!*********************************************************************** !* GNU Lesser General Public License !* !* This file is part of the FV3 dynamical core. !* !* The FV3 dynamical core is free software: you can redistribute it !* and/or modify it under the terms of the !* GNU Lesser General Public License as published by the !* Free Software Foundation, either version 3 of the License, or !* (at your option) any later version. !* !* The FV3 dynamical core is distributed in the hope that it will be !* useful, but WITHOUT ANYWARRANTY; without even the implied warranty !* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. !* See the GNU General Public License for more details. !* !* You should have received a copy of the GNU Lesser General Public !* License along with the FV3 dynamical core. !* If not, see . !*********************************************************************** !>@brief The module 'nh_utils' peforms non-hydrostatic computations. !>@author S. J. Lin, NOAA/GFDL module nh_utils_mod ! Modules Included: ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
Module NameFunctions Included
constants_modrdgas, cp_air, grav
fv_arrays_modfv_grid_bounds_type, fv_grid_type
sw_core_modfill_4corners, del6_vt_flux
tp_core_modfv_tp_2d
use constants_mod, only: rdgas, cp_air, grav use tp_core_mod, only: fv_tp_2d use sw_core_mod, only: fill_4corners, del6_vt_flux use fv_arrays_mod, only: fv_grid_bounds_type, fv_grid_type #ifdef MULTI_GASES use multi_gases_mod, only: vicpqd, vicvqd #endif implicit none private public update_dz_c, update_dz_d, nest_halo_nh public sim_solver, sim1_solver, sim3_solver public sim3p0_solver, rim_2d public Riem_Solver_c real, parameter:: dz_min = 6. real, parameter:: r3 = 1./3. CONTAINS subroutine update_dz_c(is, ie, js, je, km, ng, dt, dp0, zs, area, ut, vt, gz, ws, & npx, npy, sw_corner, se_corner, ne_corner, nw_corner, bd, grid_type) ! !INPUT PARAMETERS: type(fv_grid_bounds_type), intent(IN) :: bd integer, intent(in):: is, ie, js, je, ng, km, npx, npy, grid_type logical, intent(IN):: sw_corner, se_corner, ne_corner, nw_corner real, intent(in):: dt real, intent(in):: dp0(km) real, intent(in), dimension(is-ng:ie+ng,js-ng:je+ng,km):: ut, vt real, intent(in), dimension(is-ng:ie+ng,js-ng:je+ng):: area real, intent(inout):: gz(is-ng:ie+ng,js-ng:je+ng,km+1) real, intent(in ):: zs(is-ng:ie+ng, js-ng:je+ng) real, intent( out):: ws(is-ng:ie+ng, js-ng:je+ng) ! Local Work array: real:: gz2(is-ng:ie+ng,js-ng:je+ng) real, dimension(is-1:ie+2,js-1:je+1):: xfx, fx real, dimension(is-1:ie+1,js-1:je+2):: yfx, fy real, parameter:: r14 = 1./14. integer i, j, k integer:: is1, ie1, js1, je1 integer:: ie2, je2 real:: rdt, top_ratio, bot_ratio, int_ratio !-------------------------------------------------------------------- rdt = 1. / dt top_ratio = dp0(1 ) / (dp0( 1)+dp0(2 )) bot_ratio = dp0(km) / (dp0(km-1)+dp0(km)) is1 = is - 1 js1 = js - 1 ie1 = ie + 1 je1 = je + 1 ie2 = ie + 2 je2 = je + 2 !$OMP parallel do default(none) shared(js1,je1,is1,ie2,km,je2,ie1,ut,top_ratio,vt, & !$OMP bot_ratio,dp0,js,je,ng,is,ie,gz,grid_type, & !$OMP bd,npx,npy,sw_corner,se_corner,ne_corner, & !$OMP nw_corner,area) & !$OMP private(gz2, xfx, yfx, fx, fy, int_ratio) do 6000 k=1,km+1 if ( k==1 ) then do j=js1, je1 do i=is1, ie2 xfx(i,j) = ut(i,j,1) + (ut(i,j,1)-ut(i,j,2))*top_ratio enddo enddo do j=js1, je2 do i=is1, ie1 yfx(i,j) = vt(i,j,1) + (vt(i,j,1)-vt(i,j,2))*top_ratio enddo enddo elseif ( k==km+1 ) then ! Bottom extrapolation do j=js1, je1 do i=is1, ie2 xfx(i,j) = ut(i,j,km) + (ut(i,j,km)-ut(i,j,km-1))*bot_ratio ! xfx(i,j) = r14*(3.*ut(i,j,km-2)-13.*ut(i,j,km-1)+24.*ut(i,j,km)) ! if ( xfx(i,j)*ut(i,j,km)<0. ) xfx(i,j) = 0. enddo enddo do j=js1, je2 do i=is1, ie1 yfx(i,j) = vt(i,j,km) + (vt(i,j,km)-vt(i,j,km-1))*bot_ratio ! yfx(i,j) = r14*(3.*vt(i,j,km-2)-13.*vt(i,j,km-1)+24.*vt(i,j,km)) ! if ( yfx(i,j)*vt(i,j,km)<0. ) yfx(i,j) = 0. enddo enddo else int_ratio = 1./(dp0(k-1)+dp0(k)) do j=js1, je1 do i=is1, ie2 xfx(i,j) = (dp0(k)*ut(i,j,k-1)+dp0(k-1)*ut(i,j,k))*int_ratio enddo enddo do j=js1, je2 do i=is1, ie1 yfx(i,j) = (dp0(k)*vt(i,j,k-1)+dp0(k-1)*vt(i,j,k))*int_ratio enddo enddo endif do j=js-ng, je+ng do i=is-ng, ie+ng gz2(i,j) = gz(i,j,k) enddo enddo if (grid_type < 3) call fill_4corners(gz2, 1, bd, npx, npy, sw_corner, se_corner, ne_corner, nw_corner) do j=js1, je1 do i=is1, ie2 if( xfx(i,j) > 0. ) then fx(i,j) = gz2(i-1,j) else fx(i,j) = gz2(i ,j) endif fx(i,j) = xfx(i,j)*fx(i,j) enddo enddo if (grid_type < 3) call fill_4corners(gz2, 2, bd, npx, npy, sw_corner, se_corner, ne_corner, nw_corner) do j=js1,je2 do i=is1,ie1 if( yfx(i,j) > 0. ) then fy(i,j) = gz2(i,j-1) else fy(i,j) = gz2(i,j) endif fy(i,j) = yfx(i,j)*fy(i,j) enddo enddo do j=js1, je1 do i=is1,ie1 gz(i,j,k) = (gz2(i,j)*area(i,j) + fx(i,j)- fx(i+1,j)+ fy(i,j)- fy(i,j+1)) & / ( area(i,j) + xfx(i,j)-xfx(i+1,j)+yfx(i,j)-yfx(i,j+1)) enddo enddo 6000 continue ! Enforce monotonicity of height to prevent blowup !