parameter(crbcon=0.25,crbmin=0.15,crbmax=0.35) parameter(wfac=7.0,cfac=6.5,pfac=2.0,sfcfrac=0.1) ! parameter(qmin=1.e-8,xkzm=1.0,zfmin=1.e-8,aphi5=5.,aphi16=16.) parameter(qmin=1.e-8, zfmin=1.e-8,aphi5=5.,aphi16=16.) parameter(tdzmin=1.e-3,qlmin=1.e-12,f0=1.e-4) parameter(h1=0.33333333,h2=0.66666667) parameter(cldtime=500.,xkzminv=0.3) ! parameter(cldtime=500.,xkzmu=3.0,xkzminv=0.3) ! parameter(gamcrt=3.,gamcrq=2.e-3,rlamun=150.0) parameter(gamcrt=3.,gamcrq=0.,rlamun=150.0) parameter(rentf1=0.2,rentf2=1.0,radfac=0.85) parameter(iun=84) ! ! parameter (zstblmax = 2500., qlcr=1.0e-5) ! parameter (zstblmax = 2500., qlcr=3.0e-5) ! parameter (zstblmax = 2500., qlcr=3.5e-5) ! parameter (zstblmax = 2500., qlcr=1.0e-4) parameter (zstblmax = 2500., qlcr=3.5e-5) ! parameter (actei = 0.23) parameter (actei = 0.7) c c----------------------------------------------------------------------- c 601 format(1x,' moninp lat lon step hour ',3i6,f6.1) 602 format(1x,' k',' z',' t',' th', 1 ' tvh',' q',' u',' v', 2 ' sp') 603 format(1x,i5,8f9.1) 604 format(1x,' sfc',9x,f9.1,18x,f9.1) 605 format(1x,' k zl spd2 thekv the1v' 1 ,' thermal rbup') 606 format(1x,i5,6f8.2) 607 format(1x,' kpbl hpbl fm fh hgamt', 1 ' hgamq ws ustar cd ch') 608 format(1x,i5,9f8.2) 609 format(1x,' k pr dkt dku ',i5,3f8.2) 610 format(1x,' k pr dkt dku ',i5,3f8.2,' l2 ri t2', 1 ' sr2 ',2f8.2,2e10.2) ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! compute preliminary variables ! if (ix .lt. im) stop ! ! iprt = 0 ! if(iprt.eq.1) then !cc latd = 0 ! lond = 0 ! else !cc latd = 0 ! lond = 0 ! endif ! dt2 = delt rdt = 1. / dt2 km1 = km - 1 kmpbl = km / 2 ! do k=1,km do i=1,im zi(i,k) = phii(i,k) * gravi zl(i,k) = phil(i,k) * gravi enddo enddo do i=1,im zi(i,km+1) = phii(i,km+1) * gravi enddo ! do k = 1,km1 do i=1,im rdzt(i,k) = 1.0 / (zl(i,k+1) - zl(i,k)) enddo enddo ! do i=1,im kx1(i) = 1 tx1(i) = 1.0 / prsi(i,1) tx2(i) = tx1(i) enddo do k = 1,km1 do i=1,im xkzo(i,k) = 0.0 xkzmo(i,k) = 0.0 if (k < kinver(i)) then ! vertical background diffusivity ptem = prsi(i,k+1) * tx1(i) tem1 = 1.0 - ptem tem1 = tem1 * tem1 * 10.0 xkzo(i,k) = xkzm_h * min(1.0, exp(-tem1)) ! vertical background diffusivity for momentum if (ptem >= xkzm_s) then xkzmo(i,k) = xkzm_m kx1(i) = k + 1 else if (k == kx1(i) .and. k > 1) tx2(i) = 1.0 / prsi(i,k) tem1 = 1.0 - prsi(i,k+1) * tx2(i) tem1 = tem1 * tem1 * 5.0 xkzmo(i,k) = xkzm_m * min(1.0, exp(-tem1)) endif endif enddo enddo ! if (lprnt) then ! print *,' xkzo=',(xkzo(ipr,k),k=1,km1) ! print *,' xkzmo=',(xkzmo(ipr,k),k=1,km1) ! endif ! ! diffusivity in the inversion layer is set to be xkzminv (m^2/s) ! do k = 1,kmpbl do i=1,im ! if(zi(i,k+1) > 200..and.zi(i,k+1) < zstblmax) then if(zi(i,k+1) > 250.) then tem1 = (t1(i,k+1)-t1(i,k)) * rdzt(i,k) if(tem1 > 1.e-5) then xkzo(i,k) = min(xkzo(i,k),xkzminv) endif endif enddo enddo ! do i = 1,im z0(i) = 0.01 * zorl(i) dusfc(i) = 0. dvsfc(i) = 0. dtsfc(i) = 0. dqsfc(i) = 0. wscale(i)= 0. wscaleu(i)= 0. kpbl(i) = 1 hpbl(i) = zi(i,1) hpblx(i) = zi(i,1) pblflg(i)= .true. sfcflg(i)= .true. if(rbsoil(i) > 0.) sfcflg(i) = .false. ublflg(i)= .false. pcnvflg(i)= .false. scuflg(i)= .true. if(scuflg(i)) then radmin(i)= 0. rent(i) = rentf1 hrad(i) = zi(i,1) ! hradm(i) = zi(i,1) krad(i) = 1 icld(i) = 0 lcld(i) = km1 kcld(i) = km1 zd(i) = 0. endif enddo ! do k = 1,km do i = 1,im theta(i,k) = t1(i,k) * psk(i) / prslk(i,k) qlx(i,k) = max(q1(i,k,ntcw),qlmin) qtx(i,k) = max(q1(i,k,1),qmin)+qlx(i,k) ptem = qlx(i,k) ptem1 = hvap*max(q1(i,k,1),qmin)/(cp*t1(i,k)) thetae(i,k)= theta(i,k)*(1.+ptem1) thvx(i,k) = theta(i,k)*(1.+fv*max(q1(i,k,1),qmin)-ptem) ptem2 = theta(i,k)-(hvap/cp)*ptem thlvx(i,k) = ptem2*(1.+fv*qtx(i,k)) enddo enddo do k = 1,km1 do i = 1,im dku(i,k) = 0. dkt(i,k) = 0. dktx(i,k) = 0. cku(i,k) = 0. ckt(i,k) = 0. tem = zi(i,k+1)-zi(i,k) radx(i,k) = tem*(swh(i,k)*xmu(i)+hlw(i,k)) enddo enddo ! do i=1,im flg(i) = scuflg(i) enddo do k = 1, km1 do i=1,im if(flg(i).and.zl(i,k) >= zstblmax) then lcld(i)=k flg(i)=.false. endif enddo enddo ! ! compute virtual potential temp gradient (bf) and winshear square ! do k = 1, km1 do i = 1, im rdz = rdzt(i,k) bf(i,k) = (thvx(i,k+1)-thvx(i,k))*rdz ti(i,k) = 2./(t1(i,k)+t1(i,k+1)) dw2 = (u1(i,k)-u1(i,k+1))**2 & + (v1(i,k)-v1(i,k+1))**2 shr2(i,k) = max(dw2,dw2min)*rdz*rdz enddo enddo ! do i = 1,im govrth(i) = g/theta(i,1) enddo ! do i=1,im beta(i) = dt2 / (zi(i,2)-zi(i,1)) enddo ! do i=1,im ustar(i) = sqrt(stress(i)) enddo ! do i = 1,im sflux(i) = heat(i) + evap(i)*fv*theta(i,1) if(.not.sfcflg(i) .or. sflux(i) <= 0.) pblflg(i)=.false. enddo ! ! compute the pbl height ! do i=1,im flg(i) = .false. rbup(i) = rbsoil(i) ! if(pblflg(i)) then thermal(i) = thvx(i,1) crb(i) = crbcon else thermal(i) = tsea(i)*(1.