!> \defgroup SASHAL Mass-Flux Shallow Convection !! @{ !! \brief The Mass-Flux shallow convection scheme parameterizes the effect of shallow convection on the environment much like the \ref SAS scheme with a few key modifications. Perhaps most importantly, no quasi-equilibrium assumption is necessary since the shallow cloud base mass flux is parameterized from the surface buoyancy flux. Further, there are no convective downdrafts, the entrainment rate is greater than for deep convection, and the shallow convection is limited to not extend over the level where \f$p=0.7p_{sfc}\f$. !! !! This scheme was designed to replace the previous eddy-diffusivity approach to shallow convection with a mass-flux based approach as it is used for deep convection. Differences between the shallow and deep SAS schemes are presented in Han and Pan (2011) \cite han_and_pan_2011 . Like the deep scheme, it uses the working concepts put forth in Arakawa and Schubert (1974) \cite arakawa_and_schubert_1974 but includes modifications and simplifications from Grell (1993) \cite grell_1993 such as only one cloud type (the deepest possible, up to \f$p=0.7p_{sfc}\f$), rather than a spectrum based on cloud top heights or assumed entrainment rates, although it assumes no convective downdrafts. It contains many modifications associated with deep scheme as discussed in Han and Pan (2011) \cite han_and_pan_2011 , including the calculation of cloud top, a greater CFL-criterion-based maximum cloud base mass flux, and the inclusion of convective overshooting. !! !! \section diagram Calling Hierarchy Diagram !! \image html Shallow_SAS_Flowchart.png "Diagram depicting how the SAS shallow convection scheme is called from the GSM physics time loop" height=2cm !! \section intraphysics Intraphysics Communication !! This space is reserved for a description of how this scheme uses information from other scheme types and/or how information calculated in this scheme is used in other scheme types. !> \file shalcnv.F !! Contains the entire SAS shallow convection scheme. module shalcnv implicit none private public :: shalcnv_init, shalcnv_run contains !! !! \section arg_table_shalcnv_init Argument Table !! \htmlinclude shalcnv_init.html !! subroutine shalcnv_init(do_shoc,shal_cnv,imfshalcnv, & & imfshalcnv_sas,errmsg,errflg) ! logical, intent(in) :: do_shoc,shal_cnv integer, intent(in) :: imfshalcnv, imfshalcnv_sas character(len=*), intent(out) :: errmsg integer, intent(out) :: errflg ! ! initialize CCPP error handling variables errmsg = '' errflg = 0 ! if (do_shoc .or. .not.shal_cnv .or. & & imfshalcnv/=imfshalcnv_sas) then write(errmsg,'(*(a))') 'Logic error: shalcnv incompatible with',& & ' control flags do_shoc, shal_cnv or imfshalcnv' errflg = 1 return endif ! end subroutine shalcnv_init !> \brief This subroutine contains the entirety of the SAS shallow convection scheme. !! !! This routine follows the \ref SAS scheme quite closely, although it can be interpreted as only having the "static" and "feedback" control portions, since the "dynamic" control is not necessary to find the cloud base mass flux. The algorithm is simplified from SAS deep convection by excluding convective downdrafts and being confined to operate below \f$p=0.7p_{sfc}\f$. Also, entrainment is both simpler and stronger in magnitude compared to the deep scheme. !! !! \param[in] im horizontal dimension !! \param[in] km vertical layer dimension !! \param[in] jcap number of spectral wave trancation !! \param[in] delt physics time step in seconds !! \param[in] delp pressure difference between level k and k+1 (Pa) !! \param[in] prslp mean layer presure (Pa) !! \param[in] psp surface pressure (Pa) !! \param[in] phil layer geopotential (\f$m^2/s^2\f$) !! \param[inout] qlc cloud water (kg/kg) !! \param[inout] qli ice (kg/kg) !! \param[inout] q1 updated tracers (kg/kg) !! \param[inout] t1 updated temperature (K) !! \param[inout] u1 updated zonal wind (\f$m s^{-1}\f$) !! \param[inout] v1 updated meridional wind (\f$m s^{-1}\f$) !! \param[out] rn convective rain (m) !! \param[out] kbot index for cloud base !! \param[out] ktop index for cloud top !! \param[out] kcnv flag to denote deep convection (0=no, 1=yes) !! \param[in] islimsk sea/land/ice mask (=0/1/2) !! \param[in] dot layer mean vertical velocity (Pa/s) !! \param[in] ncloud number of cloud species !! \param[in] hpbl PBL height (m) !! \param[in] heat surface sensible heat flux (K m/s) !! \param[in] evap surface latent heat flux (kg/kg m/s) !! \param[out] ud_mf updraft mass flux multiplied by time step (\f$kg/m^2\f$) !! \param[out] dt_mf ud_mf at cloud top (\f$kg/m^2\f$) !! \param[out] cnvw convective cloud water (kg/kg) !! \param[out] cnvc convective cloud cover (unitless) !! !! \section general General Algorithm !! -# Compute preliminary quantities needed for the static and feedback