$OMP parallel do default(none) shared(is1,ie1,js1,je1,ws,zs,gz,rdt,km) do j=js1, je1 do k=2, km+1 do i=is1, ie1 gz(i,j,k) = min( gz(i,j,k), gz(i,j,k-1) - dz_min ) enddo enddo do i=is1, ie1 ws(i,j) = ( zs(i,j) - gz(i,j,km+1) ) * rdt enddo enddo end subroutine update_dz_c subroutine update_dz_d(ndif, damp, hord, is, ie, js, je, km, ng, npx, npy, area, rarea, & dp0, zs, zh, crx, cry, xfx, yfx, delz, ws, rdt, gridstruct, bd, lim_fac, regional) type(fv_grid_bounds_type), intent(IN) :: bd integer, intent(in):: is, ie, js, je, ng, km, npx, npy integer, intent(in):: hord real, intent(in) :: rdt real, intent(in) :: dp0(km) real, intent(in) :: area(is-ng:ie+ng,js-ng:je+ng) real, intent(in) :: rarea(is-ng:ie+ng,js-ng:je+ng) real, intent(inout):: damp(km+1) integer, intent(inout):: ndif(km+1) real, intent(in ) :: zs(is-ng:ie+ng,js-ng:je+ng) real, intent(inout) :: zh(is-ng:ie+ng,js-ng:je+ng,km+1) real, intent( out) ::delz(is-ng:ie+ng,js-ng:je+ng,km) real, intent(inout), dimension(is:ie+1,js-ng:je+ng,km):: crx, xfx real, intent(inout), dimension(is-ng:ie+ng,js:je+1,km):: cry, yfx real, intent(out) :: ws(is:ie,js:je) type(fv_grid_type), intent(IN), target :: gridstruct real, intent(in) :: lim_fac logical,intent(in) :: regional !----------------------------------------------------- ! Local array: real, dimension(is: ie+1, js-ng:je+ng,km+1):: crx_adv, xfx_adv real, dimension(is-ng:ie+ng,js: je+1,km+1 ):: cry_adv, yfx_adv real, dimension(is:ie+1,js:je ):: fx real, dimension(is:ie ,js:je+1):: fy real, dimension(is-ng:ie+ng+1,js-ng:je+ng ):: fx2 real, dimension(is-ng:ie+ng ,js-ng:je+ng+1):: fy2 real, dimension(is-ng:ie+ng ,js-ng:je+ng ):: wk2, z2 real:: ra_x(is:ie,js-ng:je+ng) real:: ra_y(is-ng:ie+ng,js:je) !-------------------------------------------------------------------- integer i, j, k, isd, ied, jsd, jed logical:: uniform_grid uniform_grid = .false. damp(km+1) = damp(km) ndif(km+1) = ndif(km) isd = is - ng; ied = ie + ng jsd = js - ng; jed = je + ng !$OMP parallel do default(none) shared(jsd,jed,crx,xfx,crx_adv,xfx_adv,is,ie,isd,ied, & !$OMP km,dp0,uniform_grid,js,je,cry,yfx,cry_adv,yfx_adv) do j=jsd,jed call edge_profile(crx, xfx, crx_adv, xfx_adv, is, ie+1, jsd, jed, j, km, & dp0, uniform_grid, 0) if ( j<=je+1 .and. j>=js ) & call edge_profile(cry, yfx, cry_adv, yfx_adv, isd, ied, js, je+1, j, km, & dp0, uniform_grid, 0) enddo !$OMP parallel do default(none) shared(is,ie,js,je,isd,ied,jsd,jed,km,area,xfx_adv,yfx_adv, & !$OMP damp,zh,crx_adv,cry_adv,npx,npy,hord,gridstruct,bd, & !$OMP ndif,rarea,lim_fac,regional) & !$OMP private(z2, fx2, fy2, ra_x, ra_y, fx, fy,wk2) do k=1,km+1 do j=jsd,jed do i=is,ie ra_x(i,j) = area(i,j) + xfx_adv(i,j,k) - xfx_adv(i+1,j,k) enddo enddo do j=js,je do i=isd,ied ra_y(i,j) = area(i,j) + yfx_adv(i,j,k) - yfx_adv(i,j+1,k) enddo enddo if ( damp(k)>1.E-5 ) then do j=jsd,jed do i=isd,ied z2(i,j) = zh(i,j,k) enddo enddo call fv_tp_2d(z2, crx_adv(is,jsd,k), cry_adv(isd,js,k), npx, npy, hord, & fx, fy, xfx_adv(is,jsd,k), yfx_adv(isd,js,k), gridstruct, bd, ra_x, ra_y, lim_fac, regional) call del6_vt_flux(ndif(k), npx, npy, damp(k), z2, wk2, fx2, fy2, gridstruct, bd) do j=js,je do i=is,ie zh(i,j,k) = (z2(i,j)*area(i,j)+fx(i,j)-fx(i+1,j)+fy(i,j)-fy(i,j+1)) & / (ra_x(i,j)+ra_y(i,j)-area(i,j)) + (fx2(i,j)-fx2(i+1,j)+fy2(i,j)-fy2(i,j+1))*rarea(i,j) enddo enddo else call fv_tp_2d(zh(isd,jsd,k), crx_adv(is,jsd,k), cry_adv(isd,js,k), npx, npy, hord, & fx, fy, xfx_adv(is,jsd,k), yfx_adv(isd,js,k), gridstruct, bd, ra_x, ra_y, lim_fac, regional) do j=js,je do i=is,ie zh(i,j,k) = (zh(i,j,k)*area(i,j)+fx(i,j)-fx(i+1,j)+fy(i,j)-fy(i,j+1)) & / (ra_x(i,j) + ra_y(i,j) - area(i,j)) ! zh(i,j,k) = rarea(i,j)*(fx(i,j)-fx(i+1,j)+fy(i,j)-fy(i,j+1)) & ! + zh(i,j,k)*(3.-rarea(i,j)*(ra_x(i,j) + ra_y(i,j))) enddo enddo endif enddo !$OMP parallel do default(none) shared(is,ie,js,je,km,ws,zs,zh,rdt) do j=js, je do k=2, km+1 do i=is, ie ! Enforce monotonicity of height to prevent blowup zh(i,j,k) = min( zh(i,j,k), zh(i,j,k-1) - dz_min ) enddo enddo do i=is,ie ws(i,j) = ( zs(i,j) - zh(i,j,km+1) ) * rdt enddo enddo end subroutine update_dz_d subroutine Riem_Solver_c(ms, dt, is, ie, js, je, km, ng, & akap, cappa, cp, & #ifdef MULTI_GASES kapad, & #endif ptop, hs, w3, pt, q_con, & delp, gz, pef, ws, p_fac, a_imp, scale_m) integer, intent(in):: is, ie, js, je, ng, km integer, intent(in):: ms real, intent(in):: dt, akap, cp, ptop, p_fac, a_imp, scale_m real, intent(in):: ws(is-ng:ie+ng,js-ng:je+ng) real, intent(in), dimension(is-ng:ie+ng,js-ng:je+ng,km):: pt, delp real, intent(in), dimension(is-ng:,js-ng:,1:):: q_con, cappa #ifdef MULTI_GASES real, intent(in), dimension(is-ng:ie+ng,js-ng:je+ng,km):: kapad #endif real, intent(in):: hs(is-ng:ie+ng,js-ng:je+ng) real, intent(in), dimension(is-ng:ie+ng,js-ng:je+ng,km):: w3 ! OUTPUT PARAMETERS real, intent(inout), dimension(is-ng:ie+ng,js-ng:je+ng,km+1):: gz real, intent( out), dimension(is-ng:ie+ng,js-ng:je+ng,km+1):: pef ! Local: real, dimension(is-1:ie+1,km ):: dm, dz2, w2, pm2, gm2, cp2 real, dimension(is-1:ie+1,km+1):: pem, pe2, peg #ifdef MULTI_GASES real, dimension(is-1:ie+1,km ):: kapad2 #endif real gama, rgrav integer i, j, k integer is1, ie1 gama = 1./(1.-akap) rgrav = 1./grav is1 = is - 1 ie1 = ie + 1 !$OMP parallel do default(none) shared(js,je,is1,ie1,km,delp,pef,ptop,gz,rgrav,w3,pt, & #ifdef MULTI_GASES !