+fv*max(q1(i,1,1),qmin)) tem = sqrt(u10m(i)**2+v10m(i)**2) tem = max(tem, 1.) robn = tem / (f0 * z0(i)) tem1 = 1.e-7 * robn crb(i) = 0.16 * (tem1 ** (-0.18)) crb(i) = max(min(crb(i), crbmax), crbmin) endif enddo do k = 1, kmpbl do i = 1, im if(.not.flg(i)) then rbdn(i) = rbup(i) spdk2 = max((u1(i,k)**2+v1(i,k)**2),1.) rbup(i) = (thvx(i,k)-thermal(i))* & (g*zl(i,k)/thvx(i,1))/spdk2 kpbl(i) = k flg(i) = rbup(i) > crb(i) endif enddo enddo do i = 1,im if(kpbl(i) > 1) then k = kpbl(i) if(rbdn(i) >= crb(i)) then rbint = 0. elseif(rbup(i) <= crb(i)) then rbint = 1. else rbint = (crb(i)-rbdn(i))/(rbup(i)-rbdn(i)) endif hpbl(i) = zl(i,k-1) + rbint*(zl(i,k)-zl(i,k-1)) if(hpbl(i) < zi(i,kpbl(i))) kpbl(i) = kpbl(i) - 1 else hpbl(i) = zl(i,1) kpbl(i) = 1 endif kpblx(i) = kpbl(i) hpblx(i) = hpbl(i) enddo ! ! compute similarity parameters ! do i=1,im zol(i) = max(rbsoil(i)*fm(i)*fm(i)/fh(i),rimin) if(sfcflg(i)) then zol(i) = min(zol(i),-zfmin) else zol(i) = max(zol(i),zfmin) endif zol1 = zol(i)*sfcfrac*hpbl(i)/zl(i,1) if(sfcflg(i)) then ! phim(i) = (1.-aphi16*zol1)**(-1./4.) ! phih(i) = (1.-aphi16*zol1)**(-1./2.) tem = 1.0 / (1. - aphi16*zol1) phih(i) = sqrt(tem) phim(i) = sqrt(phih(i)) else phim(i) = 1. + aphi5*zol1 phih(i) = phim(i) endif wscale(i) = ustar(i)/phim(i) ustmin(i) = ustar(i)/aphi5 wscale(i) = max(wscale(i),ustmin(i)) enddo do i=1,im if(pblflg(i)) then if(zol(i) < zolcru .and. kpbl(i) > 1) then pcnvflg(i) = .true. else ublflg(i) = .true. endif wst3 = govrth(i)*sflux(i)*hpbl(i) wstar(i)= wst3**h1 ust3 = ustar(i)**3. wscaleu(i) = (ust3+wfac*vk*wst3*sfcfrac)**h1 wscaleu(i) = max(wscaleu(i),ustmin(i)) endif enddo ! ! compute counter-gradient mixing term for heat and moisture ! do i = 1,im if(ublflg(i)) then hgamt(i) = min(cfac*heat(i)/wscaleu(i),gamcrt) hgamq(i) = min(cfac*evap(i)/wscaleu(i),gamcrq) vpert = hgamt(i) + hgamq(i)*fv*theta(i,1) vpert = min(vpert,gamcrt) thermal(i)= thermal(i)+max(vpert,0.) hgamt(i) = max(hgamt(i),0.0) hgamq(i) = max(hgamq(i),0.0) endif enddo ! ! enhance the pbl height by considering the thermal excess ! do i=1,im flg(i) = .true. if(ublflg(i)) then flg(i) = .false. rbup(i) = rbsoil(i) endif enddo do k = 2, kmpbl do i = 1, im if(.not.flg(i)) then rbdn(i) = rbup(i) spdk2 = max((u1(i,k)**2+v1(i,k)**2),1.) rbup(i) = (thvx(i,k)-thermal(i))* & (g*zl(i,k)/thvx(i,1))/spdk2 kpbl(i) = k flg(i) = rbup(i) > crb(i) endif enddo enddo do i = 1,im if(ublflg(i)) then k = kpbl(i) if(rbdn(i) >= crb(i)) then rbint = 0. elseif(rbup(i) <= crb(i)) then rbint = 1. else rbint = (crb(i)-rbdn(i))/(rbup(i)-rbdn(i)) endif hpbl(i) = zl(i,k-1) + rbint*(zl(i,k)-zl(i,k-1)) if(hpbl(i) < zi(i,kpbl(i))) kpbl(i) = kpbl(i) - 1 if(kpbl(i) <= 1) then ublflg(i) = .false. pblflg(i) = .false. endif endif enddo ! ! look for stratocumulus ! do i = 1, im flg(i)=scuflg(i) enddo do k = kmpbl,1,-1 do i = 1, im if(flg(i) .and. k <= lcld(i)) then if(qlx(i,k).ge.qlcr) then kcld(i)=k flg(i)=.false. endif endif enddo enddo do i = 1, im if(scuflg(i) .and. kcld(i)==km1) scuflg(i)=.false. enddo ! do i = 1, im flg(i)=scuflg(i) enddo do k = kmpbl,1,-1 do i = 1, im if(flg(i) .and. k <= kcld(i)) then if(qlx(i,k) >= qlcr) then if(radx(i,k) < radmin(i)) then radmin(i)=radx(i,k) krad(i)=k endif else flg(i)=.false. endif endif enddo enddo do i = 1, im if(scuflg(i) .and. krad(i) <= 1) scuflg(i)=.false. if(scuflg(i) .and. radmin(i)>=0.) scuflg(i)=.false. enddo ! do i = 1, im flg(i)=scuflg(i) enddo do k = kmpbl,2,-1 do i = 1, im if(flg(i) .and. k <= krad(i)) then if(qlx(i,k) >= qlcr) then icld(i)=icld(i)+1 else flg(i)=.false. endif endif enddo enddo do i = 1, im if(scuflg(i) .and. icld(i) < 1) scuflg(i)=.false. enddo ! do i = 1, im if(scuflg(i)) then hrad(i) = zi(i,krad(i)+1) ! hradm(i)= zl(i,krad(i)) endif enddo ! do i = 1, im if(scuflg(i) .and. hrad(i) thlvx(i,k-1)) scuflg(i)=.false. endif enddo ! do i = 1, im flg(i)=scuflg(i) enddo do k = kmpbl,1,-1 do i = 1, im if(flg(i) .and. k <= krad(i))then if(thlvx1(i) <= thlvx(i,k))then tem=zi(i,k+1)-zi(i,k) zd(i)=zd(i)+tem else flg(i)=.false. endif endif enddo enddo do i = 1, im if(scuflg(i))then kk = max(1, krad(i)+1-icld(i)) zdd(i) = hrad(i)-zi(i,kk) endif enddo do i = 1, im if(scuflg(i))then zd(i) = max(zd(i),zdd(i)) zd(i) = min(zd(i),hrad(i)) tem = govrth(i)*zd(i)*(-radmin(i)) vrad(i)= tem**h1 endif enddo ! ! compute inverse prandtl number ! do i = 1, im if(ublflg(i)) then tem = phih(i)/phim(i)+cfac*vk*sfcfrac else tem = phih(i)/phim(i) endif prinv(i) = 1.0 / tem prinv(i) = min(prinv(i),prmax) prinv(i) = max(prinv(i),prmin) enddo do i = 1, im if(zol(i) > zolcr) then kpbl(i) = 1 endif enddo ! ! compute diffusion coefficients below pbl ! do k = 1, kmpbl do i=1,im if(k < kpbl(i)) then ! zfac = max((1.-(zi(i,k+1)-zl(i,1))/ ! 1 (hpbl(i)-zl(i,1))), zfmin) zfac = max((1.-zi(i,k+1)/hpbl(i)), zfmin) tem = zi(i,k+1) * (zfac**pfac) if(pblflg(i)) then tem1 = vk * wscaleu(i) * tem ! dku(i,k) = xkzmo(i,k) + tem1 ! dkt(i,k) = xkzo(i,k) + tem1 * prinv(i) dku(i,k) = tem1 dkt(i,k) = tem1 * prinv(i) else tem1 = vk * wscale(i) * tem ! dku(i,k) = xkzmo(i,k) + tem1 ! dkt(i,k) = xkzo(i,k) + tem1 * prinv(i) dku(i,k) = tem1 dkt(i,k) = tem1 * prinv(i) endif dku(i,k) = min(dku(i,k),dkmax) dku(i,k) = max(dku(i,k),xkzmo(i,k)) dkt(i,k) = min(dkt(i,k),dkmax) dkt(i,k) = max(dkt(i,k),xkzo(i,k)) dktx(i,k)= dkt(i,k) endif