control portions of the algorithm. !! -# Perform calculations related to the updraft of the entraining/detraining cloud model ("static control"). !! -# Calculate the tendencies of the state variables (per unit cloud base mass flux) and the cloud base mass flux. !! -# For the "feedback control", calculate updated values of the state variables by multiplying the cloud base mass flux and the tendencies calculated per unit cloud base mass flux from the static control. !! \section detailed Detailed Algorithm !! !! \section arg_table_shalcnv_run Argument Table !! \htmlinclude shalcnv_run.html !! !! @{ subroutine shalcnv_run( & & grav,cp,hvap,rv,fv,t0c,rd,cvap,cliq,eps,epsm1, & & im,km,jcap,delt,delp,prslp,psp,phil,qlc,qli, & & q1,t1,u1,v1,rn,kbot,ktop,kcnv,islimsk, & & dot,ncloud,hpbl,heat,evap,ud_mf,dt_mf,cnvw,cnvc, & & clam,c0,c1,pgcon,errmsg,errflg) ! use machine , only : kind_phys use funcphys , only : fpvs ! use physcons, grav => con_g, cp => con_cp, hvap => con_hvap & ! &, rv => con_rv, fv => con_fvirt, t0c => con_t0c & ! &, rd => con_rd, cvap => con_cvap, cliq => con_cliq & ! &, eps => con_eps, epsm1 => con_epsm1 implicit none ! ! Interface variables ! real(kind=kind_phys), intent(in) :: grav, cp, hvap, rv, fv, t0c, & & rd, cvap, cliq, eps, epsm1 integer, intent(in) :: im, km, jcap, ncloud integer, intent(inout) :: kbot(:), ktop(:), kcnv(:) integer, intent(in) :: islimsk(:) real(kind=kind_phys), intent(in) :: delt, clam, c0, c1, pgcon real(kind=kind_phys), intent(in) :: psp(:), delp(:,:), & & prslp(:,:), dot(:,:), & & phil(:,:), hpbl(:), & & heat(:), evap(:) real(kind=kind_phys), intent(inout) :: & & qlc(:,:), qli(:,:), & & q1(:,:), t1(:,:), & & u1(:,:), v1(:,:), & & cnvw(:,:), cnvc(:,:) real(kind=kind_phys), intent(out) :: rn(:), ud_mf(:,:), dt_mf(:,:) character(len=*), intent(out) :: errmsg integer, intent(out) :: errflg ! ! Local variables ! integer i,j,indx, k, kk, km1 integer kpbl(im) ! real(kind=kind_phys) dellat, delta, & desdt, & dp, & dq, dqsdp, dqsdt, dt, & dt2, dtmax, dtmin, dv1h, & dv1q, dv2h, dv2q, dv1u, & dv1v, dv2u, dv2v, dv3q, & dv3h, dv3u, dv3v, & dz, dz1, e1, & el2orc, elocp, aafac, & es, etah, h1, dthk, & evef, evfact, evfactl, fact1, & fact2, factor, fjcap, & g, gamma, pprime, betaw, & qlk, qrch, qs, & rfact, shear, tem1, & val, val1, & val2, w1, w1l, w1s, & w2, w2l, w2s, w3, & w3l, w3s, w4, w4l, & w4s, tem, ptem, ptem1 ! integer kb(im), kbcon(im), kbcon1(im), & ktcon(im), ktcon1(im), & kbm(im), kmax(im) ! real(kind=kind_phys) aa1(im), & delhbar(im), delq(im), delq2(im), & delqbar(im), delqev(im), deltbar(im), & deltv(im), edt(im), & wstar(im), sflx(im), & pdot(im), po(im,km), & qcond(im), qevap(im), hmax(im), & rntot(im), vshear(im), & xlamud(im), xmb(im), xmbmax(im), & delubar(im), delvbar(im), & ps(im), del(im,km), prsl(im,km) ! real(kind=kind_phys) cincr, cincrmax, cincrmin ! ! physical parameters ! parameter(g=grav) ! parameter(elocp=hvap/cp, ! & el2orc=hvap*hvap/(rv*cp)) ! parameter(c0=.002,c1=5.e-4,delta=fv) ! parameter(delta=fv) ! parameter(fact1=(cvap-cliq)/rv,fact2=hvap/rv-fact1*t0c) parameter(cincrmax=180.,cincrmin=120.,dthk=25.) parameter(h1=0.33333333) ! local variables and arrays real(kind=kind_phys) pfld(im,km), to(im,km), qo(im,km), & uo(im,km), vo(im,km), qeso(im,km) ! cloud water ! real(kind=kind_phys) qlko_ktcon(im), dellal(im,km), tvo(im,km), real(kind=kind_phys) qlko_ktcon(im), dellal(im,km), & dbyo(im,km), zo(im,km), xlamue(im,km), & heo(im,km), heso(im,km), & dellah(im,km), dellaq(im,km), & dellau(im,km), dellav(im,km), hcko(im,km), & ucko(im,km), vcko(im,km), qcko(im,km), & qrcko(im,km), eta(im,km), & zi(im,km), pwo(im,km), & tx1(im), cnvwt(im,km) ! logical totflg, cnvflg(im), flg(im) ! real(kind=kind_phys) tf, tcr, tcrf parameter (tf=233.16, tcr=263.16, tcrf=1.0/(tcr-tf)) ! !----------------------------------------------------------------------- ! !************************************************************************ ! replace (derived) constants above with regular variables g = grav elocp = hvap/cp el2orc = hvap*hvap/(rv*cp) delta = fv fact1 = (cvap-cliq)/rv fact2 = hvap/rv-fact1*t0c !************************************************************************ ! initialize CCPP error handling variables errmsg = '' errflg = 0 !************************************************************************ ! convert input pa terms to cb terms -- moorthi !> ## Compute preliminary quantities needed for the static and feedback control portions of the algorithm. !> - Convert input pressure terms to centibar units. ps = psp * 0.001 prsl = prslp * 0.001 del = delp * 0.001 !************************************************************************ ! km1 = km - 1 ! ! compute surface buoyancy flux ! !