$OMP a_imp,dt,gama,akap,ws,p_fac,scale_m,ms,hs,q_con,cappa,kapad) & !$OMP private(cp2,gm2, dm, dz2, w2, pm2, pe2, pem, peg, kapad2) #else !$OMP a_imp,dt,gama,akap,ws,p_fac,scale_m,ms,hs,q_con,cappa) & !$OMP private(cp2,gm2, dm, dz2, w2, pm2, pe2, pem, peg) #endif do 2000 j=js-1, je+1 do k=1,km do i=is1, ie1 dm(i,k) = delp(i,j,k) enddo enddo do i=is1, ie1 pef(i,j,1) = ptop ! full pressure at top pem(i,1) = ptop #ifdef USE_COND peg(i,1) = ptop #endif enddo do k=2,km+1 do i=is1, ie1 pem(i,k) = pem(i,k-1) + dm(i,k-1) #ifdef USE_COND ! Excluding contribution from condensates: peg(i,k) = peg(i,k-1) + dm(i,k-1)*(1.-q_con(i,j,k-1)) #endif enddo enddo do k=1,km do i=is1, ie1 dz2(i,k) = gz(i,j,k+1) - gz(i,j,k) #ifdef USE_COND pm2(i,k) = (peg(i,k+1)-peg(i,k))/log(peg(i,k+1)/peg(i,k)) #ifdef MOIST_CAPPA cp2(i,k) = cappa(i,j,k) gm2(i,k) = 1. / (1.-cp2(i,k)) #endif #else pm2(i,k) = dm(i,k)/log(pem(i,k+1)/pem(i,k)) #endif #ifdef MULTI_GASES kapad2(i,k) = kapad(i,j,k) #endif dm(i,k) = dm(i,k) * rgrav w2(i,k) = w3(i,j,k) enddo enddo if ( a_imp < -0.01 ) then call SIM3p0_solver(dt, is1, ie1, km, rdgas, gama, akap, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm, & pem, w2, dz2, pt(is1:ie1,j,1:km), ws(is1,j), p_fac, scale_m) elseif ( a_imp <= 0.5 ) then call RIM_2D(ms, dt, is1, ie1, km, rdgas, gama, gm2, & #ifdef MULTI_GASES kapad2, & #endif pe2, & dm, pm2, w2, dz2, pt(is1:ie1,j,1:km), ws(is1,j), .true.) else call SIM1_solver(dt, is1, ie1, km, rdgas, gama, gm2, cp2, akap, & #ifdef MULTI_GASES kapad2, & #endif pe2, & dm, pm2, pem, w2, dz2, pt(is1:ie1,j,1:km), ws(is1,j), p_fac) endif do k=2,km+1 do i=is1, ie1 pef(i,j,k) = pe2(i,k) + pem(i,k) ! add hydrostatic full-component enddo enddo ! Compute Height * grav (for p-gradient computation) do i=is1, ie1 gz(i,j,km+1) = hs(i,j) enddo do k=km,1,-1 do i=is1, ie1 gz(i,j,k) = gz(i,j,k+1) - dz2(i,k)*grav enddo enddo 2000 continue end subroutine Riem_Solver_c !>GFDL - This routine will not give absoulte reproducibility when compiled with -fast-transcendentals. !! GFDL - It is now inside of nh_core.F90 and being compiled without -fast-transcendentals. subroutine Riem_Solver3test(ms, dt, is, ie, js, je, km, ng, & isd, ied, jsd, jed, akap, cappa, cp, & #ifdef MULTI_GASES kapad, & #endif ptop, zs, q_con, w, delz, pt, & delp, zh, pe, ppe, pk3, pk, peln, & ws, scale_m, p_fac, a_imp, & use_logp, last_call, fp_out) !-------------------------------------------- ! !OUTPUT PARAMETERS ! Ouput: gz: grav*height at edges ! pe: full hydrostatic pressure ! ppe: non-hydrostatic pressure perturbation !-------------------------------------------- integer, intent(in):: ms, is, ie, js, je, km, ng integer, intent(in):: isd, ied, jsd, jed real, intent(in):: dt ! the BIG horizontal Lagrangian time step real, intent(in):: akap, cp, ptop, p_fac, a_imp, scale_m real, intent(in):: zs(isd:ied,jsd:jed) logical, intent(in):: last_call, use_logp, fp_out real, intent(in):: ws(is:ie,js:je) real, intent(in), dimension(isd:,jsd:,1:):: q_con, cappa real, intent(in), dimension(isd:ied,jsd:jed,km):: delp, pt #ifdef MULTI_GASES real, intent(in), dimension(isd:ied,jsd:jed,km):: kapad #endif real, intent(inout), dimension(isd:ied,jsd:jed,km+1):: zh real, intent(inout), dimension(isd:ied,jsd:jed,km):: w real, intent(inout):: pe(is-1:ie+1,km+1,js-1:je+1) real, intent(out):: peln(is:ie,km+1,js:je) ! ln(pe) real, intent(out), dimension(isd:ied,jsd:jed,km+1):: ppe real, intent(out):: delz(is-ng:ie+ng,js-ng:je+ng,km) real, intent(out):: pk(is:ie,js:je,km+1) real, intent(out):: pk3(isd:ied,jsd:jed,km+1) ! Local: real, dimension(is:ie,km):: dm, dz2, pm2, w2, gm2, cp2 real, dimension(is:ie,km+1)::pem, pe2, peln2, peg, pelng #ifdef MULTI_GASES real, dimension(is:ie,km):: kapad2 #endif real gama, rgrav, ptk, peln1 integer i, j, k gama = 1./(1.-akap) rgrav = 1./grav peln1 = log(ptop) ptk = exp(akap*peln1) !$OMP parallel do default(none) shared(is,ie,js,je,km,delp,ptop,peln1,pk3,ptk,akap,rgrav,zh,pt, & !$OMP w,a_imp,dt,gama,ws,p_fac,scale_m,ms,delz,last_call, & #ifdef MULTI_GASES !$OMP peln,pk,fp_out,ppe,use_logp,zs,pe,cappa,q_con,kapad ) & !$OMP private(cp2, gm2, dm, dz2, pm2, pem, peg, pelng, pe2, peln2, w2,kapad2) #else !$OMP peln,pk,fp_out,ppe,use_logp,zs,pe,cappa,q_con ) & !$OMP private(cp2, gm2, dm, dz2, pm2, pem, peg, pelng, pe2, peln2, w2) #endif do 2000 j=js, je do k=1,km do i=is, ie dm(i,k) = delp(i,j,k) #ifdef MOIST_CAPPA cp2(i,k) = cappa(i,j,k) #endif #ifdef MULTI_GASES kapad2(i,k) = kapad(i,j,k) #endif enddo enddo do i=is,ie pem(i,1) = ptop peln2(i,1) = peln1 pk3(i,j,1) = ptk #ifdef USE_COND peg(i,1) = ptop pelng(i,1) = peln1 #endif enddo do k=2,km+1 do i=is,ie pem(i,k) = pem(i,k-1) + dm(i,k-1) peln2(i,k) = log(pem(i,k)) #ifdef USE_COND ! Excluding contribution from condensates: ! peln used during remap; pk3 used only for p_grad peg(i,k) = peg(i,k-1) + dm(i,k-1)*(1.-q_con(i,j,k-1)) pelng(i,k) = log(peg(i,k)) #endif pk3(i,j,k) = exp(akap*peln2(i,k)) enddo enddo do k=1,km do i=is, ie #ifdef USE_COND pm2(i,k) = (peg(i,k+1)-peg(i,k))/(pelng(i,k+1)-pelng(i,k)) #ifdef MOIST_CAPPA gm2(i,k) = 1. / (1.