subroutine cmf3kb ( lot, ido, l1, na, cc, im1, in1, ch, im2, in2, wa )

!*****************************************************************************80
!
!! CMF3KB is an FFTPACK5 auxiliary routine.
!
!  License:
!
!    Licensed under the GNU General Public License (GPL).
!    Copyright (C) 1995-2004, Scientific Computing Division,
!    University Corporation for Atmospheric Research
!
!  Modified:
!
!    27 March 2009
!
!  Author:
!
!    Paul Swarztrauber
!    Richard Valent
!
!  Reference:
!
!    Paul Swarztrauber,
!    Vectorizing the Fast Fourier Transforms,
!    in Parallel Computations,
!    edited by G. Rodrigue,
!    Academic Press, 1982.
!
!    Paul Swarztrauber,
!    Fast Fourier Transform Algorithms for Vector Computers,
!    Parallel Computing, pages 45-63, 1984.
!
!  Parameters:
!
  implicit none

  integer ( kind = 4 ) ido
  integer ( kind = 4 ) in1
  integer ( kind = 4 ) in2
  integer ( kind = 4 ) l1

  real ( kind = 4 ) cc(2,in1,l1,ido,3)
  real ( kind = 4 ) ch(2,in2,l1,3,ido)
  real ( kind = 4 ) ci2
  real ( kind = 4 ) ci3
  real ( kind = 4 ) cr2
  real ( kind = 4 ) cr3
  real ( kind = 4 ) di2
  real ( kind = 4 ) di3
  real ( kind = 4 ) dr2
  real ( kind = 4 ) dr3
  integer ( kind = 4 ) i
  integer ( kind = 4 ) im1
  integer ( kind = 4 ) im2
  integer ( kind = 4 ) k
  integer ( kind = 4 ) lot
  integer ( kind = 4 ) m1
  integer ( kind = 4 ) m1d
  integer ( kind = 4 ) m2
  integer ( kind = 4 ) m2s
  integer ( kind = 4 ) na
  real ( kind = 4 ), parameter :: taui =  0.866025403784439E+00
  real ( kind = 4 ), parameter :: taur = -0.5E+00
  real ( kind = 4 ) ti2
  real ( kind = 4 ) tr2
  real ( kind = 4 ) wa(ido,2,2)

  m1d = ( lot - 1 ) * im1 + 1
  m2s = 1 - im2

  if ( 1 < ido .or. na == 1 ) then
    do k = 1, l1
      m2 = m2s
      do m1 = 1, m1d, im1

        m2 = m2 + im2

        tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,3)
        cr2 = cc(1,m1,k,1,1)+taur*tr2
        ch(1,m2,k,1,1) = cc(1,m1,k,1,1)+tr2

        ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,3)
        ci2 = cc(2,m1,k,1,1)+taur*ti2
        ch(2,m2,k,1,1) = cc(2,m1,k,1,1)+ti2

        cr3 = taui * (cc(1,m1,k,1,2)-cc(1,m1,k,1,3))
        ci3 = taui * (cc(2,m1,k,1,2)-cc(2,m1,k,1,3))

        ch(1,m2,k,2,1) = cr2-ci3
        ch(1,m2,k,3,1) = cr2+ci3
        ch(2,m2,k,2,1) = ci2+cr3
        ch(2,m2,k,3,1) = ci2-cr3

      end do
    end do

    do i = 2, ido
      do k = 1, l1
        m2 = m2s
        do m1 = 1, m1d, im1
          m2 = m2 + im2
          tr2 = cc(1,m1,k,i,2)+cc(1,m1,k,i,3)
          cr2 = cc(1,m1,k,i,1)+taur*tr2
          ch(1,m2,k,1,i) = cc(1,m1,k,i,1)+tr2
          ti2 = cc(2,m1,k,i,2)+cc(2,m1,k,i,3)
          ci2 = cc(2,m1,k,i,1)+taur*ti2
          ch(2,m2,k,1,i) = cc(2,m1,k,i,1)+ti2
          cr3 = taui*(cc(1,m1,k,i,2)-cc(1,m1,k,i,3))
          ci3 = taui*(cc(2,m1,k,i,2)-cc(2,m1,k,i,3))
          dr2 = cr2-ci3
          dr3 = cr2+ci3
          di2 = ci2+cr3
          di3 = ci2-cr3
          ch(2,m2,k,2,i) = wa(i,1,1)*di2+wa(i,1,2)*dr2
          ch(1,m2,k,2,i) = wa(i,1,1)*dr2-wa(i,1,2)*di2
          ch(2,m2,k,3,i) = wa(i,2,1)*di3+wa(i,2,2)*dr3
          ch(1,m2,k,3,i) = wa(i,2,1)*dr3-wa(i,2,2)*di3
        end do
      end do
    end do

  else

    do k = 1, l1
      do m1 = 1, m1d, im1
        tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,3)
        cr2 = cc(1,m1,k,1,1)+taur*tr2
        cc(1,m1,k,1,1) = cc(1,m1,k,1,1)+tr2
        ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,3)
        ci2 = cc(2,m1,k,1,1)+taur*ti2
        cc(2,m1,k,1,1) = cc(2,m1,k,1,1)+ti2
        cr3 = taui*(cc(1,m1,k,1,2)-cc(1,m1,k,1,3))
        ci3 = taui*(cc(2,m1,k,1,2)-cc(2,m1,k,1,3))
        cc(1,m1,k,1,2) = cr2-ci3
        cc(1,m1,k,1,3) = cr2+ci3
        cc(2,m1,k,1,2) = ci2+cr3
        cc(2,m1,k,1,3) = ci2-cr3
      end do
    end do

  end if

  return
end