#include "w3macros.h"
!/ ------------------------------------------------------------------- /
      MODULE W3CANOMD
!/
!/                  +-----------------------------------+
!/                  |                                   |
!/                  |   P.A.E.M. Janssen                |
!/                  |                        FORTRAN 90 |
!/                  | Last update :         21-Aug-2014 |
!/                  +-----------------------------------+
!/
!/    XX-Jul-2010 : Origination by  PAEM JANSSEN     
!/    18-Oct-2012 : Adapted to WAVEWATCH III: F. Ardhuin( version 4.07 )
!/    21-Aug-2014 : Bug corrected: only first call wasOK( version 5.01 )
!/ 
!  0. Note by F. Ardhuin: 
!     In adapting the orginal program to be a WAVEWATCH module, I 
!     have so far strived to keep the original code. As a result 
!     some routines are unnecessarily duplicated (e.g. the calculation of 
!     the group velocity ...). But this can improve the traceability of 
!     the code. 
!     The first spectrum (JONSWAP) has been removed from the code
!
!  1. Purpose :
!
!
!     CALCULATION OF THE SECOND ORDER CORRECTION TO THE SURFACE GRAVITY 
!     WAVE SPECTRUM
!
!     DOCUMENTATION.
!     -------------
!
!     PRESENTLY, THE SOFTWARE IS SET UP TO DO FOR A GIVING FIRST-ORDER 
!     SPECTRUM AT A GIVEN DEPTH THE DETERMINATION OF THE SECOND ORDER 
!     CORRECTION (INCLUDING SECOND-HARMONICS, WAVE SET DOWN AND DOPPLER SHIFT
!     OWING TO THE STOKES FREQUENCY CORRECTION.
!
!     EVALUATION OF THE INTERACTION COEFFICIENTS FOR ARBRITRARY DEPTH WOULD
!     BE VERY TIME CONSUMING. THEREFORE, THE APPROACH IN THE WAM MODEL IS 
!     FOLLOWED, WHERE TABLES ARE GENERATED FOR A LOGARITHMIC DEPTH TABLE
!
!               D(JD) = DEPTHA*DEPTHD**(JD-1)
!
!     WITH JD AN INTEGER. IN THE PRESENT OPERATIONAL VERSION OF ECWAM JD 
!     RANGES FROM 1 TO NDEPTH = 74, WHILE DEPTHA = 1. AND DEPTHD = 1.1
!
!     FINALLY, THIS IS A VERY TIME-CONSUMING CALCULATION, AT LEAST FOR AN 
!     OPERATIONAL MODEL. i HAVE THEREFORE INTRODUCED THE OPTION THAT THE SECOND-ORDER 
!     SPECTRUM IS CALCULATED ON A LOWER RESOLUTION GRID (TYPICALLY HALF THE 
!     RESOLUTION) WHILE THE INFORMATION CONTAINED IN THE FIRST-ORDER SPECTRUM
!     IS KEPT ON THE ORIGINAL SPECTRAL GRID.
!
! ----------------------------------------------------------------------
!
!
!  2. Variables and types :
!
!      Name      Type  Scope    Description
!     ----------------------------------------------------------------
!     ----------------------------------------------------------------
!
!  3. Subroutines and functions :
!
!      Name      Type  Scope    Description
!     ----------------------------------------------------------------
!      W3SREF    Subr. Public   Reflection of waves (shorline, islands...)
!     ----------------------------------------------------------------
!
!  4. Subroutines and functions used :
!
!      Name      Type  Module   Description
!     ----------------------------------------------------------------
!      STRACE    Subr. W3SERVMD Subroutine tracing.
!     ----------------------------------------------------------------
!
!  5. Remarks :
!
!
!  6. Switches :
!
!     !/S  Enable subroutine tracing.
!
!  7. Source code :
!/
!/ ------------------------------------------------------------------- /
!/
!
!/
!/ Public variables
!/

      REAL                     :: G, PI, ZPI, RAD, DEG
      INTEGER                  :: NDEPTH
      REAL                     :: DEPTHA         ! first depth in table
      REAL, SAVE , PRIVATE, ALLOCATABLE   :: OMEGA(:)
      INTEGER, SAVE , PRIVATE             :: COUNTER = 0
! Tables for non-linear coefficients ...   
      REAL, SAVE , PRIVATE, ALLOCATABLE   :: TA(:,:,:,:),TB(:,:,:,:),TC_QL(:,:,:,:),&
                                             TT_4M(:,:,:,:),TT_4P(:,:,:,:),TFAKH(:,:),    &
                                             TFAK(:,:)
      INTEGER, SAVE, PRIVATE, ALLOCATABLE :: IM_P(:,:),IM_M(:,:)


!
!/
      CONTAINS
!/ ------------------------------------------------------------------- /
      SUBROUTINE W3ADD2NDORDER(E,DEPTH,WN,CG,IACTION)
!/
!/                  +-----------------------------------+
!/                  | WAVEWATCH III           NOAA/NCEP |
!/                  |            F. Ardhuin             |
!/                  |                        FORTRAN 90 |
!/                  | Last update :         19-Oct-2012 |
!/                  +-----------------------------------+
!/
!/    19-Oct-2012 : Origination                         ( version 4.08 )
!/
!  1. Purpose :
!
!     Adds second order spectrum on top of first order spectrum
!
!  2. Method :
!
!     Uses P. Janssen's code for the inverse canonical transform
!      
!
!  3. Parameters :
!
!     Parameter list
!     ----------------------------------------------------------------
!       A         R.A.  I   Action density spectrum (1-D)
!       CG        R.A.  I   Group velocities.
!       WN        R.A.  I   Wavenumbers.
!       DEPTH     Real  I   Mean water depth.
!       S         R.A.  O   Source term (1-D version).
!       D         R.A.  O   Diagonal term of derivative (1-D version).
!     ----------------------------------------------------------------
!     ----------------------------------------------------------------
!       E         R.A. I/O   Energy density spectrum (1-D), f-theta
!       DEPTH     Real I     Water depth
!       WN        R.A.       wavenumbers
!       CG        R.A.       group velocities
!       IACTION   Int  I     Switch to specify if the input spectrum 
!                            is E(f,theta) or A(k,theta)
!     ----------------------------------------------------------------
!
!  4. Subroutines used :
!
!      Name      Type  Module   Description
!     ----------------------------------------------------------------
!      STRACE    Subr. W3SERVMD Subroutine tracing.
!     ----------------------------------------------------------------
!
!  5. Called by :
!
!      Name      Type  Module   Description
!     ----------------------------------------------------------------
!      W3SREF    Subr. W3REF1MD Shoreline reflection source term
!      W3EXPO    Subr.   N/A    Point output post-processor.
!     ----------------------------------------------------------------
!
!  6. Error messages :
!
!       None.
!
!  7. Remarks :
!
!  8. Structure :
!
!     See source code.
!
!  9. Switches :
!
!     !/S  Enable subroutine tracing.
!
! 10. Source code :
!
!/ ------------------------------------------------------------------- /
      USE CONSTANTS, ONLY: GRAV
      USE W3DISPMD
      USE W3GDATMD, ONLY: NK, NTH, NSPEC, SIG, TH, DTH, IGPARS

!/S      USE W3SERVMD, ONLY: STRACE
!/
!
      IMPLICIT NONE
!/
!/ ------------------------------------------------------------------- /
!/ Parameter list
!/
      REAL, INTENT(INOUT)     :: E(NSPEC)
      REAL, INTENT(IN)        :: DEPTH
      REAL, INTENT(IN)        :: WN(NK)
      REAL, INTENT(IN)        :: CG(NK)
      INTEGER, INTENT(IN)     :: IACTION
!/
!/ ------------------------------------------------------------------- /
!/ Local parameters
!/ 
      INTEGER           :: ISPEC, IK, ITH, M
      REAL              :: CO1, ATOE, DPTH
!/S      INTEGER, SAVE           :: IENT = 0
      LOGICAL, SAVE     :: FIRST = .TRUE.
      REAL, ALLOCATABLE, SAVE  :: FR(:), DFIM(:)
      REAL, ALLOCATABLE, SAVE  :: F1(:,:), F3(:,:)
      INTEGER, SAVE     ::  NFRE, NANG
      INTEGER, SAVE     ::  NFREH, NANGH
!/
!/ ------------------------------------------------------------------- /
!/
!/S      CALL STRACE (IENT, 'W3ADD2NDORDER')
!
! 0.  Initializations ------------------------------------------------ *
!
       IF (FIRST) THEN 
         FIRST=.FALSE.
         NFRE=NK
         NANG=NTH
         NFREH=NK
         NANGH=NTH
         G=GRAV
         PI = 4.*ATAN(1.)
         ZPI=2*PI
         RAD = PI/180.
         DEG = 180./PI
         ALLOCATE(FR(NFRE), DFIM(NFRE))
         FR(1:NFRE)=SIG(1:NK)/ZPI
! The following can be replaced using DSIP from WWATCH
         CO1 = 0.5*DTH
         DFIM(1)= CO1*(FR(2)-FR(1))
         DO M=2,NFRE-1
           DFIM(M)=CO1*(FR(M+1)-FR(M-1))
         ENDDO
         DFIM(NFRE)=CO1*(FR(NFRE)-FR(NFRE-1))
!
         ALLOCATE(F1(NANG,NFRE), F3(NANG,NFRE))
         NDEPTH=IGPARS(6)
         DEPTHA=IGPARS(7)
      END IF
      DPTH = DEPTH

      DO IK=1,NK
        IF (IACTION.EQ.0) THEN 
          ATOE=1
        ELSE
          ATOE=SIG(IK)*ZPI / CG(IK)
          END IF
        DO ITH=1,NTH
          ISPEC=ITH+(IK-1)*NTH
          F1(ITH,IK)=E(ISPEC)*ATOE
          END DO
         !WRITE(100,'(100G16.8)') SIG(IK)*ZPI,(F1(ITH,IK),ITH=1,NTH)

        END DO
!
! 1. DETERMINE SECOND-ORDER SPECTRUM.
!