-cp2(i,k)) #endif #else pm2(i,k) = dm(i,k)/(peln2(i,k+1)-peln2(i,k)) #endif dm(i,k) = dm(i,k) * rgrav dz2(i,k) = zh(i,j,k+1) - zh(i,j,k) w2(i,k) = w(i,j,k) enddo enddo if ( a_imp < -0.999 ) then call SIM3p0_solver(dt, is, ie, km, rdgas, gama, akap, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm, & pem, w2, dz2, pt(is:ie,j,1:km), ws(is,j), p_fac, scale_m ) elseif ( a_imp < -0.5 ) then call SIM3_solver(dt, is, ie, km, rdgas, gama, akap, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm, & pem, w2, dz2, pt(is:ie,j,1:km), ws(is,j), abs(a_imp), p_fac, scale_m) elseif ( a_imp <= 0.5 ) then call RIM_2D(ms, dt, is, ie, km, rdgas, gama, gm2, & #ifdef MULTI_GASES kapad2, & #endif pe2, & dm, pm2, w2, dz2, pt(is:ie,j,1:km), ws(is,j), .false.) elseif ( a_imp > 0.999 ) then call SIM1_solver(dt, is, ie, km, rdgas, gama, gm2, cp2, akap, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm, & pm2, pem, w2, dz2, pt(is:ie,j,1:km), ws(is,j), p_fac) else call SIM_solver(dt, is, ie, km, rdgas, gama, gm2, cp2, akap, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm, & pm2, pem, w2, dz2, pt(is:ie,j,1:km), ws(is,j), & a_imp, p_fac, scale_m) endif do k=1, km do i=is, ie w(i,j,k) = w2(i,k) delz(i,j,k) = dz2(i,k) enddo enddo if ( last_call ) then do k=1,km+1 do i=is,ie peln(i,k,j) = peln2(i,k) pk(i,j,k) = pk3(i,j,k) pe(i,k,j) = pem(i,k) enddo enddo endif if( fp_out ) then do k=1,km+1 do i=is, ie ppe(i,j,k) = pe2(i,k) + pem(i,k) enddo enddo else do k=1,km+1 do i=is, ie ppe(i,j,k) = pe2(i,k) enddo enddo endif if ( use_logp ) then do k=2,km+1 do i=is, ie pk3(i,j,k) = peln2(i,k) enddo enddo endif do i=is, ie zh(i,j,km+1) = zs(i,j) enddo do k=km,1,-1 do i=is, ie zh(i,j,k) = zh(i,j,k+1) - dz2(i,k) enddo enddo 2000 continue end subroutine Riem_Solver3test subroutine imp_diff_w(j, is, ie, js, je, ng, km, cd, delz, ws, w, w3) integer, intent(in) :: j, is, ie, js, je, km, ng real, intent(in) :: cd real, intent(in) :: delz(is-ng:ie+ng, km) !< delta-height (m) real, intent(in) :: w(is:ie, km) !< vertical vel. (m/s) real, intent(in) :: ws(is:ie) real, intent(out) :: w3(is-ng:ie+ng,js-ng:je+ng,km) ! Local: real, dimension(is:ie,km):: c, gam, dz, wt real:: bet(is:ie) real:: a integer:: i, k do k=2,km do i=is,ie dz(i,k) = 0.5*(delz(i,k-1)+delz(i,k)) enddo enddo do k=1,km-1 do i=is,ie c(i,k) = -cd/(dz(i,k+1)*delz(i,k)) enddo enddo ! model top: do i=is,ie bet(i) = 1. - c(i,1) ! bet(i) = b wt(i,1) = w(i,1) / bet(i) enddo ! Interior: do k=2,km-1 do i=is,ie gam(i,k) = c(i,k-1)/bet(i) a = cd/(dz(i,k)*delz(i,k)) bet(i) = (1.+a-c(i,k)) + a*gam(i,k) wt(i,k) = (w(i,k) + a*wt(i,k-1)) / bet(i) enddo enddo ! Bottom: do i=is,ie gam(i,km) = c(i,km-1) / bet(i) a = cd/(dz(i,km)*delz(i,km)) wt(i,km) = (w(i,km) + 2.*ws(i)*cd/delz(i,km)**2 & + a*wt(i,km-1))/(1. + a + (cd+cd)/delz(i,km)**2 + a*gam(i,km)) enddo do k=km-1,1,-1 do i=is,ie wt(i,k) = wt(i,k) - gam(i,k+1)*wt(i,k+1) enddo enddo do k=1,km do i=is,ie w3(i,j,k) = wt(i,k) enddo enddo end subroutine imp_diff_w subroutine RIM_2D(ms, bdt, is, ie, km, rgas, gama, gm2, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm2, pm2, w2, dz2, pt2, ws, c_core ) integer, intent(in):: ms, is, ie, km real, intent(in):: bdt, gama, rgas real, intent(in), dimension(is:ie,km):: dm2, pm2, gm2 logical, intent(in):: c_core real, intent(in ) :: pt2(is:ie,km) real, intent(in ) :: ws(is:ie) ! IN/OUT: real, intent(inout):: dz2(is:ie,km) real, intent(inout):: w2(is:ie,km) real, intent(out ):: pe2(is:ie,km+1) #ifdef MULTI_GASES real, intent(inout), dimension(is:ie,km):: kapad2 #endif ! Local: real:: ws2(is:ie) real, dimension(km+1):: m_bot, m_top, r_bot, r_top, pe1, pbar, wbar real, dimension(km):: r_hi, r_lo, dz, wm, dm, dts real, dimension(km):: pf1, wc, cm , pp, pt1 real:: dt, rdt, grg, z_frac, ptmp1, rden, pf, time_left real:: m_surf #ifdef MULTI_GASES real gamax #endif integer:: i, k, n, ke, kt1, ktop integer:: ks0, ks1 grg = gama * rgas rdt = 1. / bdt dt = bdt / real(ms) pbar(:) = 0. wbar(:) = 0. do i=is,ie ws2(i) = 2.*ws(i) enddo do 6000 i=is,ie do k=1,km dz(k) = dz2(i,k) dm(k) = dm2(i,k) wm(k) = w2(i,k)*dm(k) pt1(k) = pt2(i,k) enddo pe1(:) = 0. wbar(km+1) = ws(i) ks0 = 1 if ( ms > 1 .and. ms < 8 ) then ! Continuity of (pbar, wbar) is maintained do k=1, km rden = -rgas*dm(k)/dz(k) #ifdef MOIST_CAPPA pf1(k) = exp( gm2(i,k)*log(rden*pt1(k)) ) ! dts(k) = -dz(k)/sqrt(gm2(i,k)*rgas*pf1(k)/rden) dts(k) = -dz(k)/sqrt(grg*pf1(k)/rden) #else #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,k)) pf1(k) = exp( gamax*log(rden*pt1(k)) ) #else pf1(k) = exp( gama*log(rden*pt1(k)) ) #endif dts(k) = -dz(k)/sqrt(grg*pf1(k)/rden) #endif if ( bdt > dts(k) ) then ks0 = k-1 goto 222 endif enddo ks0 = km 222 if ( ks0==1 ) goto 244 do k=1, ks0 cm(k) = dm(k) / dts(k) wc(k) = wm(k) / dts(k) pp(k) = pf1(k) - pm2(i,k) enddo wbar(1) = (wc(1)+pp(1)) / cm(1) do k=2, ks0 wbar(k) = (wc(k-1)+wc(k) + pp(k)-pp(k-1)) / (cm(k-1)+cm(k)) pbar(k) = bdt*(cm(k-1)*wbar(k) - wc(k-1) + pp(k-1)) pe1(k) = pbar(k) enddo if ( ks0 == km ) then pbar(km+1) = bdt*(cm(km)*wbar(km+1) - wc(km) + pp(km)) if ( c_core ) then do k=1,km dz2(i,k) = dz(k) + bdt*(wbar(k+1) - wbar(k)) enddo else do k=1,km dz2(i,k) = dz(k) + bdt*(wbar(k+1) - wbar(k)) w2(i,k) = (wm(k)+pbar(k+1)-pbar(k))/dm(k) enddo endif pe2(i,1) = 0. do k=2,km+1 pe2(i,k) = pbar(k)*rdt