> - Compute the surface buoyancy flux according to !! \f[ !! \overline{w'\theta_v'}=\overline{w'\theta'}+\left(\frac{R_v}{R_d}-1\right)T_0\overline{w'q'} !! \f] !! where \f$\overline{w'\theta'}\f$ is the surface sensible heat flux, \f$\overline{w'q'}\f$ is the surface latent heat flux, \f$R_v\f$ is the gas constant for water vapor, \f$R_d\f$ is the gas constant for dry air, and \f$T_0\f$ is a reference temperature. do i=1,im sflx(i) = heat(i)+fv*t1(i,1)*evap(i) enddo ! ! initialize arrays ! !> - Initialize column-integrated and other single-value-per-column variable arrays. do i=1,im cnvflg(i) = .true. if(kcnv(i).eq.1) cnvflg(i) = .false. if(sflx(i).le.0.) cnvflg(i) = .false. if(cnvflg(i)) then kbot(i)=km+1 ktop(i)=0 endif rn(i)=0. kbcon(i)=km ktcon(i)=1 kb(i)=km pdot(i) = 0. qlko_ktcon(i) = 0. edt(i) = 0. aa1(i) = 0. vshear(i) = 0. enddo !> - Initialize updraft and detrainment mass fluxes to zero. ! hchuang code change do k = 1, km do i = 1, im ud_mf(i,k) = 0. dt_mf(i,k) = 0. enddo enddo !! !> - Return to the calling routine if deep convection is present or the surface buoyancy flux is negative. totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! ! !> - Define tunable parameters. dt2 = delt val = 1200. dtmin = max(dt2, val ) val = 3600. dtmax = max(dt2, val ) ! model tunable parameters are all here ! clam = .3 aafac = .1 betaw = .03 ! evef = 0.07 evfact = 0.3 evfactl = 0.3 ! ! pgcon = 0.7 ! gregory et al. (1997, qjrms) ! pgcon = 0.55 ! zhang & wu (2003,jas) fjcap = (float(jcap) / 126.) ** 2 val = 1. fjcap = max(fjcap,val) w1l = -8.e-3 w2l = -4.e-2 w3l = -5.e-3 w4l = -5.e-4 w1s = -2.e-4 w2s = -2.e-3 w3s = -1.e-3 w4s = -2.e-5 ! ! define top layer for search of the downdraft originating layer ! and the maximum thetae for updraft ! !> - Determine maximum indices for the parcel starting point (kbm) and cloud top (kmax). do i=1,im kbm(i) = km kmax(i) = km tx1(i) = 1.0 / ps(i) enddo ! do k = 1, km do i=1,im if (prsl(i,k)*tx1(i) .gt. 0.70) kbm(i) = k + 1 if (prsl(i,k)*tx1(i) .gt. 0.60) kmax(i) = k + 1 enddo enddo do i=1,im kbm(i) = min(kbm(i),kmax(i)) enddo ! ! hydrostatic height assume zero terr and compute ! updraft entrainment rate as an inverse function of height ! !> - Calculate hydrostatic height at layer centers assuming a flat surface (no terrain) from the geopotential. do k = 1, km do i=1,im zo(i,k) = phil(i,k) / g enddo enddo !> - Calculate interface height and the entrainment rate as an inverse function of height. do k = 1, km1 do i=1,im zi(i,k) = 0.5*(zo(i,k)+zo(i,k+1)) xlamue(i,k) = clam / zi(i,k) enddo enddo do i=1,im xlamue(i,km) = xlamue(i,km1) enddo ! ! pbl height ! !> - Find the index for the PBL top using the PBL height; enforce that it is lower than the maximum parcel starting level. do i=1,im flg(i) = cnvflg(i) kpbl(i)= 1 enddo do k = 2, km1 do i=1,im if (flg(i).and.zo(i,k).le.hpbl(i)) then kpbl(i) = k else flg(i) = .false. endif enddo enddo do i=1,im kpbl(i)= min(kpbl(i),kbm(i)) enddo ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! convert surface pressure to mb from cb ! !> - Convert prsl from centibar to millibar, set normalized mass flux to 1, cloud properties to 0, and save model state variables (after advection/turbulence). do k = 1, km do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then pfld(i,k) = prsl(i,k) * 10.0 eta(i,k) = 1. hcko(i,k) = 0. qcko(i,k) = 0. qrcko(i,k)= 0. ucko(i,k) = 0. vcko(i,k) = 0. dbyo(i,k) = 0. pwo(i,k) = 0. dellal(i,k) = 0. to(i,k) = t1(i,k) qo(i,k) = q1(i,k) uo(i,k) = u1(i,k) vo(i,k) = v1(i,k) ! uo(i,k) = u1(i,k) * rcs(i) ! vo(i,k) = v1(i,k) * rcs(i) cnvwt(i,k) = 0. endif enddo enddo ! ! column variables ! p is pressure of the layer (mb) ! t is temperature at t-dt (k)..tn ! q is mixing ratio at t-dt (kg/kg)..qn ! to is temperature at t+dt (k)... this is after advection and turbulan ! qo is mixing ratio at t+dt (kg/kg)..q1 ! !> - Calculate saturation mixing ratio and enforce minimum moisture values. do k = 1, km do i=1,im if (cnvflg(i) .and. k .le. kmax(i)) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (pfld(i,k) + epsm1*qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) ! qo(i,k) = min(qo(i,k),qeso(i,k)) ! tvo(i,k) = to(i,k) + delta * to(i,k) * qo(i,k) endif enddo enddo ! ! compute moist static energy ! !> - Calculate moist static energy (heo) and saturation moist static energy (heso). do k = 1, km do i=1,im if (cnvflg(i) .and. k .le. kmax(i)) then ! tem = g * zo(i,k) + cp * to(i,k) tem = phil(i,k) + cp * to(i,k) heo(i,k) = tem + hvap * qo(i,k) heso(i,k) = tem + hvap * qeso(i,k) ! heo(i,k) = min(heo(i,k),heso(i,k)) endif enddo enddo ! ! determine level with largest moist static energy within pbl ! this is the level where updraft starts ! !> ## Perform calculations related to the updraft of the entraining/detraining cloud model ("static control"). !