      CALL CAL_SEC_ORDER_SPEC(F1,F3,NFRE,NANG,FR,DFIM,TH,   &
                              DTH,DPTH,+1., NFREH, NANGH)

!
! 2. Adds 2nd order spectrum to 1st order 
!
      DO IK=1,NK
        IF (IACTION.EQ.0) THEN 
          ATOE=1
        ELSE
          ATOE=SIG(IK)*ZPI / CG(IK)
          END IF
        DO ITH=1,NTH
          ISPEC=ITH+(IK-1)*NTH
          E(ISPEC)=F3(ITH,IK)/ATOE
          END DO
         !WRITE(101,'(I3,100G16.8)') SIG(IK)*ZPI,(F3(ITH,IK),ITH=1,NTH)
        END DO
      
!/T      PRINT*,' END CAL_SEC_ORDER_SPEC'
      RETURN

      END SUBROUTINE W3ADD2NDORDER
!/ ------------------------------------------------------------------- /

!-----------------------------------------------------------------------
!
      SUBROUTINE CAL_SEC_ORDER_SPEC(F1,F3,NFRE,NANG,FR,DFIM,TH,DELTH, &
                                    DPTH,SIGM, NFREH, NANGH)
!
!***  *CAL_SEC_ORDER_SPEC*   DETERMINES SECOND_ORDER SPECTRUM
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              DETERMINATION OF SECOND-ORDER SPECTRUM
!
!     INTERFACE.
!     ----------
!              *CALL*  *CAL_SEC_ORDER_SPEC(F1,F3,NFRE,NANG,FR,
!                                DFIM,TH,DELTH,DPTH,SIGM)*
!
!                       INPUT:
!                            *F1*    - 2-D FREE WAVE SPECTRUM
!                            *NFRE*  - NUMBER OF FREQUENCIES
!                            *NANG*  - NUMBER OF DIRECTIONS
!                            *FR*    - FREQUENCIES
!                            *DFIM*  - FREQUENCY INCREMENT
!                            *TH*    - DIRECTIONAL ARRAY
!                            *DELTH* - DIRECTIONAL INCREMENT
!                            *DPTH*  - DEPTH ARRAY
!                            *SIGM*   - FOR SIGM = 1 FORWARD MAPPING 
!                                      WHILE FOR SIGM = -1 INVERSE
!                                      MAPPING.
!
!                       OUTPUT: 
!                            *F3*    - 2-D SPECTRUM INCLUDING SECOND-ORDER
!                                      CORRECTION
!
!     METHOD.
!     -------
!              IS DESCRIBED IN JANSSEN (2009), JFM, 637, 1-44.
!
!     EXTERNALS.
!     ----------
!              NONE
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE

      REAL, INTENT(IN)        :: F1(NANG,NFRE)
      REAL, INTENT(OUT)       :: F3(NANG,NFRE)

      INTEGER, INTENT(IN)     :: NFRE,NANG,NFREH, NANGH
      
      REAL, INTENT(IN)        :: DFIM(NFRE),FR(NFRE), TH(NANG), DELTH
      REAL, INTENT(IN)        :: DPTH, SIGM
 
      LOGICAL FRSTIME,DOUBLEP

      INTEGER MDW,M,K, K0,M0,MP,KP,MM,KM,KL,KLL,ML,JD
      INTEGER, SAVE :: MR, MA,NMAX


!      PARAMETER (NFREH=32,NANGH=36)

      INTEGER, SAVE            :: INDEP
      REAL,ALLOCATABLE         :: PF1(:,:),PF3(:,:)


      REAL DEPTH,ALPHA,GAM_J,DEPTHD
      REAL OM0,AA1,BB1,&
     F,EPSMIN,DELFF,SPEC1,SQRTK  
      REAL FRAC,DEL,DELF,D1,D2,D3,D4,C1,&
     C2,XM,XK
      REAL, SAVE :: OMSTART
      REAL, SAVE :: XMR,XMA, DELTHH, CO1

      REAL :: F13(NFREH,NANGH)
      REAL :: SUM0,AKMEAN
      REAL :: DELOM(NFREH),THH(NANGH),DFDTH(NFREH)
     
      DATA FRSTIME/.TRUE./

      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      COMMON/PRECIS/DOUBLEP

!
!***  2. DETERMINE SECOND ORDER CORRECTION TO THE SPECTRUM
!     ----------------------------------------------------

!
!/T      PRINT*,' START SECOND-ORDER CALC.'

      DOUBLEP = .TRUE.
!
!***  2.1 SET UP OF LOW-RESOLUTION CALCULATION GRID.
!     ---------------------------------------------
!
        EPSMIN = 1.0E-4
        FRAC = 0.1
        OMSTART = ZPI*FR(1)
        MR = MAX(1,NFRE/NFREH)
        XMR = 1./FLOAT(MR)
        MA = NANG/NANGH
        XMA = 1./FLOAT(MA)
        DELTHH = FLOAT(MA)*DELTH

       IF (FRSTIME) THEN 
       ! IF (COUNTER.GT.0) THEN 
       !  DEALLOCATE(OMEGA,TFAK,TA,TB,TC_QL,TT_4M,TT_4P,IM_P,IM_M,TFAKH)
       ! ENDIF 
        ALLOCATE(OMEGA(NFREH))
        ALLOCATE(TFAK(NFRE,NDEPTH))
        ALLOCATE(TA(NANGH,NFREH,NFREH,NDEPTH))
        ALLOCATE(TB(NANGH,NFREH,NFREH,NDEPTH))
        ALLOCATE(TC_QL(NANGH,NFREH,NFREH,NDEPTH))
        ALLOCATE(TT_4M(NANGH,NFREH,NFREH,NDEPTH))
        ALLOCATE(TT_4P(NANGH,NFREH,NFREH,NDEPTH))
        ALLOCATE(IM_P(NFREH,NFREH))
        ALLOCATE(IM_M(NFREH,NFREH))
        ALLOCATE(TFAKH(NFREH,NDEPTH))

        DO M=1,NFREH
          OMEGA(M) = ZPI*FR(MR*M)
        ENDDO

        DO K=1,NANGH
          K0 = MA*K+1
          IF (K0.GT.NANG) K0 = K0-NANG
          THH(K) = TH(K0)
        ENDDO

        CO1   = 1./2.*DELTHH
        DELOM(1) = CO1*(OMEGA(2)-OMEGA(1))
        DO M=2,NFREH-1
          DELOM(M)=CO1*(OMEGA(M+1)-OMEGA(M-1))
        ENDDO
        DELOM(NFREH)=CO1*(OMEGA(NFREH)-OMEGA(NFREH-1))
!
        DFDTH = DELOM/ZPI
!
!***  2.2 INITIALISE TABLES
!     ---------------------
!
        NMAX = XMR*(1+NINT(LOG(2.*OMEGA(NFREH)/OMSTART)/LOG(1.+FRAC)))
        NMAX = NMAX+1
!/T      PRINT*,' NMAX = ',NMAX

        DEPTHD = 1.1
 
        DO JD=1,NDEPTH
          DEPTH = DEPTHA*DEPTHD**(JD-1)
          DO M=1,NFRE
            OM0 = ZPI*FR(M)
            TFAK(M,JD) = AKI(OM0,DEPTH)
          ENDDO
        ENDDO

        INDEP = 1+NINT(LOG(DPTH/DEPTHA)/LOG(DEPTHD))
        INDEP = MIN(NDEPTH,INDEP)
        INDEP = MAX(1,INDEP)

        CALL TABLES_2ND(NFREH,NANGH,NDEPTH,DEPTHA,OMSTART,FRAC,XMR,&
                   DFDTH,OMEGA,THH)
        PRINT*, '2ND ORDER TABLES GENERATED:',NDEPTH,DEPTHA, DELTHH

        FRSTIME = .FALSE.
        ENDIF ! end of test on FRSTIME
!
      COUNTER=COUNTER+1
!
!***  DETERMINE SOME MOMENTS.
!     ----------------------
!
      SUM0 = 0.
      AKMEAN = 0.
      DO M=1,NFRE
        DO K=1,NANG
          SQRTK=SQRT(TFAK(M,INDEP))
          SUM0 = SUM0+F1(K,M)*DFIM(M)
          AKMEAN = AKMEAN+F1(K,M)*DFIM(M)/SQRTK
        ENDDO
      ENDDO
!
! NB: AKMEAN is the mean wavenumber corresponding to Tm0,-1 in deep water
!     
      AKMEAN = (SUM0/AKMEAN)**2

!
!***  2.2 INTERPOLATION OR NOT.
!     ------------------------
!
      IF (MR.EQ.1 .AND. MA.EQ.1) THEN
!
!***     2.21 NO INTERPOLATION.
!        ----------------------
! 
!/T         PRINT*,' NO THINNING AND INTERPOLATION'
!/T         PRINT*,'nanG:',NANG,NMAX,NFRE,NDEPTH,DEPTHA,DEPTHD,DPTH,'##',DELTH,DELTHH