enddo goto 6000 ! next i else if ( c_core ) then do k=1, ks0-1 dz2(i,k) = dz(k) + bdt*(wbar(k+1) - wbar(k)) enddo else do k=1, ks0-1 dz2(i,k) = dz(k) + bdt*(wbar(k+1) - wbar(k)) w2(i,k) = (wm(k)+pbar(k+1)-pbar(k))/dm(k) enddo endif pbar(ks0) = pbar(ks0) / real(ms) endif endif 244 ks1 = ks0 do 5000 n=1, ms do k=ks1, km rden = -rgas*dm(k)/dz(k) #ifdef MOIST_CAPPA pf = exp( gm2(i,k)*log(rden*pt1(k)) ) ! dts(k) = -dz(k) / sqrt( gm2(i,k)*rgas*pf/rden ) dts(k) = -dz(k) / sqrt( grg*pf/rden ) #else #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,k)) pf = exp( gamax*log(rden*pt1(k)) ) #else pf = exp( gama*log(rden*pt1(k)) ) #endif dts(k) = -dz(k) / sqrt( grg*pf/rden ) #endif ptmp1 = dts(k)*(pf - pm2(i,k)) r_lo(k) = wm(k) + ptmp1 r_hi(k) = wm(k) - ptmp1 enddo ktop = ks1 do k=ks1, km if( dt > dts(k) ) then ktop = k-1 goto 333 endif enddo ktop = km 333 continue if ( ktop >= ks1 ) then do k=ks1, ktop z_frac = dt/dts(k) r_bot(k ) = z_frac*r_lo(k) r_top(k+1) = z_frac*r_hi(k) m_bot(k ) = z_frac* dm(k) m_top(k+1) = m_bot(k) enddo if ( ktop == km ) goto 666 endif do k=ktop+2, km+1 m_top(k) = 0. r_top(k) = 0. enddo kt1 = max(1, ktop) do 444 ke=km+1, ktop+2, -1 time_left = dt do k=ke-1, kt1, -1 if ( time_left > dts(k) ) then time_left = time_left - dts(k) m_top(ke) = m_top(ke) + dm(k) r_top(ke) = r_top(ke) + r_hi(k) else z_frac = time_left/dts(k) m_top(ke) = m_top(ke) + z_frac*dm(k) r_top(ke) = r_top(ke) + z_frac*r_hi(k) go to 444 ! next level endif enddo 444 continue do k=ktop+1, km m_bot(k) = 0. r_bot(k) = 0. enddo do 4000 ke=ktop+1, km time_left = dt do k=ke, km if ( time_left > dts(k) ) then time_left = time_left - dts(k) m_bot(ke) = m_bot(ke) + dm(k) r_bot(ke) = r_bot(ke) + r_lo(k) else z_frac = time_left/dts(k) m_bot(ke) = m_bot(ke) + z_frac* dm(k) r_bot(ke) = r_bot(ke) + z_frac*r_lo(k) go to 4000 ! next interface endif enddo m_surf = m_bot(ke) do k=km, kt1, -1 if ( time_left > dts(k) ) then time_left = time_left - dts(k) m_bot(ke) = m_bot(ke) + dm(k) r_bot(ke) = r_bot(ke) - r_hi(k) else z_frac = time_left/dts(k) m_bot(ke) = m_bot(ke) + z_frac* dm(k) r_bot(ke) = r_bot(ke) - z_frac*r_hi(k) + (m_bot(ke)-m_surf)*ws2(i) go to 4000 ! next interface endif enddo 4000 continue 666 if ( ks1==1 ) wbar(1) = r_bot(1) / m_bot(1) do k=ks1+1, km wbar(k) = (r_bot(k)+r_top(k)) / (m_top(k)+m_bot(k)) enddo ! pbar here is actually dt*pbar do k=ks1+1, km+1 pbar(k) = m_top(k)*wbar(k) - r_top(k) pe1(k) = pe1(k) + pbar(k) enddo if ( n==ms ) then if ( c_core ) then do k=ks1, km dz2(i,k) = dz(k) + dt*(wbar(k+1)-wbar(k)) enddo else do k=ks1, km dz2(i,k) = dz(k) + dt*(wbar(k+1)-wbar(k)) w2(i,k) = ( wm(k) + pbar(k+1) - pbar(k) ) / dm(k) enddo endif else do k=ks1, km dz(k) = dz(k) + dt*(wbar(k+1)-wbar(k)) wm(k) = wm(k) + pbar(k+1) - pbar(k) enddo endif 5000 continue pe2(i,1) = 0. do k=2,km+1 pe2(i,k) = pe1(k)*rdt enddo 6000 continue ! end i-loop end subroutine RIM_2D subroutine SIM3_solver(dt, is, ie, km, rgas, gama, kappa, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm, & pem, w2, dz2, pt2, ws, alpha, p_fac, scale_m) integer, intent(in):: is, ie, km real, intent(in):: dt, rgas, gama, kappa, alpha, p_fac, scale_m real, intent(in ), dimension(is:ie,km):: dm, pt2 real, intent(in ):: ws(is:ie) real, intent(in ), dimension(is:ie,km+1):: pem real, intent(out):: pe2(is:ie,km+1) real, intent(inout), dimension(is:ie,km):: dz2, w2 #ifdef MULTI_GASES real, intent(inout), dimension(is:ie,km):: kapad2 #endif ! Local real, dimension(is:ie,km ):: aa, bb, dd, w1, wk, g_rat, gam real, dimension(is:ie,km+1):: pp real, dimension(is:ie):: p1, wk1, bet real beta, t2, t1g, rdt, ra, capa1, r2g, r6g #ifdef MULTI_GASES real gamax, capa1x, t1gx #endif integer i, k beta = 1. - alpha ra = 1. / alpha t2 = beta / alpha t1g = gama * 2.*(alpha*dt)**2 rdt = 1. / dt capa1 = kappa - 1. r2g = grav / 2. r6g = grav / 6. do k=1,km do i=is, ie w1(i,k) = w2(i,k) ! Full pressure at center #ifdef MULTI_GASES gamax = 1. / (1.-kapad2(i,k)) aa(i,k) = exp(gamax*log(-dm(i,k)/dz2(i,k)*rgas*pt2(i,k))) #else aa(i,k) = exp(gama*log(-dm(i,k)/dz2(i,k)*rgas*pt2(i,k))) #endif enddo enddo do k=1,km-1 do i=is, ie g_rat(i,k) = dm(i,k)/dm(i,k+1) ! for profile reconstruction bb(i,k) = 2.*(1.+g_rat(i,k)) dd(i,k) = 3.*(aa(i,k) + g_rat(i,k)*aa(i,k+1)) enddo enddo ! pe2 is full p at edges do i=is, ie ! Top: bet(i) = bb(i,1) pe2(i,1) = pem(i,1) pe2(i,2) = (dd(i,1)-pem(i,1)) / bet(i) ! Bottom: bb(i,km) = 2. dd(i,km) = 3.*aa(i,km) + r2g*dm(i,km) enddo do k=2,km do i=is, ie gam(i,k) = g_rat(i,k-1) / bet(i) bet(i) = bb(i,k) - gam(i,k) pe2(i,k+1) = (dd(i,k) - pe2(i,k) ) / bet(i) enddo enddo do k=km, 2, -1 do i=is, ie pe2(i,k) = pe2(i,k) - gam(i,k)*pe2(i,k+1) enddo enddo ! done reconstruction of full: ! pp is pert. p at edges do k=1, km+1 do i=is, ie pp(i,k) = pe2(i,k) - pem(i,k) enddo enddo do k=2, km do i=is, ie #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,k)) t1gx = gamax*2.