enddo enddo ! ! compute diffusion coefficients based on local scheme above pbl ! do k = 1, km1 do i=1,im if(k >= kpbl(i)) then bvf2 = g*bf(i,k)*ti(i,k) ri = max(bvf2/shr2(i,k),rimin) zk = vk*zi(i,k+1) if(ri < 0.) then ! unstable regime rl2 = zk*rlamun/(rlamun+zk) dk = rl2*rl2*sqrt(shr2(i,k)) sri = sqrt(-ri) ! dku(i,k) = xkzmo(i,k) + dk*(1+8.*(-ri)/(1+1.746*sri)) ! dkt(i,k) = xkzo(i,k) + dk*(1+8.*(-ri)/(1+1.286*sri)) dku(i,k) = dk*(1+8.*(-ri)/(1+1.746*sri)) dkt(i,k) = dk*(1+8.*(-ri)/(1+1.286*sri)) else ! stable regime rl2 = zk*rlam/(rlam+zk) !! tem = rlam * sqrt(0.01*prsi(i,k)) !! rl2 = zk*tem/(tem+zk) dk = rl2*rl2*sqrt(shr2(i,k)) tem1 = dk/(1+5.*ri)**2 ! if(k >= kpblx(i)) then prnum = 1.0 + 2.1*ri prnum = min(prnum,prmax) else prnum = 1.0 endif ! dku(i,k) = xkzmo(i,k) + tem1 * prnum ! dkt(i,k) = xkzo(i,k) + tem1 dku(i,k) = tem1 * prnum dkt(i,k) = tem1 endif ! dku(i,k) = min(dku(i,k),dkmax) dku(i,k) = max(dku(i,k),xkzmo(i,k)) dkt(i,k) = min(dkt(i,k),dkmax) dkt(i,k) = max(dkt(i,k),xkzo(i,k)) ! endif ! enddo enddo ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! compute components for mass flux mixing by large thermals ! do k = 1, km do i = 1, im if(pcnvflg(i)) then tcko(i,k) = t1(i,k) ucko(i,k) = u1(i,k) vcko(i,k) = v1(i,k) xmf(i,k) = 0. endif enddo enddo do kk = 1, ntrac do k = 1, km do i = 1, im if(pcnvflg(i)) then qcko(i,k,kk) = q1(i,k,kk) endif enddo enddo enddo ! call mfpbl(im,ix,km,ntrac,dt2,pcnvflg, & zl,zi,thvx,q1,t1,u1,v1,hpbl,kpbl, & sflux,ustar,wstar,xmf,tcko,qcko,ucko,vcko) ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! compute diffusion coefficients for cloud-top driven diffusion ! if the condition for cloud-top instability is met, ! increase entrainment flux at cloud top ! do i = 1, im if(scuflg(i)) then k = krad(i) tem = thetae(i,k) - thetae(i,k+1) tem1 = qtx(i,k) - qtx(i,k+1) if (tem > 0. .and. tem1 > 0.) then cteit= cp*tem/(hvap*tem1) if(cteit > actei) rent(i) = rentf2 endif endif enddo do i = 1, im if(scuflg(i)) then k = krad(i) tem1 = max(bf(i,k),tdzmin) ckt(i,k) = -rent(i)*radmin(i)/tem1 cku(i,k) = ckt(i,k) endif enddo ! do k = 1, kmpbl do i=1,im if(scuflg(i) .and. k < krad(i)) then tem1=hrad(i)-zd(i) tem2=zi(i,k+1)-tem1 if(tem2 > 0.) then ptem= tem2/zd(i) if(ptem.ge.1.) ptem= 1. ptem= tem2*ptem*sqrt(1.