> - Search in the PBL for the level of maximum moist static energy to start the ascending parcel. do i=1,im if (cnvflg(i)) then hmax(i) = heo(i,1) kb(i) = 1 endif enddo do k = 2, km do i=1,im if (cnvflg(i).and.k.le.kpbl(i)) then if(heo(i,k).gt.hmax(i)) then kb(i) = k hmax(i) = heo(i,k) endif endif enddo enddo ! !> - Calculate the temperature, water vapor mixing ratio, and pressure at interface levels. do k = 1, km1 do i=1,im if (cnvflg(i) .and. k .le. kmax(i)-1) then dz = .5 * (zo(i,k+1) - zo(i,k)) dp = .5 * (pfld(i,k+1) - pfld(i,k)) es = 0.01 * fpvs(to(i,k+1)) ! fpvs is in pa pprime = pfld(i,k+1) + epsm1 * es qs = eps * es / pprime dqsdp = - qs / pprime desdt = es * (fact1 / to(i,k+1) + fact2 / (to(i,k+1)**2)) dqsdt = qs * pfld(i,k+1) * desdt / (es * pprime) gamma = el2orc * qeso(i,k+1) / (to(i,k+1)**2) dt = (g * dz + hvap * dqsdp * dp) / (cp * (1. + gamma)) dq = dqsdt * dt + dqsdp * dp to(i,k) = to(i,k+1) + dt qo(i,k) = qo(i,k+1) + dq po(i,k) = .5 * (pfld(i,k) + pfld(i,k+1)) endif enddo enddo ! !> - Recalculate saturation mixing ratio, moist static energy, saturation moist static energy, and horizontal momentum on interface levels. Enforce minimum mixing ratios. do k = 1, km1 do i=1,im if (cnvflg(i) .and. k .le. kmax(i)-1) then qeso(i,k) = 0.01 * fpvs(to(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (po(i,k) + epsm1*qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) ! qo(i,k) = min(qo(i,k),qeso(i,k)) heo(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & cp * to(i,k) + hvap * qo(i,k) heso(i,k) = .5 * g * (zo(i,k) + zo(i,k+1)) + & cp * to(i,k) + hvap * qeso(i,k) uo(i,k) = .5 * (uo(i,k) + uo(i,k+1)) vo(i,k) = .5 * (vo(i,k) + vo(i,k+1)) endif enddo enddo ! ! look for the level of free convection as cloud base !!> - Search below the index "kbm" for the level of free convection (LFC) where the condition \f$h_b > h^*\f$ is first met, where \f$h_b, h^*\f$ are the state moist static energy at the parcel's starting level and saturation moist static energy, respectively. Set "kbcon" to the index of the LFC. do i=1,im flg(i) = cnvflg(i) if(flg(i)) kbcon(i) = kmax(i) enddo do k = 2, km1 do i=1,im if (flg(i).and.k.lt.kbm(i)) then if(k.gt.kb(i).and.heo(i,kb(i)).gt.heso(i,k)) then kbcon(i) = k flg(i) = .false. endif endif enddo enddo ! !> - If no LFC, return to the calling routine without modifying state variables. do i=1,im if(cnvflg(i)) then if(kbcon(i).eq.kmax(i)) cnvflg(i) = .false. endif enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! ! ! determine critical convective inhibition ! as a function of vertical velocity at cloud base. ! !> - Determine the vertical pressure velocity at the LFC. After Han and Pan (2011) \cite han_and_pan_2011 , determine the maximum pressure thickness between a parcel's starting level and the LFC. If a parcel doesn't reach the LFC within the critical thickness, then the convective inhibition is deemed too great for convection to be triggered, and the subroutine returns to the calling routine without modifying the state variables. do i=1,im if(cnvflg(i)) then ! pdot(i) = 10.* dot(i,kbcon(i)) pdot(i) = 0.01 * dot(i,kbcon(i)) ! now dot is in pa/s endif enddo do i=1,im if(cnvflg(i)) then if(islimsk(i) == 1) then w1 = w1l w2 = w2l w3 = w3l w4 = w4l else w1 = w1s w2 = w2s w3 = w3s w4 = w4s endif if(pdot(i).le.w4) then ptem = (pdot(i) - w4) / (w3 - w4) elseif(pdot(i).ge.-w4) then ptem = - (pdot(i) + w4) / (w4 - w3) else ptem = 0. endif val1 = -1. ptem = max(ptem,val1) val2 = 1. ptem = min(ptem,val2) ptem = 1. - ptem ptem1= .5*(cincrmax-cincrmin) cincr = cincrmax - ptem * ptem1 tem1 = pfld(i,kb(i)) - pfld(i,kbcon(i)) if(tem1.gt.cincr) then cnvflg(i) = .false. endif endif enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! ! ! assume the detrainment rate for the updrafts to be same as ! the entrainment rate at cloud base ! !> - The updraft detrainment rate is set constant and equal to the entrainment rate at cloud base. do i = 1, im if(cnvflg(i)) then xlamud(i) = xlamue(i,kbcon(i)) endif enddo ! ! determine updraft mass flux for the subcloud layers ! !> - Calculate the normalized mass flux for subcloud and in-cloud layers according to Pan and Wu (1995) \cite pan_and_wu_1995 equation 1: !! \f[ !! \frac{1}{\eta}\frac{\partial \eta}{\partial z} = \lambda_e - \lambda_d !! \f] !! where \f$\eta\f$ is the normalized mass flux, \f$\lambda_e\f$ is the entrainment rate and \f$\lambda_d\f$ is the detrainment rate. The normalized mass flux increases upward below the cloud base and decreases upward above. do k = km1, 1, -1 do i = 1, im if (cnvflg(i)) then if(k.lt.kbcon(i).and.k.ge.kb(i)) then dz = zi(i,k+1) - zi(i,k) ptem = 0.5*(xlamue(i,k)+xlamue(i,k+1))-xlamud(i) eta(i,k) = eta(i,k+1) / (1. + ptem * dz) endif endif enddo enddo ! ! compute mass flux above cloud base ! do k = 2, km1 do i = 1, im if(cnvflg(i))then if(k.gt.kbcon(i).and.k.lt.kmax(i)) then dz = zi(i,k) - zi(i,k-1) ptem = 0.5*(xlamue(i,k)+xlamue(i,k-1))-xlamud(i) eta(i,k) = eta(i,k-1) * (1 + ptem * dz) endif endif enddo enddo ! ! compute updraft cloud property ! !