         CALL SECSPOM(F1,F3,NFRE,NANG,NMAX,NDEPTH,&
                DEPTHA,DEPTHD,OMSTART,FRAC,MR,DFDTH,OMEGA,&
                DPTH,AKMEAN,TA,TB,TC_QL,TT_4M,TT_4P,&
                IM_P,IM_M,COUNTER)
         DO M=1,NFRE
           DO K=1,NANG
             DELF = F3(K,M)
             F3(K,M)=MAX(0.00000001,F1(K,M)+SIGM*DELF)
           ENDDO
         ENDDO

      ELSE

!
!***     2.22 ENERGY CONSERVING INTERPOLATION SCHEME
!        -------------------------------------------
!
         PRINT*,' !THINNING AND INTERPOLATION!'
         ALLOCATE(PF1(NANGH,NFREH))
         ALLOCATE(PF3(NANGH,NFREH))

         PF1 = 0.
         DO M=1,NFREH
           DO K=1,NANGH
             M0 = MR*M
             MP = M0+1
             MP = MIN(NFRE,MP)
             MM = M0-1

             K0 = MA*K+1
             KP = K0+1
             KM = K0-1
             DELFF = 0.
             DO KL = KM,KP
               KLL = KL
               IF (KLL.GT.NANG) KLL = KLL-NANG
               IF (KLL.LT.1) KLL = KLL+NANG
               DO ML = MM,MP
                 DEL = DFIM(ML)
                 DELFF = DELFF+DEL
                 SPEC1 = F1(KLL,ML)
                 PF1(K,M)=PF1(K,M)+SPEC1*DEL
               ENDDO
             ENDDO
             PF1(K,M) =PF1(K,M)/DELFF 
           ENDDO
         ENDDO
!
!***     2.23 DETERMINE SECOND-ORDER SPEC
!        --------------------------------
!
         CALL SECSPOM(PF1,PF3,NFREH,NANGH,NMAX,NDEPTH,&
                DEPTHA,DEPTHD,OMSTART,FRAC,MR,DFDTH,OMEGA,&
                DPTH,AKMEAN,TA,TB,TC_QL,TT_4M,TT_4P,&
                IM_P,IM_M,COUNTER)
!
!***     2.24 INTERPOLATE TOWARDS HIGH-RES GRID
!        --------------------------------------
!
         DO M=1,NFRE
           DO K=1,NANG
             XM = REAL(M/MR)
             XK = REAL((K-1)/MA)

             M0 = MAX(1,INT(XM))
             K0 = INT(XK)

             D1 = REAL(M)/REAL(MR)-XM
             D2 = 1.-D1
             D3 = REAL(K-1)/REAL(MA)-XK
             D4 = 1.-D3

             IF (K0.LT.1) K0 = K0+NANGH
             MP = MIN(NFREH,M0+1)
             KP = K0+1
             IF (KP.GT.NANGH) KP = KP-NANGH
 
             C1 = PF3(K0,M0)*D4+PF3(KP,M0)*D3
             C2 = PF3(KP,MP)*D3+PF3(K0,MP)*D4

             DELF = C1*D2+C2*D1
             F3(K,M)=MAX(0.00000001,F1(K,M)+SIGM*DELF)
           ENDDO
         ENDDO
   
      ENDIF


      IF (MR.GT.1 .OR. MA.GT.1 ) THEN
         DO M=1,NFREH
            AA1 = 0.
            DO K=1,NANGH
               AA1 = AA1+PF1(K,M)*DELTHH
            ENDDO
            AA1 = MAX(AA1,EPSMIN)

            BB1 = 0.
            DO K=1,NANGH
               BB1 = BB1+(PF1(K,M)+PF3(K,M))*DELTHH
            ENDDO
            BB1 = MAX(BB1,EPSMIN)
            F   = OMEGA(M)/ZPI
   
!/T            WRITE(6,62) M,F,AA1,BB1,DELTHH     
!/T            WRITE(80,62) M,F,AA1,BB1,DELTHH     
         ENDDO

         DO M=1,NFREH
            DO K=1,NANGH
               F13(M,K)=PF1(K,M)+PF3(K,M)
            ENDDO
         ENDDO
      ENDIF

!
!/T   62 FORMAT(I4,9F16.9)
!      
      RETURN
      END SUBROUTINE CAL_SEC_ORDER_SPEC
!
!--------------------------------------------------------------------
!
      SUBROUTINE TABLES_2ND(NFRE,NANG,NDEPTH,DEPTHA,OMSTART,FRAC,XMR,&
                      DFDTH,OMEGA,TH)
!
!--------------------------------------------------------------------
!
!*****TABLES** COMPUTES TABLES FOR SECOND ORDER SPECTRUM IN FREQUENCY SPACE.
!
!     P.JANSSEN DECEMBER 2008
!
!     PURPOSE
!     -------
!             DETERMINES TABLES, BASED ON JANSSEN (2008)
!             THERE ARE THREE CORRECTIONS:
!                   1) GENERATION OF SECOND-HARMONICS
!                   2) QUASI-LINEAR EFFECT
!                   3) SHIFT OF SPECTRUM BECAUSE OF STOKES FREQUENCY
!                      CORRECTION.
!
!     INTERFACE
!     ---------
!             *CALL* *TABLES(NFRE,NANG,NDEPTH,OMSTART,FRAC,XMR,
!                            OMEGA,TA,TB,TC_QL,TT_4M,TT_4P,IM_P,IM_M,
!                            TFAK)*
!
!
!     PARAMETER   TYPE      PURPOSE.
!     ---------   ----      -------
!
!       NFRE      INTEGER   NUMBER OF FREQUENCIES
!       NANG      INTEGER   NUMBER OF DIRECTIONS
!       NDEPTH    INTEGER   NUMBER OF ENTRIES IN THE DEPTH TABLE 
!       OMSTART   REAL      START FREQUENCY
!       FRAC      REAL      FRACTIONAL INCREASE IN FREQUENCY SPACE
!       XMR       REAL      INVERSE OF THINNING FACTOR IN FREQUENCY SPACE
!       OMEGA     REAL      ANGULAR FREQUENCY ARRAY
!       DFDTH     REAL      PRODUCT OF INCREMENT IN FREQUENCY AND DIRECTION
!       TH        REAL      DIRECTION ARRAY
!       TA        REAL      TABLE FOR MINUS INTERACTIONS
!       TB        REAL      TABLE FOR PLUS INTERACTIONS
!       TC_QL     REAL      TABLE FOR QUASI-LINEAR INTERACTIONS
!       TT_4M     REAL      TABLE FOR STOKES FREQUENCY CORRECTION
!       TT_4P     REAL      TABLE FOR STOKES FREQUENCY CORRECTION
!       IM_P      INTEGER   TABLE FOR WAVENUMBER M2 PLUS
!       IM_M      INTEGER   TABLE FOR WAVENUMBER M2 MIN
!       TFAK      REAL      WAVENUMBER TABLE
!
!
!     METHOD
!     ------
!             
!     EXTERNALS
!     ---------
!             NONE
!
!     REFERENCES
!     ----------
!             V.E. ZAKHAROV, HAMILTONIAN APPROACH (1968) 
!             M.A. SROKOSZ, J.G.R.,91,995-1006 (1986)
!             P.A.E.M. JANSSEN, ECMWF TECH MEMO (2008),JFM PAPER (2009)
!
!
!--------------------------------------------------------------------
!
!
!  
      IMPLICIT NONE
   
      INTEGER NFRE,NANG,NDEPTH,MDW,JD,M,K,M1,K1,MP,MM,L
      
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL OM0,TH0,XK0,OM1,TH1,XK1,OM2,XK2,OM0P,XK0P,OM0M,XK0M,OMSTART,&
     FRAC,XMR,XM2,FAC
      REAL OMEGA(NFRE),TH(NANG),DFDTH(NFRE)

      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
!
!     1. COMPUTATION OF WAVENUMBER ARRAY TFAK
!     ---------------------------------------
!
!
      DO JD=1,NDEPTH
         DEPTH = DEPTHA*DEPTHD**(JD-1)
         DO M=1,NFRE
            OM0 = OMEGA(M)
            TFAK(M,JD) = AKI(OM0,DEPTH)
         ENDDO
         WRITE(6,*) 'GENERATING TABLES FOR DEPTH:',JD,DEPTH,DEPTHA,NDEPTH
!
!     2. COMPUTATION OF THE 2nd ORDER COEFFICIENTS.
!     ---------------------------------------------
!
!
         K1 = 0
         TH1 = TH(NANG)
         DO M=1,NFRE
            OM0 = OMEGA(M)
            XK0 = TFAK(M,JD)
          
            MP   = MIN(M+1,NFRE)
            OM0P = OMEGA(MP)
            XK0P = TFAK(MP,JD) 

            MM   = MAX(M-1,1) 
            OM0M = OMEGA(MM)
            XK0M = TFAK(MM,JD) 
                  
            DO M1=1,NFRE
                        
               OM1 = OMEGA(M1)
           
               DO L=1,NANG
!
!              XK0-XK1 CASE 
!           
                  K = K1+L
                  TH0 = TH(K)
                  OM2 = OM0-OM1
         
             
                  IF (ABS(OM1).LT.OM0/2.) THEN
                     XM2  = LOG(OM2/OMSTART)/LOG(1.+FRAC)
                     IM_M(M1,M) = NINT(XMR*(XM2+1.))
                     XK1 = TFAK(M1,JD)
                     XK2 = AKI(OM2,DEPTH) 