-ptem) ckt(i,k) = radfac*vk*vrad(i)*ptem cku(i,k) = 0.75*ckt(i,k) ckt(i,k) = max(ckt(i,k),dkmin) ckt(i,k) = min(ckt(i,k),dkmax) cku(i,k) = max(cku(i,k),dkmin) cku(i,k) = min(cku(i,k),dkmax) endif endif enddo enddo ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! do k = 1, kmpbl do i=1,im if(scuflg(i)) then dkt(i,k) = dkt(i,k)+ckt(i,k) dku(i,k) = dku(i,k)+cku(i,k) dkt(i,k) = min(dkt(i,k),dkmax) dku(i,k) = min(dku(i,k),dkmax) endif enddo enddo ! ! compute tridiagonal matrix elements for heat and moisture ! do i=1,im ad(i,1) = 1. a1(i,1) = t1(i,1) + beta(i) * heat(i) a2(i,1) = q1(i,1,1) + beta(i) * evap(i) enddo if(ntrac >= 2) then do k = 2, ntrac is = (k-1) * km do i = 1, im a2(i,1+is) = q1(i,1,k) enddo enddo endif ! do k = 1,km1 do i = 1,im dtodsd = dt2/del(i,k) dtodsu = dt2/del(i,k+1) dsig = prsl(i,k)-prsl(i,k+1) rdz = rdzt(i,k) tem1 = dsig * dkt(i,k) * rdz dsdz2 = tem1 * rdz au(i,k) = -dtodsd*dsdz2 al(i,k) = -dtodsu*dsdz2 ! if(pcnvflg(i) .and. k < kpbl(i)) then tem2 = dsig * rdz ptem = 0.5 * tem2 * xmf(i,k) ptem1 = dtodsd * ptem ptem2 = dtodsu * ptem ad(i,k) = ad(i,k)-au(i,k)-ptem1 ad(i,k+1) = 1.-al(i,k)+ptem2 au(i,k) = au(i,k)-ptem1 al(i,k) = al(i,k)+ptem2 ptem = tcko(i,k) + tcko(i,k+1) dsdzt = tem1 * gocp a1(i,k) = a1(i,k)+dtodsd*dsdzt-ptem1*ptem a1(i,k+1) = t1(i,k+1)-dtodsu*dsdzt+ptem2*ptem ptem = qcko(i,k,1) + qcko(i,k+1,1) a2(i,k) = a2(i,k) - ptem1 * ptem a2(i,k+1) = q1(i,k+1,1) + ptem2 * ptem elseif(ublflg(i) .and. k < kpbl(i)) then ptem1 = dsig * dktx(i,k) * rdz tem = 1.0 / hpbl(i) dsdzt = tem1 * gocp - ptem1 * hgamt(i) * tem dsdzq = - ptem1 * hgamq(i) * tem ad(i,k) = ad(i,k)-au(i,k) ad(i,k+1) = 1.-al(i,k) a1(i,k) = a1(i,k)+dtodsd*dsdzt a1(i,k+1) = t1(i,k+1)-dtodsu*dsdzt a2(i,k) = a2(i,k)+dtodsd*dsdzq a2(i,k+1) = q1(i,k+1,1)-dtodsu*dsdzq else ad(i,k) = ad(i,k)-au(i,k) ad(i,k+1) = 1.-al(i,k) dsdzt = tem1 * gocp a1(i,k) = a1(i,k)+dtodsd*dsdzt a1(i,k+1) = t1(i,k+1)-dtodsu*dsdzt a2(i,k+1) = q1(i,k+1,1) endif ! enddo enddo ! if(ntrac >= 2) then do kk = 2, ntrac is = (kk-1) * km do k = 1, km1 do i = 1, im if(pcnvflg(i) .and. k < kpbl(i)) then dtodsd = dt2/del(i,k) dtodsu = dt2/del(i,k+1) dsig = prsl(i,k)-prsl(i,k+1) tem = dsig * rdzt(i,k) ptem = 0.5 * tem * xmf(i,k) ptem1 = dtodsd * ptem ptem2 = dtodsu * ptem tem1 = qcko(i,k,kk) + qcko(i,k+1,kk) a2(i,k+is) = a2(i,k+is) - ptem1*tem1 a2(i,k+1+is)= q1(i,k+1,kk) + ptem2*tem1 else a2(i,k+1+is) = q1(i,k+1,kk) endif enddo enddo enddo endif ! ! solve tridiagonal problem for heat and moisture ! call tridin(im,km,ntrac,al,ad,au,a1,a2,au,a1,a2) ! ! recover tendencies of heat and moisture ! do k = 1,km do i = 1,im ttend = (a1(i,k)-t1(i,k)) * rdt