> - Set initial cloud properties equal to the state variables at cloud base. do i = 1, im if(cnvflg(i)) then indx = kb(i) hcko(i,indx) = heo(i,indx) ucko(i,indx) = uo(i,indx) vcko(i,indx) = vo(i,indx) endif enddo ! !> - Calculate the cloud properties as a parcel ascends, modified by entrainment and detrainment. Discretization follows Appendix B of Grell (1993) \cite grell_1993 . Following Han and Pan (2006) \cite han_and_pan_2006, the convective momentum transport is reduced by the convection-induced pressure gradient force by the constant "pgcon", currently set to 0.55 after Zhang and Wu (2003) \cite zhang_and_wu_2003 . do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.kmax(i)) then dz = zi(i,k) - zi(i,k-1) tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 ptem = 0.5 * tem + pgcon ptem1= 0.5 * tem - pgcon hcko(i,k) = ((1.-tem1)*hcko(i,k-1)+tem*0.5* & (heo(i,k)+heo(i,k-1)))/factor ucko(i,k) = ((1.-tem1)*ucko(i,k-1)+ptem*uo(i,k) & +ptem1*uo(i,k-1))/factor vcko(i,k) = ((1.-tem1)*vcko(i,k-1)+ptem*vo(i,k) & +ptem1*vo(i,k-1))/factor dbyo(i,k) = hcko(i,k) - heso(i,k) endif endif enddo enddo ! ! taking account into convection inhibition due to existence of ! dry layers below cloud base ! !> - With entrainment, recalculate the LFC as the first level where buoyancy is positive. The difference in pressure levels between LFCs calculated with/without entrainment must be less than a threshold (currently 25 hPa). Otherwise, convection is inhibited and the scheme returns to the calling routine without modifying the state variables. This is the subcloud dryness trigger modification discussed in Han and Pan (2011) \cite han_and_pan_2011. do i=1,im flg(i) = cnvflg(i) kbcon1(i) = kmax(i) enddo do k = 2, km1 do i=1,im if (flg(i).and.k.lt.kbm(i)) then if(k.ge.kbcon(i).and.dbyo(i,k).gt.0.) then kbcon1(i) = k flg(i) = .false. endif endif enddo enddo do i=1,im if(cnvflg(i)) then if(kbcon1(i).eq.kmax(i)) cnvflg(i) = .false. endif enddo do i=1,im if(cnvflg(i)) then tem = pfld(i,kbcon(i)) - pfld(i,kbcon1(i)) if(tem.gt.dthk) then cnvflg(i) = .false. endif endif enddo !! totflg = .true. do i = 1, im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! ! ! determine first guess cloud top as the level of zero buoyancy ! limited to the level of sigma=0.7 ! !> - Calculate the cloud top as the first level where parcel buoyancy becomes negative; the maximum possible value is at \f$p=0.7p_{sfc}\f$. do i = 1, im flg(i) = cnvflg(i) if(flg(i)) ktcon(i) = kbm(i) enddo do k = 2, km1 do i=1,im if (flg(i).and.k .lt. kbm(i)) then if(k.gt.kbcon1(i).and.dbyo(i,k).lt.0.) then ktcon(i) = k flg(i) = .false. endif endif enddo enddo ! ! turn off shallow convection if cloud top is less than pbl top ! ! do i=1,im ! if(cnvflg(i)) then ! kk = kpbl(i)+1 ! if(ktcon(i).le.kk) cnvflg(i) = .false. ! endif ! enddo !! ! totflg = .true. ! do i = 1, im ! totflg = totflg .and. (.not. cnvflg(i)) ! enddo ! if(totflg) return !! ! ! specify upper limit of mass flux at cloud base ! !> - Calculate the maximum value of the cloud base mass flux using the CFL-criterion-based formula of Han and Pan (2011) \cite han_and_pan_2011, equation 7. do i = 1, im if(cnvflg(i)) then ! xmbmax(i) = .1 ! k = kbcon(i) dp = 1000. * del(i,k) xmbmax(i) = dp / (g * dt2) ! ! tem = dp / (g * dt2) ! xmbmax(i) = min(tem, xmbmax(i)) endif enddo ! ! compute cloud moisture property and precipitation ! !> - Initialize the cloud moisture at cloud base and set the cloud work function to zero. do i = 1, im if (cnvflg(i)) then aa1(i) = 0. qcko(i,kb(i)) = qo(i,kb(i)) qrcko(i,kb(i)) = qo(i,kb(i)) endif enddo !> - Calculate the moisture content of the entraining/detraining parcel (qcko) and the value it would have if just saturated (qrch), according to equation A.14 in Grell (1993) \cite grell_1993 . Their difference is the amount of convective cloud water (qlk = rain + condensate). Determine the portion of convective cloud water that remains suspended and the portion that is converted into convective precipitation (pwo). Calculate and save the negative cloud work function (aa1) due to water loading. Above the level of minimum moist static energy, some of the cloud water is detrained into the grid-scale cloud water from every cloud layer with a rate of 0.0005 \f$m^{-1}\f$ (dellal). do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dz = zi(i,k) - zi(i,k-1) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) !j tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & (qo(i,k)+qo(i,k-1)))/factor qrcko(i,k) = qcko(i,k) !j dq = eta(i,k) * (qcko(i,k) - qrch) ! ! rhbar(i) = rhbar(i) + qo(i,k) / qeso(i,k) ! ! below lfc check if there is excess moisture to release latent heat ! if(k.ge.kbcon(i).and.dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0.) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif aa1(i) = aa1(i) - dz * g * qlk qcko(i,k)= qlk + qrch pwo(i,k) = etah * c0 * dz * qlk cnvwt(i,k) = etah * qlk * g / dp endif endif endif enddo enddo ! ! calculate cloud work function ! !> - Calculate the cloud work function according to Pan and Wu (1995) \cite pan_and_wu_1995 equation 4: !! \f[ !! A_u=\int_{z_0}^{z_t}\frac{g}{c_pT(z)}\frac{\eta}{1 + \gamma}[h(z)-h^*(z)]dz !! \f] !! (discretized according to Grell (1993) \cite grell_1993 equation B.10 using B.2 and B.3 of Arakawa and Schubert (1974) \cite arakawa_and_schubert_1974 and assuming \f$\eta=1\f$) where \f$A_u\f$ is the updraft cloud work function, \f$z_0\f$ and \f$z_t\f$ are cloud base and cloud top, respectively, \f$\gamma = \frac{L}{c_p}\left(\frac{\partial \overline{q_s}}{\partial T}\right)_p\f$ and other quantities are previously defined. do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.ge.kbcon(i).and.k.lt.ktcon(i)) then dz1 = zo(i,k+1) - zo(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + delta * cp * gamma & * to(i,k) / hvap aa1(i) = aa1(i) + & dz1 * (g / (cp * to(i,k))) & * dbyo(i,k) / (1. + gamma) & * rfact val = 0. aa1(i)=aa1(i)+ & dz1 * g * delta * & max(val,(qeso(i,k) - qo(i,k))) endif endif enddo enddo !> - If the updraft cloud work function is negative, convection does not occur, and the scheme returns to the calling routine. do i = 1, im if(cnvflg(i).and.aa1(i).le.0.) cnvflg(i) = .false. enddo !! totflg = .true. do i=1,im totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return !! ! ! estimate the onvective overshooting as the level ! where the [aafac * cloud work function] becomes zero, ! which is the final cloud top ! limited to the level of sigma=0.7 ! !> - Continue calculating the cloud work function past the point of neutral buoyancy to represent overshooting according to Han and Pan (2011) \cite han_and_pan_2011 . Convective overshooting stops when \f$ cA_u < 0\f$ where \f$c\f$ is currently 10%, or when 10% of the updraft cloud work function has been consumed by the stable buoyancy force. Overshooting is also limited to the level where \f$p=0.7p_{sfc}\f$. do i = 1, im if (cnvflg(i)) then aa1(i) = aafac * aa1(i) endif enddo ! do i = 1, im flg(i) = cnvflg(i) ktcon1(i) = kbm(i) enddo do k = 2, km1 do i = 1, im if (flg(i)) then if(k.ge.ktcon(i).and.k.lt.kbm(i)) then dz1 = zo(i,k+1) - zo(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + delta * cp * gamma & * to(i,k) / hvap aa1(i) = aa1(i) + & dz1 * (g / (cp * to(i,k))) & * dbyo(i,k) / (1. + gamma) & * rfact if(aa1(i).lt.0.) then ktcon1(i) = k flg(i) = .false. endif endif endif enddo enddo ! ! compute cloud moisture property, detraining cloud water ! and precipitation in overshooting layers ! !> - For the overshooting convection, calculate the moisture content of the entraining/detraining parcel as before. Partition convective cloud water and precipitation and detrain convective cloud water in the overshooting layers. do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.ge.ktcon(i).and.k.lt.ktcon1(i)) then dz = zi(i,k) - zi(i,k-1) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) !j tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & (qo(i,k)+qo(i,k-1)))/factor qrcko(i,k) = qcko(i,k) !j dq = eta(i,k) * (qcko(i,k) - qrch) ! ! check if there is excess moisture to release latent heat ! if(dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0.) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif qcko(i,k) = qlk + qrch pwo(i,k) = etah * c0 * dz * qlk cnvwt(i,k) = etah * qlk * g / dp endif endif endif enddo enddo ! ! exchange ktcon with ktcon1 ! do i = 1, im if(cnvflg(i)) then kk = ktcon(i) ktcon(i) = ktcon1(i) ktcon1(i) = kk endif enddo ! ! this section is ready for cloud water ! if(ncloud.gt.0) then ! ! compute liquid and vapor separation at cloud top ! !> - => Separate the total updraft cloud water at cloud top into vapor and condensate. do i = 1, im if(cnvflg(i)) then k = ktcon(i) - 1 gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & + gamma * dbyo(i,k) / (hvap * (1. + gamma)) dq = qcko(i,k) - qrch ! ! check if there is excess moisture to release latent heat ! if(dq.gt.0.) then qlko_ktcon(i) = dq qcko(i,k) = qrch endif endif enddo endif ! !--- compute precipitation efficiency in terms of windshear ! !! - Calculate the wind shear and precipitation efficiency according to equation 58 in Fritsch and Chappell (1980) \cite fritsch_and_chappell_1980 : !! \f[ !! E = 1.591 - 0.639\frac{\Delta V}{\Delta z} + 0.0953\left(\frac{\Delta V}{\Delta z}\right)^2 - 0.00496\left(\frac{\Delta V}{\Delta z}\right)^3 !! \f] !! where \f$\Delta V\f$ is the integrated horizontal shear over the cloud depth, \f$\Delta z\f$, (the ratio is converted to units of \f$10^{-3} s^{-1}\f$). The variable "edt" is \f$1-E\f$ and is constrained to the range \f$[0,0.9]\f$. do i = 1, im if(cnvflg(i)) then vshear(i) = 0. endif enddo do k = 2, km do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then shear= sqrt((uo(i,k)-uo(i,k-1)) ** 2 & + (vo(i,k)-vo(i,k-1)) ** 2) vshear(i) = vshear(i) + shear endif endif enddo enddo do i = 1, im if(cnvflg(i)) then vshear(i) = 1.e3 * vshear(i) / (zi(i,ktcon(i))-zi(i,kb(i))) e1=1.591-.639*vshear(i) & +.0953*(vshear(i)**2)-.00496*(vshear(i)**3) edt(i)=1.