                     TA(L,M1,M,JD) = DFDTH(M1)*A(XK1,XK2,TH1,TH0)**2
                  ELSE
                     TA(L,M1,M,JD) = 0.
                     IM_M(M1,M) = 1
                  ENDIF 
!
!              XK1+XK0 CASE 
!           
                  OM2 = OM1+OM0 
                  XM2  = LOG(OM2/OMSTART)/LOG(1.+FRAC)
                  IM_P(M1,M) = NINT(XMR*(XM2+1.))
                  XK1 = TFAK(M1,JD)
                  XK2 = AKI(OM2,DEPTH)

                  TB(L,M1,M,JD) = DFDTH(M1)*B(XK1,XK2,TH1,TH0)**2
!
!              QUASI-LINEAR EFFECT
!           
!  
                  TC_QL(L,M1,M,JD) = DFDTH(M1)*C_QL(XK0,XK1,TH0,TH1)
!  
!              STOKES-FREQUENCY CORRECTION 
!
!      
                  FAC = 2.*G/OM1*DFDTH(M1)
                  TT_4M(L,M1,M,JD) = &
                  FAC*(W2(XK0M,XK1,XK1,XK0M,TH0,TH1,TH1,TH0)+&
                       V2(XK0M,XK1,XK1,XK0M,TH0,TH1,TH1,TH0))
                  TT_4P(L,M1,M,JD) = &
                  FAC*(W2(XK0P,XK1,XK1,XK0P,TH0,TH1,TH1,TH0)+&
                       V2(XK0P,XK1,XK1,XK0P,TH0,TH1,TH1,TH0))
! Table identical to Janssen: verified. 
!              IF (JD.EQ.1) WRITE(998,'(F4.1,3I3,5G11.3)') DEPTH,M,M1,L, TB(L,M1,M,JD),  &
!                           TC_QL(L,M1,M,JD) , FAC, TT_4M(L,M1,M,JD), TT_4P(L,M1,M,JD)
               ENDDO
            ENDDO
         ENDDO
       ENDDO
! 
!
!--------------------------------------------------------------------
!      
      RETURN
      END SUBROUTINE TABLES_2ND
!
!--------------------------------------------------------------------
!
      SUBROUTINE SECSPOM(F1,F3,NFRE,NANG,NMAX,NDEPTH,&
                   DEPTHA,DEPTHD,OMSTART,FRAC,MR,DFDTH,OMEGA,&
                   DEPTH,AKMEAN,TA,TB,TC_QL,TT_4M,TT_4P,&
                   IM_P,IM_M,COUNTER)
!
!--------------------------------------------------------------------
!
!*****SECSPOM** COMPUTES SECOND ORDER SPECTRUM IN FREQUENCY SPACE.
!
!     P.JANSSEN JULY 2008
!
!     PURPOSE
!     -------
!             DETERMINES SECOND-ORDER SPECTRUM, BASED ON JANSSEN (2008)
!             THERE ARE THREE CORRECTIONS:
!                   1) GENERATION OF SECOND-HARMONICS
!                   2) QUASI-LINEAR EFFECT
!                   3) SHIFT OF SPECTRUM BECAUSE OF STOKES FREQUENCY
!                      CORRECTION.
!
!     INTERFACE
!     ---------
!             *CALL* *SECSPOM(F1,F3,NFRE,NANG,NMAX,NDEPTH,
!                             DEPTHA,DEPTHD,OMSTART,FRAC,MR,DFDTH,OMEGA,
!                             DEPTH,AKMEAN,TA,TB,TC_QL,TT_4M,TT_4P,
!                             IM_P,IM_M)*
!
!
!     PARAMETER   TYPE      PURPOSE.
!     ---------   ----      -------
!
!       F1        REAL      2D FREE WAVE SPECTRUM (INPUT)
!       F3        REAL      BOUND WAVES SPECTRUM (OUTPUT)
!       NFRE      INTEGER   NUMBER OF FREQUENCIES
!       NANG      INTEGER   NUMBER OF DIRECTIONS 
!       NMAX      INTEGER   MAXIMUM INDEX CORRESPONDS TO TWICE THE CUT-OFF
!                           FREQUENCY 
!       NDEPTH    INTEGER   NUMBER OF ENTRIES IN DEPTH TABLE
!       DEPTHA    REAL      START VALUE DEPTH ARRAY
!       DEPTHD    REAL      INCREMENT DEPTH ARRAY
!       OMSTART   REAL      START VALUE ANG. FREQUENCY ARRAY
!       FRAC      REAL      FRACTIONAL INCREASE IN FREQUENCY SPACE
!       MR        INTEGER   THINNING FACTOR IN FREQUENCY SPACE
!       OMEGA     REAL      ANGULAR FREQUENCY ARRAY
!       DEPTH     REAL      DEPTH ARRAY
!       AKMEAN    REAL      MEAN WAVENUMBER ARRAY
!       TA        REAL      TABLE FOR MINUS INTERACTIONS
!       TB        REAL      TABLE FOR PLUS INTERACTIONS
!       TC_QL     REAL      TABLE FOR QUASI-LINEAR INTERACTIONS
!       TT_4M     REAL      TABLE FOR STOKES FREQUENCY CORRECTION
!       TT_4P     REAL      TABLE FOR STOKES FREQUENCY CORRECTION
!       IM_P      INTEGER   TABLE FOR WAVENUMBER M2 PLUS
!       IM_M      INTEGER   TABLE FOR WAVENUMBER M2 MIN
!
!
!
!     METHOD
!     ------
!             EVALUATE SECOND ORDER SPECTRUM IN FREQUENCY BASED ON
!             KRASITSKII'S CANONICAL TRANSFORMATION.
!
!     EXTERNALS
!     ---------
!             NONE
!
!     REFERENCES
!     ----------
!             V.E. ZAKHAROV, HAMILTONIAN APPROACH (1968) 
!             M.A. SROKOSZ, J.G.R.,91,995-1006 (1986)
!             P.A.E.M. JANSSEN, JFM (2009)
!
!
!--------------------------------------------------------------------
!
!
!     
      USE W3GDATMD, ONLY: IGPARS
      IMPLICIT NONE
   
      INTEGER NFRE,NANG,NDEPTH,M,K,M1,K1,M2_M,M2_P,K2,MP,&
        MM,L,MR,NMAX,JD,COUNTER
      INTEGER IM_P(NFRE,NFRE),IM_M(NFRE,NFRE),IL(NANG,NANG)

      REAL OM0,OM0H,OM1,OM0P,OM0M,&
           OMSTART,FRAC,XINCR1,XINCR2,XINCR3,XINCR4,FAC1,FAC2,&
           FAC3,T_4M,T_4P,F2K,F2KP,F2KM,F2K1,F2K2,DELM1,DEPTHA,DEPTHD,&
           XD,X_MIN
      REAL OMEGA(NFRE), DFDTH(NFRE), OMEGAHF(NFRE+1:NMAX)
      REAL TA(NANG,NFRE,NFRE,NDEPTH),TB(NANG,NFRE,NFRE,NDEPTH),&
           TC_QL(NANG,NFRE,NFRE,NDEPTH),TT_4M(NANG,NFRE,NFRE,NDEPTH),&
           TT_4P(NANG,NFRE,NFRE,NDEPTH)
      REAL F1(NANG,NFRE),F3(NANG,NFRE),DEPTH
      REAL AKMEAN
      REAL G1(NANG,NMAX),G3(NANG,NFRE)

      LOGICAL :: LL2H

!
!***  1. COMPUTATION OF TAIL OF THE SPECTRUM AND INDEX JD
!     ---------------------------------------------------
!
!
      X_MIN = IGPARS(9)   ! this was 1.1 in Janssen's original code

      DO M=NFRE+1,NMAX
         OMEGAHF(M) = OMSTART*(1.+FRAC)**(MR*M-1)
      ENDDO

      DO K=1,NANG
         DO K1=1,NANG
            L = K-K1
            IF (L.GT.NANG) L=L-NANG
            IF (L.LT.1) L=L+NANG
            IL(K,K1) = L
         ENDDO
      ENDDO


!   This was Janssen's version ... limited to kD > X_MIN ... (here set to 1.1)
      XD = MAX(X_MIN/AKMEAN,DEPTH)    ! note by FA: why do we have X_MIN/AKMEAN??!
      XD = DEPTH
      XD = LOG(XD/DEPTHA)/LOG(DEPTHD)+1.
      JD = NINT(XD)
      JD = MAX(JD,1)
      JD = MIN(JD,NDEPTH)

      DO M=1,NFRE
        DO K=1,NANG
          G1(K,M) = F1(K,M)
          G3(K,M) = 0.
        ENDDO
      ENDDO

      DO M=NFRE+1,NMAX
        DO K=1,NANG
          G1(K,M) = OMEGA(NFRE)**5*G1(K,NFRE)/OMEGAHF(M)**5
        ENDDO
      ENDDO
!     
!
!
!
!***  2. COMPUTATION OF THE 2nd ORDER FREQUENCY SPECTRUM.
!     ---------------------------------------------------
!
!
      DO M=1,NFRE
        OM0 = OMEGA(M)
        OM0H = OM0/2.                  
        MP   = MIN(M+1,NFRE)
        OM0P = OMEGA(MP) 
        MM   = MAX(M-1,1) 
        OM0M = OMEGA(MM)
        DELM1 = 1./(OM0P-OM0M)
        DO K=1,NANG
          K2 = K
          F2K = G1(K,M)
          F2KP = G1(K,MP)
          F2KM = G1(K,MM)
          DO M1=1,NFRE
            OM1 = OMEGA(M1)
            LL2H = (ABS(OM1).LT.OM0H)
            M2_M = IM_M(M1,M)
            M2_P = IM_P(M1,M)
            DO K1=1,NANG
              F2K1 = G1(K1,M1)
              L = IL(K,K1)
!
!                   2.1 OM0-OM1 CASE: SECOND HARMONICS
!                   OM2 = OM0-OM1
!             
              IF (LL2H) THEN
                F2K2 = G1(K2,M2_M)
                FAC1 = TA(L,M1,M,JD)
                FAC2 = F2K1*F2K2+G1(K2,M1)*G1(K1,M2_M)