*(alpha*dt)**2 aa(i,k) = t1gx/(dz2(i,k-1)+dz2(i,k))*pe2(i,k) #else aa(i,k) = t1g/(dz2(i,k-1)+dz2(i,k))*pe2(i,k) #endif wk(i,k) = t2*aa(i,k)*(w1(i,k-1)-w1(i,k)) aa(i,k) = aa(i,k) - scale_m*dm(i,1) enddo enddo do i=is, ie bet(i) = dm(i,1) - aa(i,2) w2(i,1) = (dm(i,1)*w1(i,1)+dt*pp(i,2) + wk(i,2)) / bet(i) enddo do k=2,km-1 do i=is, ie gam(i,k) = aa(i,k) / bet(i) bet(i) = dm(i,k) - (aa(i,k)+aa(i,k+1) + aa(i,k)*gam(i,k)) w2(i,k) = (dm(i,k)*w1(i,k)+dt*(pp(i,k+1)-pp(i,k)) + wk(i,k+1)-wk(i,k) & - aa(i,k)*w2(i,k-1)) / bet(i) enddo enddo do i=is, ie #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,km)) t1gx = gamax*2.*(alpha*dt)**2 wk1(i) = t1gx/dz2(i,km)*pe2(i,km+1) #else wk1(i) = t1g/dz2(i,km)*pe2(i,km+1) #endif gam(i,km) = aa(i,km) / bet(i) bet(i) = dm(i,km) - (aa(i,km)+wk1(i) + aa(i,km)*gam(i,km)) w2(i,km) = (dm(i,km)*w1(i,km)+dt*(pp(i,km+1)-pp(i,km))-wk(i,km) + & wk1(i)*(t2*w1(i,km)-ra*ws(i)) - aa(i,km)*w2(i,km-1)) / bet(i) enddo do k=km-1, 1, -1 do i=is, ie w2(i,k) = w2(i,k) - gam(i,k+1)*w2(i,k+1) enddo enddo ! pe2 is updated perturbation p at edges do i=is, ie pe2(i,1) = 0. enddo do k=1,km do i=is, ie pe2(i,k+1) = pe2(i,k) + ( dm(i,k)*(w2(i,k)-w1(i,k))*rdt & - beta*(pp(i,k+1)-pp(i,k)) )*ra enddo enddo ! Full non-hydro pressure at edges: do i=is, ie pe2(i,1) = pem(i,1) enddo do k=2,km+1 do i=is, ie pe2(i,k) = max(p_fac*pem(i,k), pe2(i,k)+pem(i,k)) enddo enddo do i=is, ie ! Recover cell-averaged pressure p1(i) = (pe2(i,km)+ 2.*pe2(i,km+1))*r3 - r6g*dm(i,km) #ifdef MULTI_GASES capa1x = kapad2(i,km) - 1. dz2(i,km) = -dm(i,km)*rgas*pt2(i,km)*exp( capa1x*log(p1(i)) ) #else dz2(i,km) = -dm(i,km)*rgas*pt2(i,km)*exp( capa1*log(p1(i)) ) #endif enddo do k=km-1, 1, -1 do i=is, ie p1(i) = (pe2(i,k)+bb(i,k)*pe2(i,k+1)+g_rat(i,k)*pe2(i,k+2))*r3 - g_rat(i,k)*p1(i) #ifdef MULTI_GASES capa1x = kapad2(i,k) - 1. dz2(i,k) = -dm(i,k)*rgas*pt2(i,k)*exp( capa1x*log(p1(i)) ) #else dz2(i,k) = -dm(i,k)*rgas*pt2(i,k)*exp( capa1*log(p1(i)) ) #endif enddo enddo do k=1,km+1 do i=is, ie pe2(i,k) = pe2(i,k) - pem(i,k) pe2(i,k) = pe2(i,k) + beta*(pp(i,k) - pe2(i,k)) enddo enddo end subroutine SIM3_solver subroutine SIM3p0_solver(dt, is, ie, km, rgas, gama, kappa, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm, & pem, w2, dz2, pt2, ws, p_fac, scale_m) ! Sa SIM3, but for beta==0 integer, intent(in):: is, ie, km real, intent(in):: dt, rgas, gama, kappa, p_fac, scale_m real, intent(in ), dimension(is:ie,km):: dm, pt2 real, intent(in ):: ws(is:ie) real, intent(in ):: pem(is:ie,km+1) real, intent(out):: pe2(is:ie,km+1) real, intent(inout), dimension(is:ie,km):: dz2, w2 #ifdef MULTI_GASES real, intent(inout), dimension(is:ie,km):: kapad2 #endif ! Local real, dimension(is:ie,km ):: aa, bb, dd, w1, g_rat, gam real, dimension(is:ie,km+1):: pp real, dimension(is:ie):: p1, wk1, bet real t1g, rdt, capa1, r2g, r6g #ifdef MULTI_GASES real gamax, capa1x, t1gx #endif integer i, k t1g = 2.*gama*dt**2 rdt = 1. / dt capa1 = kappa - 1. r2g = grav / 2. r6g = grav / 6. do k=1,km do i=is, ie w1(i,k) = w2(i,k) ! Full pressure at center #ifdef MULTI_GASES gamax = 1. / ( 1. - kapad2(i,k) ) aa(i,k) = exp(gamax*log(-dm(i,k)/dz2(i,k)*rgas*pt2(i,k))) #else aa(i,k) = exp(gama*log(-dm(i,k)/dz2(i,k)*rgas*pt2(i,k))) #endif enddo enddo do k=1,km-1 do i=is, ie g_rat(i,k) = dm(i,k)/dm(i,k+1) ! for profile reconstruction bb(i,k) = 2.*(1.+g_rat(i,k)) dd(i,k) = 3.*(aa(i,k) + g_rat(i,k)*aa(i,k+1)) enddo enddo ! pe2 is full p at edges do i=is, ie ! Top: bet(i) = bb(i,1) pe2(i,1) = pem(i,1) pe2(i,2) = (dd(i,1)-pem(i,1)) / bet(i) ! Bottom: bb(i,km) = 2. dd(i,km) = 3.*aa(i,km) + r2g*dm(i,km) enddo do k=2,km do i=is, ie gam(i,k) = g_rat(i,k-1) / bet(i) bet(i) = bb(i,k) - gam(i,k) pe2(i,k+1) = (dd(i,k) - pe2(i,k) ) / bet(i) enddo enddo do k=km, 2, -1 do i=is, ie pe2(i,k) = pe2(i,k) - gam(i,k)*pe2(i,k+1) enddo enddo ! done reconstruction of full: ! pp is pert. p at edges do k=1, km+1 do i=is, ie pp(i,k) = pe2(i,k) - pem(i,k) enddo enddo do k=2, km do i=is, ie #ifdef MULTI_GASES gamax = 1. / (1.-kapad2(i,k)) t1gx = 2.*gamax*dt**2 aa(i,k) = t1gx/(dz2(i,k-1)+dz2(i,k))*pe2(i,k) - scale_m*dm(i,1) #else aa(i,k) = t1g/(dz2(i,k-1)+dz2(i,k))*pe2(i,k) - scale_m*dm(i,1) #endif enddo enddo do i=is, ie bet(i) = dm(i,1) - aa(i,2) w2(i,1) = (dm(i,1)*w1(i,1)+dt*pp(i,2)) / bet(i) enddo do k=2,km-1 do i=is, ie gam(i,k) = aa(i,k) / bet(i) bet(i) = dm(i,k) - (aa(i,k)+aa(i,k+1) + aa(i,k)*gam(i,k)) w2(i,k) = (dm(i,k)*w1(i,k)+dt*(pp(i,k+1)-pp(i,k))-aa(i,k)*w2(i,k-1))/bet(i) enddo enddo do i=is, ie #ifdef MULTI_GASES gamax = 1. / (1.-kapad2(i,km)) t1gx = 2.*gamax*dt**2 wk1(i) = t1gx/dz2(i,km)*pe2(i,km+1) #else wk1(i) = t1g/dz2(i,km)*pe2(i,km+1) #endif gam(i,km) = aa(i,km) / bet(i) bet(i) = dm(i,km) - (aa(i,km)+wk1(i) + aa(i,km)*gam(i,km)) w2(i,km) = (dm(i,km)*w1(i,km)+dt*(pp(i,km+1)-pp(i,km))-wk1(i)*ws(i) - & aa(i,km)*w2(i,km-1)) / bet(i) enddo do k=km-1, 1, -1 do i=is, ie w2(i,k) = w2(i,k) - gam(i,k+1)*w2(i,k+1) enddo enddo ! pe2 is updated perturbation p at edges do i=is, ie pe2(i,1) = 0. enddo do k=1,km do i=is, ie pe2(i,k+1) = pe2(i,k) + dm(i,k)*(w2(i,k)-w1(i,k))*rdt enddo enddo ! Full non-hydro pressure at edges: do i=is, ie pe2(i,1) = pem(i,1) enddo do k=2,km+1 do i=is, ie pe2(i,k) = max(p_fac*pem(i,k), pe2(i,k)+pem(i,k)) enddo enddo do i=is, ie ! Recover cell-averaged pressure p1(i) = (pe2(i,km)+ 2.