-e1 val = .9 edt(i) = min(edt(i),val) val = .0 edt(i) = max(edt(i),val) endif enddo ! !--- what would the change be, that a cloud with unit mass !--- will do to the environment? ! !> ## Calculate the tendencies of the state variables (per unit cloud base mass flux) and the cloud base mass flux. !> - Calculate the change in moist static energy, moisture mixing ratio, and horizontal winds per unit cloud base mass flux for all layers below cloud top from equations B.14 and B.15 from Grell (1993) \cite grell_1993, and for the cloud top from B.16 and B.17. do k = 1, km do i = 1, im if(cnvflg(i) .and. k .le. kmax(i)) then dellah(i,k) = 0. dellaq(i,k) = 0. dellau(i,k) = 0. dellav(i,k) = 0. endif enddo enddo ! !--- changed due to subsidence and entrainment ! do k = 2, km1 do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dp = 1000. * del(i,k) dz = zi(i,k) - zi(i,k-1) ! dv1h = heo(i,k) dv2h = .5 * (heo(i,k) + heo(i,k-1)) dv3h = heo(i,k-1) dv1q = qo(i,k) dv2q = .5 * (qo(i,k) + qo(i,k-1)) dv3q = qo(i,k-1) dv1u = uo(i,k) dv2u = .5 * (uo(i,k) + uo(i,k-1)) dv3u = uo(i,k-1) dv1v = vo(i,k) dv2v = .5 * (vo(i,k) + vo(i,k-1)) dv3v = vo(i,k-1) ! tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) tem1 = xlamud(i) !j dellah(i,k) = dellah(i,k) + & ( eta(i,k)*dv1h - eta(i,k-1)*dv3h & - tem*eta(i,k-1)*dv2h*dz & + tem1*eta(i,k-1)*.5*(hcko(i,k)+hcko(i,k-1))*dz & ) *g/dp !j dellaq(i,k) = dellaq(i,k) + & ( eta(i,k)*dv1q - eta(i,k-1)*dv3q & - tem*eta(i,k-1)*dv2q*dz & + tem1*eta(i,k-1)*.5*(qrcko(i,k)+qcko(i,k-1))*dz & ) *g/dp !j dellau(i,k) = dellau(i,k) + & ( eta(i,k)*dv1u - eta(i,k-1)*dv3u & - tem*eta(i,k-1)*dv2u*dz & + tem1*eta(i,k-1)*.5*(ucko(i,k)+ucko(i,k-1))*dz & - pgcon*eta(i,k-1)*(dv1u-dv3u) & ) *g/dp !j dellav(i,k) = dellav(i,k) + & ( eta(i,k)*dv1v - eta(i,k-1)*dv3v & - tem*eta(i,k-1)*dv2v*dz & + tem1*eta(i,k-1)*.5*(vcko(i,k)+vcko(i,k-1))*dz & - pgcon*eta(i,k-1)*(dv1v-dv3v) & ) *g/dp !j endif endif enddo enddo ! !------- cloud top ! do i = 1, im if(cnvflg(i)) then indx = ktcon(i) dp = 1000. * del(i,indx) dv1h = heo(i,indx-1) dellah(i,indx) = eta(i,indx-1) * & (hcko(i,indx-1) - dv1h) * g / dp dv1q = qo(i,indx-1) dellaq(i,indx) = eta(i,indx-1) * & (qcko(i,indx-1) - dv1q) * g / dp dv1u = uo(i,indx-1) dellau(i,indx) = eta(i,indx-1) * & (ucko(i,indx-1) - dv1u) * g / dp dv1v = vo(i,indx-1) dellav(i,indx) = eta(i,indx-1) * & (vcko(i,indx-1) - dv1v) * g / dp ! ! cloud water ! dellal(i,indx) = eta(i,indx-1) * & qlko_ktcon(i) * g / dp endif enddo ! ! mass flux at cloud base for shallow convection ! (grant, 2001) ! !> - Calculate the cloud base mass flux according to equation 6 in Grant (2001) \cite grant_2001, based on the subcloud layer convective velocity scale, \f$w_*\f$. !! \f[ !! M_c = 0.03\rho w_* !! \f] !! where \f$M_c\f$ is the cloud base mass flux, \f$\rho\f$ is the air density, and \f$w_*=\left(\frac{g}{T_0}\overline{w'\theta_v'}h\right)^{1/3}\f$ with \f$h\f$ the PBL height and other quantities have been defined previously. do i= 1, im if(cnvflg(i)) then k = kbcon(i) ! ptem = g*sflx(i)*zi(i,k)/t1(i,1) ptem = g*sflx(i)*hpbl(i)/t1(i,1) wstar(i) = ptem**h1 tem = po(i,k)*100. / (rd*t1(i,k)) xmb(i) = betaw*tem*wstar(i) xmb(i) = min(xmb(i),xmbmax(i)) endif enddo !> ## For the "feedback control", calculate updated values of the state variables by multiplying the cloud base mass flux and the tendencies calculated per unit cloud base mass flux from the static control. !! - Recalculate saturation specific humidity. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! do k = 1, km do i = 1, im if (cnvflg(i) .and. k .le. kmax(i)) then qeso(i,k) = 0.01 * fpvs(t1(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k) / (pfld(i,k) + epsm1*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif enddo enddo !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !> - Calculate the temperature tendency from the moist static energy and specific humidity tendencies. !> - Update the temperature, specific humidity, and horiztonal wind state variables by multiplying the cloud base mass flux-normalized tendencies by the cloud base mass flux. !