                XINCR1 = FAC1*FAC2
                G3(K,M) = G3(K,M)+XINCR1
              ENDIF 
!
!                   2.2 OM1+OM0 CASE: INFRA-GRAVITY WAVES
!                    OM2 = OM1+OM0 
!
              F2K2 = G1(K2,M2_P)
              FAC3 = 2.*TB(L,M1,M,JD)
              XINCR2 = FAC3*F2K2
!
!                   2.3 QUASI-LINEAR EFFECT
!           
              XINCR3 = TC_QL(L,M1,M,JD)*F2K
!  
!                   2.4 STOKES-FREQUENCY CORRECTION
!
              T_4M = TT_4M(L,M1,M,JD)
              T_4P = TT_4P(L,M1,M,JD)
              XINCR4 = -(F2KP*T_4P-F2KM*T_4M)*DELM1

              G3(K,M) = G3(K,M)+F2K1*(XINCR2+XINCR3+XINCR4)

            ENDDO
          ENDDO
        ENDDO
      ENDDO
!
      DO M=1,NFRE
        DO K=1,NANG
          F3(K,M) = G3(K,M)
        ENDDO
      ENDDO
!
!--------------------------------------------------------------------
!      
      RETURN
      END SUBROUTINE SECSPOM
!
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *A(XI,XJ,THI,THJ)
!
!-----------------------------------------------------------------------
      REAL FUNCTION A(XI,XJ,THI,THJ)
!
!***  *A*  DETERMINES THE MINUS INTERACTIONS.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR THREE
!              WAVE INTERACTIONS OF GRAVITY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV)
!
!     INTERFACE.
!     ----------
!              *A(XI,XJ)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL RI,RJ,RK,XI,XJ,THI,THJ,THK,OI,OJ,OK,FI,FJ,FK
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!

      RI = XI
      RJ = XJ
      RK  = VABS(RI,RJ,THI,THJ)
      THK = VDIR(RI,RJ,THI,THJ)
        
      OI=OMEG(RI)
      OJ=OMEG(RJ)
      OK=OMEG(RK)

      FI = SQRT(OI/(2.*G))
      FJ = SQRT(OJ/(2.*G))
      FK = SQRT(OK/(2.*G))
 
      
      A = FK/(FI*FJ)*(A1(RK,RI,RJ,THK,THI,THJ)+&
                A3(RK,RI,RJ,THK-PI,THI,THJ))
      
      RETURN
      END FUNCTION A
!
!***  *REAL FUNCTION* *B(XI,XJ,THI,THJ)
!
!-----------------------------------------------------------------------
      REAL FUNCTION B(XI,XJ,THI,THJ)
!
!***  *B*  DETERMINES THE PLUS INTERACTION COEFFICIENTS.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR THREE
!              WAVE INTERACTIONS OF GRAVITY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV)
!
!     INTERFACE.
!     ----------
!              *B(XI,XJ)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL,RI,RJ,RK,XI,XJ,THI,THJ,THK,OI,OJ,OK,FI,FJ,FK
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      DEL = 0.
      RI = XI
      RJ = XJ
      RK  = VABS(RJ,RI,THJ,THI-PI)
      THK = VDIR(RJ,RI,THJ,THI-PI)      

      OI=OMEG(RI)+DEL
      OJ=OMEG(RJ)+DEL
      OK=OMEG(RK)+DEL

      FI = SQRT(OI/(2.*G))
      FJ = SQRT(OJ/(2.*G))
      FK = SQRT(OK/(2.*G))

      B = 0.5*FK/(FI*FJ)*(A2(RK,RI,RJ,THK,THI,THJ)+&
                    A2(RK,RJ,RI,THK-PI,THJ,THI))

      RETURN
      END FUNCTION B
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *C_QL(XK0,XK1,TH0,TH1)
!
!-----------------------------------------------------------------------
      REAL FUNCTION C_QL(XK0,XK1,TH0,TH1)
!
!***  *A*  DETERMINES THE QUASI-LINEAR TERM.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              DETERMINE CONTRIBUTION BY QUASI-LINEAR TERMS
!
!     INTERFACE.
!     ----------
!              *C_QL(XK0,XK1)*
!                        *XK0*  - WAVE NUMBER
!                        *XK1*  - WAVE NUMBER
!     METHOD.
!     -------

!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL XK0,XK1,TH0,TH1,OM1,F1
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      OM1 = OMEG(XK1)
      F1  = SQRT(OM1/(2.*G))
      
      C_QL = 2./F1**2*(B2(XK0,XK1,XK1,XK0,TH0,TH1,TH1,TH0)+&
                 B3(XK0,XK0,XK1,XK1,TH0-PI,TH0,TH1,TH1))
           
      RETURN
      END FUNCTION C_QL

!
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *VPLUS(XI,XJ,XK,THI,THJ,THK)
!
!-----------------------------------------------------------------------
      REAL FUNCTION VPLUS(XI,XJ,XK,THI,THJ,THK)
!
!***  *VPLUS*  DETERMINES THE SECOND-ORDER TRANSFER COEFFICIENT 
!              FOR THREE WAVE INTERACTIONS OF GRAVITY WAVES.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR THREE
!              WAVE INTERACTIONS OF GRAVITY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV)
!
!     INTERFACE.
!     ----------
!              *VPLUS(XI,XJ,XK)*
!                      *XI*   - WAVE NUMBER
!                      *XJ*   - WAVE NUMBER
!                      *XK*   - WAVE NUMBER
!                      *THI*  - WAVE DIRECTION
!                      *THJ*  - WAVE DIRECTION
!                      *THK*  - WAVE DIRECTION
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,RI,RJ,RK,XI,XJ,XK,THI,THJ,THK,OI,OJ,OK,QI,QJ,QK,&
     RIJ,RIK,RJK,SQIJK,SQIKJ,SQJKI,ZCONST
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      DEL1 = 10.**(-12)
      ZCONST=1./(4*SQRT(2.))

      RI = XI
      RJ = XJ
      RK = XK

      OI=OMEG(RI)+DEL1
      OJ=OMEG(RJ)+DEL1
      OK=OMEG(RK)+DEL1

      QI=OI**2/G
      QJ=OJ**2/G
      QK=OK**2/G

      RIJ = RI*RJ*COS(THJ-THI)
      RIK = RI*RK*COS(THK-THI)
      RJK = RJ*RK*COS(THK-THJ)

      SQIJK=SQRT(G*OK/(OI*OJ))
      SQIKJ=SQRT(G*OJ/(OI*OK))
      SQJKI=SQRT(G*OI/(OJ*OK))

      VPLUS=ZCONST*( (RIJ+QI*QJ)*SQIJK + (RIK+QI*QK)*SQIKJ&
               + (RJK+QJ*QK)*SQJKI )
      RETURN
      END FUNCTION VPLUS
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *VMIN(XI,XJ,XK,THI,THJ,THK)
!
!-----------------------------------------------------------------------
      REAL FUNCTION VMIN(XI,XJ,XK,THI,THJ,THK)
!
!***  *VMIN*  DETERMINES THE SECOND-ORDER TRANSFER COEFFICIENT FOR 
!             THREE WAVE INTERACTIONS OF GRAVITY WAVES.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR THREE
!              WAVE INTERACTIONS OF GRAVITY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV)
!
!     INTERFACE.
!     ----------
!              *VMIN(XI,XJ,XK)*
!                      *XI*   - WAVE NUMBER
!                      *XJ*   - WAVE NUMBER
!                      *XK*   - WAVE NUMBER
!                      *THI*  - WAVE DIRECTION
!                      *THJ*  - WAVE DIRECTION
!                      *THK*  - WAVE DIRECTION
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,RI,RJ,RK,XI,XJ,XK,THI,THJ,THK,OI,OJ,OK,QI,QJ,QK,&
     RIJ,RIK,RJK,SQIJK,SQIKJ,SQJKI,ZCONST
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      DEL1 = 10.**(-12)
      ZCONST=1./(4*SQRT(2.))

      RI = XI
      RJ = XJ
      RK = XK

      OI=OMEG(RI)+DEL1
      OJ=OMEG(RJ)+DEL1
      OK=OMEG(RK)+DEL1

      QI=OI**2/G
      QJ=OJ**2/G
      QK=OK**2/G

      RIJ = RI*RJ*COS(THJ-THI)
      RIK = RI*RK*COS(THK-THI)
      RJK = RJ*RK*COS(THK-THJ)

      SQIJK=SQRT(G*OK/(OI*OJ))
      SQIKJ=SQRT(G*OJ/(OI*OK))
      SQJKI=SQRT(G*OI/(OJ*OK))

      VMIN=ZCONST*( (RIJ-QI*QJ)*SQIJK + (RIK-QI*QK)*SQIKJ&
               + (RJK+QJ*QK)*SQJKI )
      RETURN
      END FUNCTION VMIN
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *U(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION U(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *U*  DETERMINES THE THIRD-ORDER TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY WAVES.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *U(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL XI,XJ,XK,XL,THI,THJ,THK,THL,OI,OJ,OK,OL,XIK,XJK,XIL,XJL,&
     OIK,OJK,OIL,OJL,QI,QJ,QIK,QJK,QIL,QJL,SQIJKL,ZCONST
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      ZCONST=1./(16.)