qtend = (a2(i,k)-q1(i,k,1))*rdt tau(i,k) = tau(i,k)+ttend rtg(i,k,1) = rtg(i,k,1)+qtend dtsfc(i) = dtsfc(i)+cont*del(i,k)*ttend dqsfc(i) = dqsfc(i)+conq*del(i,k)*qtend enddo enddo if(ntrac >= 2) then do kk = 2, ntrac is = (kk-1) * km do k = 1, km do i = 1, im qtend = (a2(i,k+is)-q1(i,k,kk))*rdt rtg(i,k,kk) = rtg(i,k,kk)+qtend enddo enddo enddo endif ! ! compute tke dissipation rate ! if(dspheat) then ! do k = 1,km1 do i = 1,im diss(i,k) = dku(i,k)*shr2(i,k)-g*ti(i,k)*dkt(i,k)*bf(i,k) ! diss(i,k) = dku(i,k)*shr2(i,k) enddo enddo ! ! add dissipative heating at the first model layer ! do i = 1,im tem = govrth(i)*sflux(i) tem1 = tem + stress(i)*spd1(i)/zl(i,1) tem2 = 0.5 * (tem1+diss(i,1)) tem2 = max(tem2, 0.) ttend = tem2 / cp tau(i,1) = tau(i,1)+0.5*ttend enddo ! ! add dissipative heating above the first model layer ! do k = 2,km1 do i = 1,im tem = 0.5 * (diss(i,k-1)+diss(i,k)) tem = max(tem, 0.) ttend = tem / cp tau(i,k) = tau(i,k) + 0.5*ttend enddo enddo ! endif ! ! compute tridiagonal matrix elements for momentum ! do i=1,im ad(i,1) = 1.0 + beta(i) * stress(i) / spd1(i) a1(i,1) = u1(i,1) a2(i,1) = v1(i,1) enddo ! do k = 1,km1 do i=1,im dtodsd = dt2/del(i,k) dtodsu = dt2/del(i,k+1) dsig = prsl(i,k)-prsl(i,k+1) rdz = rdzt(i,k) tem1 = dsig*dku(i,k)*rdz dsdz2 = tem1 * rdz au(i,k) = -dtodsd*dsdz2 al(i,k) = -dtodsu*dsdz2 ! if(pcnvflg(i) .and. k < kpbl(i)) then tem2 = dsig * rdz ptem = 0.5 * tem2 * xmf(i,k) ptem1 = dtodsd * ptem ptem2 = dtodsu * ptem ad(i,k) = ad(i,k)-au(i,k)-ptem1 ad(i,k+1) = 1.-al(i,k)+ptem2 au(i,k) = au(i,k)-ptem1 al(i,k) = al(i,k)+ptem2 ptem = ucko(i,k) + ucko(i,k+1) a1(i,k) = a1(i,k) - ptem1 * ptem a1(i,k+1) = u1(i,k+1) + ptem2 * ptem ptem = vcko(i,k) + vcko(i,k+1) a2(i,k) = a2(i,k) - ptem1 * ptem a2(i,k+1) = v1(i,k+1) + ptem2 * ptem else ad(i,k) = ad(i,k)-au(i,k) ad(i,k+1) = 1.-al(i,k) a1(i,k+1) = u1(i,k+1) a2(i,k+1) = v1(i,k+1) endif ! enddo enddo ! ! solve tridiagonal problem for momentum ! call tridi2(im,km,al,ad,au,a1,a2,au,a1,a2) ! ! recover tendencies of momentum ! do k = 1,km do i = 1,im utend = (a1(i,k)-u1(i,k))*rdt vtend = (a2(i,k)-v1(i,k))*rdt du(i,k) = du(i,k) + utend dv(i,k) = dv(i,k) + vtend dusfc(i) = dusfc(i) + conw*del(i,k)*utend dvsfc(i) = dvsfc(i) + conw*del(i,k)*vtend ! ! for dissipative heating for ecmwf model ! ! tem1 = 0.5*(a1(i,k)+u1(i,k)) ! tem2 = 0.5*(a2(i,k)+v1(i,k)) ! diss(i,k) = -(tem1*utend+tem2*vtend) ! diss(i,k) = max(diss(i,k),0.) ! ttend = diss(i,k) / cp ! tau(i,k) = tau(i,k) + ttend ! enddo