> - Accumulate column-integrated tendencies. do i = 1, im delhbar(i) = 0. delqbar(i) = 0. deltbar(i) = 0. delubar(i) = 0. delvbar(i) = 0. qcond(i) = 0. enddo do k = 1, km do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then dellat = (dellah(i,k) - hvap * dellaq(i,k)) / cp t1(i,k) = t1(i,k) + dellat * xmb(i) * dt2 q1(i,k) = q1(i,k) + dellaq(i,k) * xmb(i) * dt2 ! tem = 1./rcs(i) ! u1(i,k) = u1(i,k) + dellau(i,k) * xmb(i) * dt2 * tem ! v1(i,k) = v1(i,k) + dellav(i,k) * xmb(i) * dt2 * tem u1(i,k) = u1(i,k) + dellau(i,k) * xmb(i) * dt2 v1(i,k) = v1(i,k) + dellav(i,k) * xmb(i) * dt2 dp = 1000. * del(i,k) delhbar(i) = delhbar(i) + dellah(i,k)*xmb(i)*dp/g delqbar(i) = delqbar(i) + dellaq(i,k)*xmb(i)*dp/g deltbar(i) = deltbar(i) + dellat*xmb(i)*dp/g delubar(i) = delubar(i) + dellau(i,k)*xmb(i)*dp/g delvbar(i) = delvbar(i) + dellav(i,k)*xmb(i)*dp/g endif endif enddo enddo !> - Recalculate saturation specific humidity using the updated temperature. do k = 1, km do i = 1, im if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then qeso(i,k) = 0.01 * fpvs(t1(i,k)) ! fpvs is in pa qeso(i,k) = eps * qeso(i,k)/(pfld(i,k) + epsm1*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif endif enddo enddo ! !> - Add up column-integrated convective precipitation by multiplying the normalized value by the cloud base mass flux. do i = 1, im rntot(i) = 0. delqev(i) = 0. delq2(i) = 0. flg(i) = cnvflg(i) enddo do k = km, 1, -1 do i = 1, im if (cnvflg(i)) then if(k.lt.ktcon(i).and.k.gt.kb(i)) then rntot(i) = rntot(i) + pwo(i,k) * xmb(i) * .001 * dt2 endif endif enddo enddo ! ! evaporating rain ! !> - Determine the evaporation of the convective precipitation and update the integrated convective precipitation. !> - Update state temperature and moisture to account for evaporation of convective precipitation. !> - Update column-integrated tendencies to account for evaporation of convective precipitation. do k = km, 1, -1 do i = 1, im if (k .le. kmax(i)) then deltv(i) = 0. delq(i) = 0. qevap(i) = 0. if(cnvflg(i)) then if(k.lt.ktcon(i).and.k.gt.kb(i)) then rn(i) = rn(i) + pwo(i,k) * xmb(i) * .001 * dt2 endif endif if(flg(i).and.k.lt.ktcon(i)) then evef = edt(i) * evfact if(islimsk(i) == 1) evef=edt(i) * evfactl ! if(islimsk(i) == 1) evef=.07 ! if(islimsk(i) == 1) evef = 0. qcond(i) = evef * (q1(i,k) - qeso(i,k)) & / (1. + el2orc * qeso(i,k) / t1(i,k)**2) dp = 1000. * del(i,k) if(rn(i).gt.0..and.qcond(i).lt.0.) then qevap(i) = -qcond(i) * (1.-exp(-.32*sqrt(dt2*rn(i)))) qevap(i) = min(qevap(i), rn(i)*1000.*g/dp) delq2(i) = delqev(i) + .001 * qevap(i) * dp / g endif if(rn(i).gt.0..and.qcond(i).lt.0..and. & delq2(i).gt.rntot(i)) then qevap(i) = 1000.* g * (rntot(i) - delqev(i)) / dp flg(i) = .false. endif if(rn(i).gt.0..and.qevap(i).gt.0.) then tem = .001 * dp / g tem1 = qevap(i) * tem if(tem1.gt.rn(i)) then qevap(i) = rn(i) / tem rn(i) = 0. else rn(i) = rn(i) - tem1 endif q1(i,k) = q1(i,k) + qevap(i) t1(i,k) = t1(i,k) - elocp * qevap(i) deltv(i) = - elocp*qevap(i)/dt2 delq(i) = + qevap(i)/dt2 delqev(i) = delqev(i) + .001*dp*qevap(i)/g endif dellaq(i,k) = dellaq(i,k) + delq(i) / xmb(i) delqbar(i) = delqbar(i) + delq(i)*dp/g deltbar(i) = deltbar(i) + deltv(i)*dp/g endif endif enddo enddo !j ! do i = 1, im ! if(me.eq.31.and.cnvflg(i)) then ! if(cnvflg(i)) then ! print *, ' shallow delhbar, delqbar, deltbar = ', ! & delhbar(i),hvap*delqbar(i),cp*deltbar(i) ! print *, ' shallow delubar, delvbar = ',delubar(i),delvbar(i) ! print *, ' precip =', hvap*rn(i)*1000./dt2 ! print*,'pdif= ',pfld(i,kbcon(i))-pfld(i,ktcon(i)) ! endif ! enddo !j do i = 1, im if(cnvflg(i)) then if(rn(i).lt.0..or..not.flg(i)) rn(i) = 0. ktop(i) = ktcon(i) kbot(i) = kbcon(i) kcnv(i) = 0 endif enddo ! ! convective cloud water ! !> - Calculate shallow convective cloud water. do k = 1, km do i = 1, im if (cnvflg(i) .and. rn(i).gt.0.) then if (k.ge.kbcon(i).and.k.lt.ktcon(i)) then cnvw(i,k) = cnvwt(i,k) * xmb(i) * dt2 endif endif enddo enddo ! ! convective cloud cover ! !> - Calculate shallow convective cloud cover. do k = 1, km do i = 1, im if (cnvflg(i) .and. rn(i).gt.0.) then if (k.ge.kbcon(i).and.k.lt.ktcon(i)) then cnvc(i,k) = 0.04 * log(1. + 675. * eta(i,k) * xmb(i)) cnvc(i,k) = min(cnvc(i,k), 0.2) cnvc(i,k) = max(cnvc(i,k), 0.0) endif endif enddo enddo ! ! cloud water ! !> - Separate detrained cloud water into liquid and ice species as a function of temperature only. if (ncloud.gt.0) then ! do k = 1, km1 do i = 1, im if (cnvflg(i)) then if (k.gt.kb(i).and.k.le.ktcon(i)) then tem = dellal(i,k) * xmb(i) * dt2 tem1 = max(0.0, min(1.0, (tcr-t1(i,k))*tcrf)) if (qlc(i,k) .gt. -999.0) then qli(i,k) = qli(i,k) + tem * tem1 ! ice qlc(i,k) = qlc(i,k) + tem *(1.0-tem1) ! water else qli(i,k) = qli(i,k) + tem endif endif endif enddo enddo ! endif ! ! hchuang code change ! !> - Calculate the updraft shallow convective mass flux. do k = 1, km do i = 1, im if(cnvflg(i)) then if(k.ge.kb(i) .and. k.lt.ktop(i)) then ud_mf(i,k) = eta(i,k) * xmb(i) * dt2 endif endif enddo enddo !> - Calculate the detrainment mass flux at shallow cloud top. do i = 1, im if(cnvflg(i)) then k = ktop(i)-1 dt_mf(i,k) = ud_mf(i,k) endif enddo !! return end subroutine shalcnv_run end module shalcnv !> @} !! @}