      OI=OMEG(XI)
      OJ=OMEG(XJ)
      OK=OMEG(XK)
      OL=OMEG(XL)

      XIK = VABS(XI,XK,THI,THK)
      XJK = VABS(XJ,XK,THJ,THK)
      XIL = VABS(XI,XL,THI,THL)
      XJL = VABS(XJ,XL,THJ,THL)
      OIK=OMEG(XIK)
      OJK=OMEG(XJK)
      OIL=OMEG(XIL)
      OJL=OMEG(XJL)

      QI=OI**2/G
      QJ=OJ**2/G
      QIK=OIK**2/G
      QJK=OJK**2/G
      QIL=OIL**2/G
      QJL=OJL**2/G
      SQIJKL=SQRT(OK*OL/(OI*OJ))
      U = ZCONST*SQIJKL*( 2.*(XI**2*QJ+XJ**2*QI)-QI*QJ*(&
                  QIK+QJK+QIL+QJL) )
      RETURN
      END FUNCTION U
!      
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *W2(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION W2(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *W2*  DETERMINES THE CONTRIBUTION OF THE DIRECT FOUR-WAVE
!              INTERACTIONS OF GRAVITY WAVES OF THE TYPE
!              A_2^*A_3A_4.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *W(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      REAL XI,XJ,XK,XL,THI,THJ,THK,THL
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      W2= U(XI,XJ,XK,XL,THI-PI,THJ-PI,THK,THL)+&
    U(XK,XL,XI,XJ,THK,THL,THI-PI,THJ-PI)-&
    U(XK,XJ,XI,XL,THK,THJ-PI,THI-PI,THL)-&
    U(XI,XK,XJ,XL,THI-PI,THK,THJ-PI,THL)-&
    U(XI,XL,XK,XJ,THI-PI,THL,THK,THJ-PI)-&
    U(XL,XJ,XK,XI,THL,THJ-PI,THK,THI-PI) 
      RETURN
      END FUNCTION W2
!      
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *V2(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION V2(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *V2*  DETERMINES THE CONTRIBUTION OF THE VIRTUAL 
!           FOUR-WAVE INTERACTIONS OF GRAVITY WAVES.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND 
!              CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *V2(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      COMMON/PRECIS/DOUBLEP
      LOGICAL DOUBLEP
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,XI,XJ,XK,XL,THI,THJ,THK,THL,OI,OJ,OK,OL,RI,RJ,RK,RL,&
     RIJ,RIK,RLI,RJL,RJK,RKL,THIJ,THIK,THLI,THJL,THJK,THKL,OIJ,&
     OIK,OJL,OJK,OLI,OKL,XNIK,XNJL,XNJK,XNIL,YNIL,YNJK,YNJL,YNIK,&
     ZNIJ,ZNKL,ZPIJ,ZPKL,THLJ,THIL,THKJ,THKI,THJI,THLK
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      IF (DOUBLEP) THEN
         DEL1=10.**(-5)
      ELSE
         DEL1=10.**(-2)
      ENDIF


      RI=XI+DEL1
      RJ=XJ+DEL1/2.
      RK=XK+DEL1/3.
      RL=XL+DEL1*(1.+1./2.-1./3.)

      OI=OMEG(RI)
      OJ=OMEG(RJ)
      OK=OMEG(RK)
      OL=OMEG(RL)

      RIJ  = VABS(RI,RJ,THI,THJ)
      THIJ = VDIR(RI,RJ,THI,THJ)

      RIK  = VABS(RI,RK,THI,THK-PI)
      THIK = VDIR(RI,RK,THI,THK-PI)

      RLI  = VABS(RL,RI,THL,THI-PI)
      THLI = VDIR(XL,XI,THL,THI-PI)

      RJL  = VABS(RJ,RL,THJ,THL-PI)
      THJL = VDIR(RJ,RL,THJ,THL-PI)

      RJK  = VABS(RJ,RK,THJ,THK-PI)
      THJK = VDIR(RJ,RK,THJ,THK-PI)

      RKL  = VABS(RK,RL,THK,THL)
      THKL = VDIR(RK,RL,THK,THL)
   
      OIJ=OMEG(RIJ)
      OIK=OMEG(RIK)
      OJL=OMEG(RJL)
      OJK=OMEG(RJK)
      OLI=OMEG(RLI)
      OKL=OMEG(RKL)
      
      XNIK = OK+OIK-OI
      XNJL = OJ+OJL-OL
      XNJK = OK+OJK-OJ
      XNIL = OI+OLI-OL
      
      YNIL = OL+OLI-OI
      YNJK = OJ+OJK-OK
      YNJL = OL+OJL-OJ
      YNIK = OI+OIK-OK
      
      ZNIJ = OIJ-OI-OJ
      ZNKL = OKL-OK-OL
      ZPIJ = OIJ+OI+OJ
      ZPKL = OKL+OK+OL

      THLJ = THJL-PI
      THIL = THLI-PI
      THKJ = THJK-PI
      THKI = THIK-PI
      THJI = THIJ-PI
      THLK = THKL-PI 
      
      V2= VMIN(RI,RK,RIK,THI,THK,THIK)*VMIN(RL,RJ,RJL,THL,THJ,THLJ)*&
    (1./XNIK+1./XNJL)&
   +VMIN(RJ,RK,RJK,THJ,THK,THJK)*VMIN(RL,RI,RLI,THL,THI,THLI)*&
    (1./XNJK+1./XNIL)&
   +VMIN(RI,RL,RLI,THI,THL,THIL)*VMIN(RK,RJ,RJK,THK,THJ,THKJ)*&
    (1./YNIL+1./YNJK)&
   +VMIN(RJ,RL,RJL,THJ,THL,THJL)*VMIN(RK,RI,RIK,THK,THI,THKI)*&
    (1./YNJL+1./YNIK)&
   +VMIN(RIJ,RI,RJ,THIJ,THI,THJ)*VMIN(RKL,RK,RL,THKL,THK,THL)*&
    (1./ZNIJ+1./ZNKL)&
   +VPLUS(RIJ,RI,RJ,THJI,THI,THJ)*VPLUS(RKL,RK,RL,THLK,THK,THL)*&
    (1./ZPIJ+1./ZPKL)

      V2 = -V2

      RETURN
      END FUNCTION V2
!      
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *W1(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION W1(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *W1*  DETERMINES THE NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY WAVES OF THE TYPE
!              A_2A_3A_4.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *W1(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL XI,XJ,XK,XL,THI,THJ,THK,THL
!
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      W1= -U(XI,XJ,XK,XL,THI-PI,THJ,THK,THL)-&
     U(XI,XK,XJ,XL,THI-PI,THK,THJ,THL)-&
     U(XI,XL,XJ,XK,THI-PI,THL,THJ,THK)+&
     U(XJ,XK,XI,XL,THJ,THK,THI-PI,THL)+&
     U(XJ,XL,XI,XK,THJ,THL,THI-PI,THK)+&
     U(XK,XL,XI,XJ,THK,THL,THI-PI,THJ)

      W1=W1/3. 
               
      RETURN
      END FUNCTION W1
!
!***  *REAL FUNCTION* *W4(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION W4(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *W4*  DETERMINES THE NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY WAVES of the type
!              A_^*A_3^*A_4^*.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *W4(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL XI,XJ,XK,XL,THI,THJ,THK,THL
!
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
 
      W4= U(XI,XJ,XK,XL,THI,THJ,THK,THL)+&
    U(XI,XK,XJ,XL,THI,THK,THJ,THL)+&
    U(XI,XL,XJ,XK,THI,THL,THJ,THK)+&
    U(XJ,XK,XI,XL,THJ,THK,THI,THL)+&
    U(XJ,XL,XI,XK,THJ,THL,THI,THK)+&
    U(XK,XL,XI,XJ,THK,THL,THI,THJ)


      W4=W4/3. 
               