enddo ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! do i = 1, im hpbl(i) = hpblx(i) kpbl(i) = kpblx(i) enddo ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! return end c----------------------------------------------------------------------- subroutine tridi2(l,n,cl,cm,cu,r1,r2,au,a1,a2) cc use machine , only : kind_phys implicit none integer k,n,l,i real(kind=kind_phys) fk cc real(kind=kind_phys) cl(l,2:n),cm(l,n),cu(l,n-1),r1(l,n),r2(l,n), & au(l,n-1),a1(l,n),a2(l,n) c----------------------------------------------------------------------- do i=1,l fk = 1./cm(i,1) au(i,1) = fk*cu(i,1) a1(i,1) = fk*r1(i,1) a2(i,1) = fk*r2(i,1) enddo do k=2,n-1 do i=1,l fk = 1./(cm(i,k)-cl(i,k)*au(i,k-1)) au(i,k) = fk*cu(i,k) a1(i,k) = fk*(r1(i,k)-cl(i,k)*a1(i,k-1)) a2(i,k) = fk*(r2(i,k)-cl(i,k)*a2(i,k-1)) enddo enddo do i=1,l fk = 1./(cm(i,n)-cl(i,n)*au(i,n-1)) a1(i,n) = fk*(r1(i,n)-cl(i,n)*a1(i,n-1)) a2(i,n) = fk*(r2(i,n)-cl(i,n)*a2(i,n-1)) enddo do k=n-1,1,-1 do i=1,l a1(i,k) = a1(i,k)-au(i,k)*a1(i,k+1) a2(i,k) = a2(i,k)-au(i,k)*a2(i,k+1) enddo enddo c----------------------------------------------------------------------- return end c----------------------------------------------------------------------- subroutine tridin(l,n,nt,cl,cm,cu,r1,r2,au,a1,a2) cc use machine , only : kind_phys implicit none integer is,k,kk,n,nt,l,i real(kind=kind_phys) fk(l) cc real(kind=kind_phys) cl(l,2:n), cm(l,n), cu(l,n-1), & r1(l,n), r2(l,n*nt), & au(l,n-1), a1(l,n), a2(l,n*nt), & fkk(l,2:n-1) c----------------------------------------------------------------------- do i=1,l fk(i) = 1./cm(i,1) au(i,1) = fk(i)*cu(i,1) a1(i,1) = fk(i)*r1(i,1) enddo do k = 1, nt is = (k-1) * n do i = 1, l a2(i,1+is) = fk(i) * r2(i,1+is) enddo enddo do k=2,n-1 do i=1,l fkk(i,k) = 1./(cm(i,k)-cl(i,k)*au(i,k-1)) au(i,k) = fkk(i,k)*cu(i,k) a1(i,k) = fkk(i,k)*(r1(i,k)-cl(i,k)*a1(i,k-1)) enddo enddo do kk = 1, nt is = (kk-1) * n do k=2,n-1 do i=1,l a2(i,k+is) = fkk(i,k)*(r2(i,k+is)-cl(i,k)*a2(i,k+is-1)) enddo enddo enddo do i=1,l fk(i) = 1./(cm(i,n)-cl(i,n)*au(i,n-1)) a1(i,n) = fk(i)*(r1(i,n)-cl(i,n)*a1(i,n-1)) enddo do k = 1, nt is = (k-1) * n do i = 1, l a2(i,n+is) = fk(i)*(r2(i,n+is)-cl(i,n)*a2(i,n+is-1)) enddo enddo do k=n-1,1,-1 do i=1,l a1(i,k) = a1(i,k) - au(i,k)*a1(i,k+1) enddo enddo do kk = 1, nt is = (kk-1) * n do k=n-1,1,-1 do i=1,l a2(i,k+is) = a2(i,k+is) - au(i,k)*a2(i,k+is+1) enddo enddo enddo c----------------------------------------------------------------------- return end