*pe2(i,km+1))*r3 - r6g*dm(i,km) #ifdef MULTI_GASES capa1x = kapad2(i,km) - 1. dz2(i,km) = -dm(i,km)*rgas*pt2(i,km)*exp( capa1x*log(p1(i)) ) #else dz2(i,km) = -dm(i,km)*rgas*pt2(i,km)*exp( capa1*log(p1(i)) ) #endif enddo do k=km-1, 1, -1 do i=is, ie p1(i) = (pe2(i,k)+bb(i,k)*pe2(i,k+1)+g_rat(i,k)*pe2(i,k+2))*r3-g_rat(i,k)*p1(i) #ifdef MULTI_GASES capa1x = kapad2(i,k) - 1. dz2(i,k) = -dm(i,k)*rgas*pt2(i,k)*exp( capa1x*log(p1(i)) ) #else dz2(i,k) = -dm(i,k)*rgas*pt2(i,k)*exp( capa1*log(p1(i)) ) #endif enddo enddo do k=1,km+1 do i=is, ie pe2(i,k) = pe2(i,k) - pem(i,k) enddo enddo end subroutine SIM3p0_solver subroutine SIM1_solver(dt, is, ie, km, rgas, gama, gm2, cp2, kappa, & #ifdef MULTI_GASES kapad2, & #endif pe, dm2, & pm2, pem, w2, dz2, pt2, ws, p_fac) integer, intent(in):: is, ie, km real, intent(in):: dt, rgas, gama, kappa, p_fac real, intent(in), dimension(is:ie,km):: dm2, pt2, pm2, gm2, cp2 real, intent(in ):: ws(is:ie) real, intent(in ), dimension(is:ie,km+1):: pem real, intent(out):: pe(is:ie,km+1) real, intent(inout), dimension(is:ie,km):: dz2, w2 #ifdef MULTI_GASES real, intent(inout), dimension(is:ie,km):: kapad2 #endif ! Local real, dimension(is:ie,km ):: aa, bb, dd, w1, g_rat, gam real, dimension(is:ie,km+1):: pp real, dimension(is:ie):: p1, bet real t1g, rdt, capa1 #ifdef MULTI_GASES real gamax, capa1x, t1gx #endif integer i, k #ifdef MOIST_CAPPA t1g = 2.*dt*dt #else t1g = gama * 2.*dt*dt #endif rdt = 1. / dt capa1 = kappa - 1. do k=1,km do i=is, ie #ifdef MOIST_CAPPA pe(i,k) = exp(gm2(i,k)*log(-dm2(i,k)/dz2(i,k)*rgas*pt2(i,k))) - pm2(i,k) #else #ifdef MULTI_GASES gamax = 1. / ( 1. - kapad2(i,k) ) pe(i,k) = exp(gamax*log(-dm2(i,k)/dz2(i,k)*rgas*pt2(i,k))) - pm2(i,k) #else pe(i,k) = exp(gama*log(-dm2(i,k)/dz2(i,k)*rgas*pt2(i,k))) - pm2(i,k) #endif #endif w1(i,k) = w2(i,k) enddo enddo do k=1,km-1 do i=is, ie g_rat(i,k) = dm2(i,k)/dm2(i,k+1) bb(i,k) = 2.*(1.+g_rat(i,k)) dd(i,k) = 3.*(pe(i,k) + g_rat(i,k)*pe(i,k+1)) enddo enddo do i=is, ie bet(i) = bb(i,1) pp(i,1) = 0. pp(i,2) = dd(i,1) / bet(i) bb(i,km) = 2. dd(i,km) = 3.*pe(i,km) enddo do k=2,km do i=is, ie gam(i,k) = g_rat(i,k-1) / bet(i) bet(i) = bb(i,k) - gam(i,k) pp(i,k+1) = (dd(i,k) - pp(i,k) ) / bet(i) enddo enddo do k=km, 2, -1 do i=is, ie pp(i,k) = pp(i,k) - gam(i,k)*pp(i,k+1) enddo enddo ! Start the w-solver do k=2, km do i=is, ie #ifdef MOIST_CAPPA aa(i,k) = t1g*0.5*(gm2(i,k-1)+gm2(i,k))/(dz2(i,k-1)+dz2(i,k)) * (pem(i,k)+pp(i,k)) #else #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,k)) t1gx = gamax * 2.*dt*dt aa(i,k) = t1gx/(dz2(i,k-1)+dz2(i,k)) * (pem(i,k)+pp(i,k)) #else aa(i,k) = t1g/(dz2(i,k-1)+dz2(i,k)) * (pem(i,k)+pp(i,k)) #endif #endif enddo enddo do i=is, ie bet(i) = dm2(i,1) - aa(i,2) w2(i,1) = (dm2(i,1)*w1(i,1) + dt*pp(i,2)) / bet(i) enddo do k=2,km-1 do i=is, ie gam(i,k) = aa(i,k) / bet(i) bet(i) = dm2(i,k) - (aa(i,k) + aa(i,k+1) + aa(i,k)*gam(i,k)) w2(i,k) = (dm2(i,k)*w1(i,k)+dt*(pp(i,k+1)-pp(i,k))-aa(i,k)*w2(i,k-1)) / bet(i) enddo enddo do i=is, ie #ifdef MOIST_CAPPA p1(i) = t1g*gm2(i,km)/dz2(i,km)*(pem(i,km+1)+pp(i,km+1)) #else #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,km)) t1gx = gamax * 2.*dt*dt p1(i) = t1gx/dz2(i,km)*(pem(i,km+1)+pp(i,km+1)) #else p1(i) = t1g/dz2(i,km)*(pem(i,km+1)+pp(i,km+1)) #endif #endif gam(i,km) = aa(i,km) / bet(i) bet(i) = dm2(i,km) - (aa(i,km)+p1(i) + aa(i,km)*gam(i,km)) w2(i,km) = (dm2(i,km)*w1(i,km)+dt*(pp(i,km+1)-pp(i,km))-p1(i)*ws(i)-aa(i,km)*w2(i,km-1))/bet(i) enddo do k=km-1, 1, -1 do i=is, ie w2(i,k) = w2(i,k) - gam(i,k+1)*w2(i,k+1) enddo enddo do i=is, ie pe(i,1) = 0. enddo do k=1,km do i=is, ie pe(i,k+1) = pe(i,k) + dm2(i,k)*(w2(i,k)-w1(i,k))*rdt enddo enddo do i=is, ie p1(i) = ( pe(i,km) + 2.*pe(i,km+1) )*r3 #ifdef MOIST_CAPPA dz2(i,km) = -dm2(i,km)*rgas*pt2(i,km)*exp((cp2(i,km)-1.)*log(max(p_fac*pm2(i,km),p1(i)+pm2(i,km)))) #else #ifdef MULTI_GASES capa1x = kapad2(i,km)-1. dz2(i,km) = -dm2(i,km)*rgas*pt2(i,km)*exp(capa1x*log(max(p_fac*pm2(i,km),p1(i)+pm2(i,km)))) #else dz2(i,km) = -dm2(i,km)*rgas*pt2(i,km)*exp(capa1*log(max(p_fac*pm2(i,km),p1(i)+pm2(i,km)))) #endif #endif enddo do k=km-1, 1, -1 do i=is, ie p1(i) = (pe(i,k) + bb(i,k)*pe(i,k+1) + g_rat(i,k)*pe(i,k+2))*r3 - g_rat(i,k)*p1(i) #ifdef MOIST_CAPPA dz2(i,k) = -dm2(i,k)*rgas*pt2(i,k)*exp((cp2(i,k)-1.)*log(max(p_fac*pm2(i,k),p1(i)+pm2(i,k)))) #else #ifdef MULTI_GASES capa1x = kapad2(i,k)-1. dz2(i,k) = -dm2(i,k)*rgas*pt2(i,k)*exp(capa1x*log(max(p_fac*pm2(i,k),p1(i)+pm2(i,k)))) #else dz2(i,k) = -dm2(i,k)*rgas*pt2(i,k)*exp(capa1*log(max(p_fac*pm2(i,k),p1(i)+pm2(i,k)))) #endif #endif enddo enddo end subroutine SIM1_solver subroutine SIM_solver(dt, is, ie, km, rgas, gama, gm2, cp2, kappa, & #ifdef MULTI_GASES kapad2, & #endif pe2, dm2, & pm2, pem, w2, dz2, pt2, ws, alpha, p_fac, scale_m) integer, intent(in):: is, ie, km real, intent(in):: dt, rgas, gama, kappa, p_fac, alpha, scale_m real, intent(in), dimension(is:ie,km):: dm2, pt2, pm2, gm2, cp2 real, intent(in ):: ws(is:ie) real, intent(in ), dimension(is:ie,km+1):: pem real, intent(out):: pe2(is:ie,km+1) real, intent(inout), dimension(is:ie,km):: dz2, w2 #ifdef MULTI_GASES real, intent(inout), dimension(is:ie,km):: kapad2 #endif ! Local real, dimension(is:ie,km ):: aa, bb, dd, w1, wk, g_rat, gam real, dimension(is:ie,km+1):: pp real, dimension(is:ie):: p1, wk1, bet real beta, t2, t1g, rdt, ra, capa1 #ifdef MULTI_GASES real gamax, capa1x, t1gx #endif integer i, k beta = 1. - alpha ra = 1. / alpha t2 = beta / alpha #ifdef MOIST_CAPPA t1g = 2.