      RETURN
      END FUNCTION W4
!      
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *B3(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION B3(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *B3*  WEIGHTS OF THE A_2^*A_3^*A_4 PART OF THE
!           CANONICAL TRANSFORMATION.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *B3(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      COMMON/PRECIS/DOUBLEP
      LOGICAL DOUBLEP
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,XI,XJ,XK,XL,THI,THJ,THK,THL,OI,OJ,OK,OL,RI,RJ,RK,RL,&
     RIJ,RJI,RIK,RKI,RLJ,RJL,RJK,RKJ,RLI,RIL,RLK,RKL,THIJ,THJI,&
     THIK,THKI,THLJ,THJL,THJK,THKJ,THLI,THIL,THLK,THKL,ZIJKL
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      IF (DOUBLEP) THEN
         DEL1=10.**(-5)
      ELSE
         DEL1=0.01
      ENDIF

      RI=XI
      RJ=XJ
      RK=XK
      RL=XL

      OI=OMEG(RI)+DEL1
      OJ=OMEG(RJ)+DEL1
      OK=OMEG(RK)+DEL1
      OL=OMEG(RL)+DEL1

      RIJ  = VABS(RI,RJ,THI,THJ)
      THIJ = VDIR(RI,RJ,THI,THJ)

      RJI  = VABS(RJ,RI,THJ,THI)
      THJI = VDIR(RJ,RI,THJ,THI)

      RIK  = VABS(RI,RK,THI,THK)
      THIK = VDIR(RI,RK,THI,THK)

      RKI  = VABS(RK,RI,THK,THI)
      THKI = VDIR(RK,RI,THK,THI)

      RLJ  = VABS(RL,RJ,THL,THJ-PI)
      THLJ = VDIR(RL,RJ,THL,THJ-PI)

      RJL  = VABS(RJ,RL,THJ,THL-PI)
      THJL = VDIR(RJ,RL,THJ,THL-PI)

      RJK  = VABS(RJ,RK,THJ,THK)
      THJK = VDIR(RJ,RK,THJ,THK)

      RKJ  = VABS(RK,RJ,THK,THJ)
      THKJ = VDIR(RK,RJ,THK,THJ)

      RLI  = VABS(RL,RI,THL,THI-PI)
      THLI = VDIR(RL,RI,THL,THI-PI)

      RIL  = VABS(RI,RL,THI,THL-PI)
      THIL = VDIR(RI,RL,THI,THL-PI)

      RLK  = VABS(RL,RK,THL,THK-PI)
      THLK = VDIR(RL,RK,THL,THK-PI)

      RKL  = VABS(RK,RL,THK,THL-PI)
      THKL = VDIR(RK,RL,THK,THL-PI)

      ZIJKL = OI+OJ+OK-OL

      B3= -1./ZIJKL*(2.*( &
    VMIN(RL,RI,RLI,THL,THI,THLI)*A1(RJK,RJ,RK,THJK,THJ,THK)&
   -VMIN(RIJ,RI,RJ,THIJ,THI,THJ)*A1(RL,RK,RLK,THL,THK,THLK)&
   -VMIN(RIK,RI,RK,THIK,THI,THK)*A1(RL,RJ,RLJ,THL,THJ,THLJ)&
   -VPLUS(RJ,RI,RJI,THJ,THI,THJI-PI)*A1(RK,RL,RKL,THK,THL,THKL)&
   -VPLUS(RK,RI,RKI,THK,THI,THKI-PI)*A1(RJ,RL,RJL,THJ,THL,THJL)&
   +VMIN(RI,RL,RIL,THI,THL,THIL)*A3(RJ,RK,RJK,THJ,THK,THJK-PI))&
   +3.*W1(RL,RK,RJ,RI,THL,THK,THJ,THI) )

      RETURN
      END FUNCTION B3
!      
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *B4(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION B4(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *B4*  WEIGHTS OF THE A_2^*A_3^*A_4^* PART OF THE CANONICAL
!           TRANSFORMATION.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *B4(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      COMMON/PRECIS/DOUBLEP
      LOGICAL DOUBLEP
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,XI,XJ,XK,XL,THI,THJ,THK,THL,OI,OJ,OK,OL,RI,RJ,RK,RL,&
     RIJ,RIK,RIL,RJL,RJK,RKL,THIJ,THIK,THIL,THJL,THJK,THLK,THKL,&
     ZIJKL
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!


      RI=XI
      RJ=XJ
      RK=XK
      RL=XL

      OI=OMEG(RI)
      OJ=OMEG(RJ)
      OK=OMEG(RK)
      OL=OMEG(RL)


      RIJ  = VABS(RI,RJ,THI,THJ)
      THIJ = VDIR(RI,RJ,THI,THJ)

      RIK  = VABS(RI,RK,THI,THK)
      THIK = VDIR(RI,RK,THI,THK)

      RIL  = VABS(RI,RL,THI,THL)
      THIL = VDIR(RI,RL,THI,THL)

      RJL  = VABS(RJ,RL,THJ,THL)
      THJL = VDIR(RJ,RL,THJ,THL)

      RJK  = VABS(RJ,RK,THJ,THK)
      THJK = VDIR(RJ,RK,THJ,THK)

      RKL  = VABS(RK,RL,THK,THL)
      THKL = VDIR(RK,RL,THK,THL)      

      
      ZIJKL = OI+OJ+OK+OL

      B4= -1./ZIJKL*(2./3.*(    &
      VPLUS(RIJ,RI,RJ,THIJ-PI,THI,THJ)*A1(RKL,RK,RL,THKL,THK,THL)&
    +VPLUS(RIK,RI,RK,THIK-PI,THI,THK)*A1(RJL,RJ,RL,THJL,THJ,THL)&
    +VPLUS(RIL,RI,RL,THIL-PI,THI,THL)*A1(RJK,RJ,RK,THJK,THJ,THK)&
    +VMIN(RIK,RI,RK,THIK,THI,THK)*A3(RJL,RJ,RL,THJL-PI,THJ,THL)&
    +VMIN(RIL,RI,RL,THIL,THI,THL)*A3(RJK,RJ,RK,THJK-PI,THJ,THK)&
    +VMIN(RIJ,RI,RJ,THIJ,THI,THJ)*A3(RKL,RK,RL,THKL-PI,THK,THL) )&
    +W4(RI,RJ,RK,RL,THI,THJ,THK,THL) )

      RETURN
      END FUNCTION B4
!      
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *B1(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION B1(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!***  *B1*  WEIGHTS OF THE A_2A_3A_4 PART OF THE CANONICAL
!           TRANSFORMATION.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *B1(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      COMMON/PRECIS/DOUBLEP
      LOGICAL DOUBLEP
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,XI,XJ,XK,XL,THI,THJ,THK,THL,OI,OJ,OK,OL,RI,RJ,RK,RL,&
     RIJ,RJI,RIK,RKI,RJL,RJK,RLI,RIL,RKL,THIJ,THJI,&
     THIK,THKI,THJL,THJK,THLI,THIL,THKL,ZIJKL
!
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!

      RI=XI
      RJ=XJ
      RK=XK
      RL=XL

      OI=OMEG(RI)
      OJ=OMEG(RJ)
      OK=OMEG(RK)
      OL=OMEG(RL)

      RIJ  = VABS(RI,RJ,THI,THJ-PI)
      THIJ = VDIR(RI,RJ,THI,THJ-PI)

      RJI  = VABS(RJ,RI,THJ,THI-PI)
      THJI = VDIR(RJ,RI,THJ,THI-PI)

      RIK  = VABS(RI,RK,THI,THK-PI)
      THIK = VDIR(RI,RK,THI,THK-PI)

      RKI  = VABS(RK,RI,THK,THI-PI)
      THKI = VDIR(RK,RI,THK,THI-PI)

      RIL  = VABS(RI,RL,THI,THL-PI)
      THIL = VDIR(RI,RL,THI,THL-PI)

      RLI  = VABS(RL,RI,THL,THI-PI)
      THLI = VDIR(RL,RI,THL,THI-PI)

      RJL  = VABS(RJ,RL,THJ,THL)
      THJL = VDIR(RJ,RL,THJ,THL)

      RJK  = VABS(RJ,RK,THJ,THK)
      THJK = VDIR(RJ,RK,THJ,THK)

      RKL  = VABS(RK,RL,THK,THL)
      THKL = VDIR(RK,RL,THK,THL)      
      
      ZIJKL = OI-OJ-OK-OL
      
      B1= -1./ZIJKL*(2./3.*(    &
      MIN(RI,RJ,RIJ,THI,THJ,THIJ)*A1(RKL,RK,RL,THKL,THK,THL)&
    +VMIN(RI,RK,RIK,THI,THK,THIK)*A1(RJL,RJ,RL,THJL,THJ,THL)&
    +VMIN(RI,RL,RIL,THI,THL,THIL)*A1(RJK,RJ,RK,THJK,THJ,THK)&
    +VMIN(RK,RI,RKI,THK,THI,THKI)*A3(RJL,RJ,RL,THJL-PI,THJ,THL)&
    +VMIN(RL,RI,RLI,THL,THI,THLI)*A3(RJK,RJ,RK,THJK-PI,THJ,THK)&
    +VMIN(RJ,RI,RJI,THJ,THI,THJI)*A3(RKL,RK,RL,THKL-PI,THK,THL) &
    ) +W1(RI,RJ,RK,RL,THI,THJ,THK,THL) )    
      RETURN
      END FUNCTION B1

!      
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *B2(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!-----------------------------------------------------------------------
      REAL FUNCTION B2(XI,XJ,XK,XL,THI,THJ,THK,THL)
!
!
!***  *B2*  WEIGHTS OF THE A_2^*A_3A_4 PART OF THE CANONICAL
!           TRANSFORMATION.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR FOUR
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV,AND CRAWFORD ET AL)
!
!     INTERFACE.
!     ----------
!              *B2(XI,XJ,XK,XL)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!                      *XL*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      COMMON/PRECIS/DOUBLEP
      LOGICAL DOUBLEP
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,XI,XJ,XK,XL,THI,THJ,THK,THL,OI,OJ,OK,OL,RI,RJ,RK,RL,&
     RIJ,RIK,RKI,RJL,RLJ,RJK,RKJ,RLI,RIL,RKL,THIJ,&
     THIK,THKI,THJL,THLJ,THJK,THKJ,THLI,THIL,THKL,ZIJKL
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!

      RI=XI
      RJ=XJ
      RK=XK
      RL=XL

      RIJ  = VABS(RI,RJ,THI,THJ)
      THIJ = VDIR(RI,RJ,THI,THJ)

      RIK  = VABS(RI,RK,THI,THK-PI)
      THIK = VDIR(RI,RK,THI,THK-PI)

      RKI  = VABS(RK,RI,THK,THI-PI)
      THKI = VDIR(RK,RI,THK,THI-PI)

      RIL  = VABS(RI,RL,THI,THL-PI)
      THIL = VDIR(RI,RL,THI,THL-PI)

      RLI  = VABS(RL,RI,THL,THI-PI)
      THLI = VDIR(RL,RI,THL,THI-PI)

      RJL  = VABS(RJ,RL,THJ,THL-PI)
      THJL = VDIR(RJ,RL,THJ,THL-PI)

      RLJ  = VABS(RL,RJ,THL,THJ-PI)
      THLJ = VDIR(RL,RJ,THL,THJ-PI)

      RJK  = VABS(RJ,RK,THJ,THK-PI)
      THJK = VDIR(RJ,RK,THJ,THK-PI)

      RKJ  = VABS(RK,RJ,THK,THJ-PI)
      THKJ = VDIR(RK,RJ,THK,THJ-PI)

      RKL  = VABS(RK,RL,THK,THL)
      THKL = VDIR(RK,RL,THK,THL)   

      B2=  A3(RI,RJ,RIJ,THI,THJ,THIJ-PI)*A3(RK,RL,RKL,THK,THL,THKL-PI)&
    +A1(RJ,RK,RJK,THJ,THK,THJK)*A1(RL,RI,RLI,THL,THI,THLI)&
    +A1(RJ,RL,RJL,THJ,THL,THJL)*A1(RK,RI,RKI,THK,THI,THKI)&
    -A1(RIJ,RI,RJ,THIJ,THI,THJ)*A1(RKL,RK,RL,THKL,THK,THL)&
    -A1(RI,RK,RIK,THI,THK,THIK)*A1(RL,RJ,RLJ,THL,THJ,THLJ)&
    -A1(RI,RL,RIL,THI,THL,THIL)*A1(RK,RJ,RKJ,THK,THJ,THKJ)


      RETURN
      END FUNCTION B2
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *A1(XI,XJ,XK,THI,THJ,THK)
!
!-----------------------------------------------------------------------
      REAL FUNCTION A1(XI,XJ,XK,THI,THJ,THK)
!
!***  *A1*  AUXILIARY SECOND-ORDER COEFFICIENT.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR THREE
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV)
!
!     INTERFACE.
!     ----------
!              *VMIN(XI,XJ,XK)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      COMMON/PRECIS/DOUBLEP
      LOGICAL DOUBLEP
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHA,DEPTHD
      REAL DEL1,XI,XJ,XK,THI,THJ,THK,OI,OJ,OK
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      IF (DOUBLEP) THEN
         DEL1 = 10.**(-8)
      ELSE
         DEL1 = 10.**(-4)
      ENDIF

      OI=OMEG(XI)+DEL1
      OJ=OMEG(XJ)+DEL1
      OK=OMEG(XK)+DEL1

      A1 = -VMIN(XI,XJ,XK,THI,THJ,THK)/(OI-OJ-OK)

      RETURN
      END FUNCTION A1
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *A2(XI,XJ,XK,THI,THJ,THK)
!
!-----------------------------------------------------------------------
      REAL FUNCTION A2(XI,XJ,XK,THI,THJ,THK)
!
!***  *A2*  AUXILIARY SECOND-ORDER FUNCTION.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR THREE
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV)
!
!     INTERFACE.
!     ----------
!              *VMIN(XI,XJ,XK)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      REAL DEL1,XI,XJ,XK,THI,THJ,THK
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!
      A2 = -2.*A1(XK,XJ,XI,THK,THJ,THI)
      RETURN
      END FUNCTION A2
!
!-----------------------------------------------------------------------
!
!***  *REAL FUNCTION* *A3(XI,XJ,XK,THI,THJ,THK)
!
!-----------------------------------------------------------------------
      REAL FUNCTION A3(XI,XJ,XK,THI,THJ,THK)
!
!***  *A3*  AUXILIARY SECOND-ORDER FUNCTION.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES NONLINEAR TRANSFER COEFFICIENT FOR THREE
!              WAVE INTERACTIONS OF GRAVITY-CAPILLARY WAVES IN THE
!              IDEAL CASE OF NO CURRENT. (CF.ZAKHAROV)
!
!     INTERFACE.
!     ----------
!              *VMIN(XI,XJ,XK)*
!                      *XI*  - WAVE NUMBER
!                      *XJ*  - WAVE NUMBER
!                      *XK*  - WAVE NUMBER
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/PRECIS/DOUBLEP
      LOGICAL DOUBLEP
      REAL DEL1,OI,OJ,OK,XI,XJ,XK,THI,THJ,THK
!
!***  1. DETERMINE NONLINEAR TRANSFER.
!     --------------------------------
!    
      IF (DOUBLEP) THEN
         DEL1 = 10.**(-8)
      ELSE
         DEL1 = 10.**(-4)
      ENDIF


      OI=OMEG(XI)+DEL1
      OJ=OMEG(XJ)+DEL1
      OK=OMEG(XK)+DEL1

      A3 = -VPLUS(XI,XJ,XK,THI,THJ,THK)/(OI+OJ+OK)
      RETURN
      END FUNCTION A3

!
!-----------------------------------------------------------------------
!
!
!***  *REAL FUNCTION* *OMEG(X)*
!
!-----------------------------------------------------------------------
!
      REAL FUNCTION OMEG(X)
!
!***  *OMEG*   DETERMINES THE DISPERSION RELATION FOR GRAVITY
!              WAVES.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES DISPERSION RELATION FOR GRAVITY-
!              WAVES IN THE IDEAL CASE OF NO CURRENT.
!
!     INTERFACE.
!     ----------
!              *OMEG(X)*
!                      *X*  - WAVE NUMBER
!
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHD
      REAL D,XK,X,T

      D = DEPTH
      XK = ABS(X)
      T = TANH(XK*D)
      OMEG=SQRT(G*XK*T)

      RETURN
      END FUNCTION OMEG
!
!
!-----------------------------------------------------------------------
!
!
!***  *REAL FUNCTION* *VG(X)*
!
!-----------------------------------------------------------------------
!
      REAL FUNCTION VG(X)
!
!***  *VG*   DETERMINES THE GROUP VELOCITY FOR GRAVITY- WAVES.
!
!     PETER JANSSEN
!
!     PURPOSE.
!     --------
!
!              GIVES GROUP VELOCITY FOR GRAVITY-
!              WAVES IN THE IDEAL CASE OF NO CURRENT.
!
!     INTERFACE.
!     ----------
!              *VG(X)*
!              *X*  - WAVE NUMBER
!
!     METHOD.
!     -------
!              NONE
!
!     EXTERNALS.
!     ----------
!              NONE.
!
!-----------------------------------------------------------------------
!
      IMPLICIT NONE
      COMMON/CONST/DEPTH,ALPHA,MDW,GAM_J,DEPTHD
      INTEGER MDW
      REAL DEPTH,ALPHA,GAM_J,DEPTHD
      REAL D,XK,X,XD

      D = DEPTH
      XK = ABS(X)
      XD = XK*DEPTH

      VG = 0.5*SQRT(G*TANH(XD)/XK)*(1.+2.*XD/SINH(2.*XD))

      RETURN
      END FUNCTION VG
!---------------------------------------------------------------------
      REAL FUNCTION AKI(OM,BETA)
! This function gives the wavenumber ... 
!---------------------------------------------------------------------
!
      IMPLICIT NONE
      REAL OM,BETA,G,EBS,AKM1,AKM2,AO,AKP,BO,TH,STH

      G =9.806
      EBS=0.0001
      AKM1=OM**2/(4.*G )
      AKM2=OM/(2.*SQRT(G*BETA))
      AO=MAX(AKM1,AKM2)
 10   CONTINUE
      AKP=AO
      BO=BETA*AO
!     IF (BO.GT.10) GO TO 20
      IF (BO.GT.20.) GO TO 20
      TH=G*AO*TANH(BO)
      STH=SQRT(TH)
      AO=AO+(OM-STH)*STH*2./(TH/AO+G*BO/COSH(BO)**2)
      IF (ABS(AKP-AO).GT.EBS*AO) GO TO 10
      AKI=AO
      RETURN
 20   CONTINUE
      AKI=OM**2/G
      RETURN
      END FUNCTION AKI
!
      REAL FUNCTION VABS(XI,XJ,THI,THJ)
!
!---------------------------------------------------------------------
!
      IMPLICIT NONE
      REAL XI,XJ,THI,THJ,ARG

      ARG = XI**2+XJ**2+2.*XI*XJ*COS(THI-THJ)

      IF (ARG.LE.0.) THEN
         VABS = 0.
      ELSE
         VABS = SQRT(ARG)
      ENDIF

      RETURN
      END FUNCTION VABS
!
      REAL FUNCTION VDIR(XI,XJ,THI,THJ)
!
!---------------------------------------------------------------------
!
      IMPLICIT NONE
      REAL XI,XJ,THI,THJ,EPS,Y,X

      EPS = 0.

      Y = XJ*SIN(THJ-THI)
      X = XI+XJ*COS(THJ-THI)+EPS
      VDIR = ATAN2(Y,X)+THI
      IF (X.EQ.0.) VDIR = 0.

      RETURN
      END FUNCTION VDIR
!/
!/ End of module W3CANOMD -------------------------------------------- /
!/
      END MODULE W3CANOMD