*(alpha*dt)**2 #else t1g = 2.*gama*(alpha*dt)**2 #endif rdt = 1. / dt capa1 = kappa - 1. do k=1,km do i=is, ie w1(i,k) = w2(i,k) ! P_g perturbation #ifdef MOIST_CAPPA pe2(i,k) = exp(gm2(i,k)*log(-dm2(i,k)/dz2(i,k)*rgas*pt2(i,k))) - pm2(i,k) #else #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,k)) pe2(i,k) = exp(gamax*log(-dm2(i,k)/dz2(i,k)*rgas*pt2(i,k))) - pm2(i,k) #else pe2(i,k) = exp(gama*log(-dm2(i,k)/dz2(i,k)*rgas*pt2(i,k))) - pm2(i,k) #endif #endif enddo enddo do k=1,km-1 do i=is, ie g_rat(i,k) = dm2(i,k)/dm2(i,k+1) bb(i,k) = 2.*(1.+g_rat(i,k)) dd(i,k) = 3.*(pe2(i,k) + g_rat(i,k)*pe2(i,k+1)) enddo enddo do i=is, ie bet(i) = bb(i,1) pp(i,1) = 0. pp(i,2) = dd(i,1) / bet(i) bb(i,km) = 2. dd(i,km) = 3.*pe2(i,km) enddo do k=2,km do i=is, ie gam(i,k) = g_rat(i,k-1) / bet(i) bet(i) = bb(i,k) - gam(i,k) pp(i,k+1) = (dd(i,k) - pp(i,k) ) / bet(i) enddo enddo do k=km, 2, -1 do i=is, ie pp(i,k) = pp(i,k) - gam(i,k)*pp(i,k+1) enddo enddo do k=1, km+1 do i=is, ie ! pe2 is Full p pe2(i,k) = pem(i,k) + pp(i,k) enddo enddo do k=2, km do i=is, ie #ifdef MOIST_CAPPA aa(i,k) = t1g*0.5*(gm2(i,k-1)+gm2(i,k))/(dz2(i,k-1)+dz2(i,k))*pe2(i,k) #else #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,k)) t1gx = 2.*gamax*(alpha*dt)**2 aa(i,k) = t1gx/(dz2(i,k-1)+dz2(i,k))*pe2(i,k) #else aa(i,k) = t1g/(dz2(i,k-1)+dz2(i,k))*pe2(i,k) #endif #endif wk(i,k) = t2*aa(i,k)*(w1(i,k-1)-w1(i,k)) aa(i,k) = aa(i,k) - scale_m*dm2(i,1) enddo enddo ! Top: do i=is, ie bet(i) = dm2(i,1) - aa(i,2) w2(i,1) = (dm2(i,1)*w1(i,1) + dt*pp(i,2) + wk(i,2)) / bet(i) enddo ! Interior: do k=2,km-1 do i=is, ie gam(i,k) = aa(i,k) / bet(i) bet(i) = dm2(i,k) - (aa(i,k)+aa(i,k+1) + aa(i,k)*gam(i,k)) w2(i,k) = (dm2(i,k)*w1(i,k) + dt*(pp(i,k+1)-pp(i,k)) + wk(i,k+1)-wk(i,k) & - aa(i,k)*w2(i,k-1)) / bet(i) enddo enddo ! Bottom: k=km do i=is, ie #ifdef MOIST_CAPPA wk1(i) = t1g*gm2(i,km)/dz2(i,km)*pe2(i,km+1) #else #ifdef MULTI_GASES gamax = 1./(1.-kapad2(i,km)) t1gx = 2.*gamax*(alpha*dt)**2 wk1(i) = t1gx/dz2(i,km)*pe2(i,km+1) #else wk1(i) = t1g/dz2(i,km)*pe2(i,km+1) #endif #endif gam(i,km) = aa(i,km) / bet(i) bet(i) = dm2(i,km) - (aa(i,km)+wk1(i) + aa(i,km)*gam(i,km)) w2(i,km) = (dm2(i,km)*w1(i,km) + dt*(pp(i,km+1)-pp(i,km)) - wk(i,km) + & wk1(i)*(t2*w1(i,km)-ra*ws(i)) - aa(i,km)*w2(i,km-1)) / bet(i) enddo do k=km-1, 1, -1 do i=is, ie w2(i,k) = w2(i,k) - gam(i,k+1)*w2(i,k+1) enddo enddo do i=is, ie pe2(i,1) = 0. enddo do k=1,km do i=is, ie pe2(i,k+1) = pe2(i,k) + ( dm2(i,k)*(w2(i,k)-w1(i,k))*rdt & - beta*(pp(i,k+1)-pp(i,k)) ) * ra enddo enddo do i=is, ie p1(i) = (pe2(i,km)+ 2.*pe2(i,km+1))*r3 #ifdef MOIST_CAPPA dz2(i,km) = -dm2(i,km)*rgas*pt2(i,km)*exp((cp2(i,km)-1.)*log(max(p_fac*pm2(i,km),p1(i)+pm2(i,km)))) #else #ifdef MULTI_GASES capa1x = kapad2(i,km)-1. dz2(i,km) = -dm2(i,km)*rgas*pt2(i,km)*exp(capa1x*log(max(p_fac*pm2(i,km),p1(i)+pm2(i,km)))) #else dz2(i,km) = -dm2(i,km)*rgas*pt2(i,km)*exp(capa1*log(max(p_fac*pm2(i,km),p1(i)+pm2(i,km)))) #endif #endif enddo do k=km-1, 1, -1 do i=is, ie p1(i) = (pe2(i,k)+bb(i,k)*pe2(i,k+1)+g_rat(i,k)*pe2(i,k+2))*r3 - g_rat(i,k)*p1(i) ! delz = -dm*R*T_m / p_gas #ifdef MOIST_CAPPA dz2(i,k) = -dm2(i,k)*rgas*pt2(i,k)*exp((cp2(i,k)-1.)*log(max(p_fac*pm2(i,k),p1(i)+pm2(i,k)))) #else #ifdef MULTI_GASES capa1x = kapad2(i,k)-1. dz2(i,k) = -dm2(i,k)*rgas*pt2(i,k)*exp(capa1x*log(max(p_fac*pm2(i,k),p1(i)+pm2(i,k)))) #else dz2(i,k) = -dm2(i,k)*rgas*pt2(i,k)*exp(capa1*log(max(p_fac*pm2(i,k),p1(i)+pm2(i,k)))) #endif #endif enddo enddo do k=1, km+1 do i=is, ie pe2(i,k) = pe2(i,k) + beta*(pp(i,k)-pe2(i,k)) enddo enddo end subroutine SIM_solver subroutine edge_scalar(q1, qe, i1, i2, km, id) ! Optimized for wind profile reconstruction: integer, intent(in):: i1, i2, km integer, intent(in):: id ! 0: pp 1: wind real, intent(in ), dimension(i1:i2,km):: q1 real, intent(out), dimension(i1:i2,km+1):: qe !----------------------------------------------------------------------- real, parameter:: r2o3 = 2./3. real, parameter:: r4o3 = 4./3. real gak(km) real bet integer i, k !------------------------------------------------ ! Optimized coding for uniform grid: SJL Apr 2007 !------------------------------------------------ if ( id==1 ) then do i=i1,i2 qe(i,1) = r4o3*q1(i,1) + r2o3*q1(i,2) enddo else do i=i1,i2 qe(i,1) = 1.E30 enddo endif gak(1) = 7./3. do k=2,km gak(k) = 1. / (4. - gak(k-1)) do i=i1,i2 qe(i,k) = (3.*(q1(i,k-1) + q1(i,k)) - qe(i,k-1)) * gak(k) enddo enddo bet = 1. / (1.5 - 3.5*gak(km)) do i=i1,i2 qe(i,km+1) = (4.*q1(i,km) + q1(i,km-1) - 3.5*qe(i,km)) * bet enddo do k=km,1,-1 do i=i1,i2 qe(i,k) = qe(i,k) - gak(k)*qe(i,k+1) enddo enddo end subroutine edge_scalar subroutine edge_profile(q1, q2, q1e, q2e, i1, i2, j1, j2, j, km, dp0, uniform_grid, limiter) ! Optimized for wind profile reconstruction: integer, intent(in):: i1, i2, j1, j2 integer, intent(in):: j, km integer, intent(in):: limiter logical, intent(in):: uniform_grid real, intent(in):: dp0(km) real, intent(in), dimension(i1:i2,j1:j2,km):: q1, q2 real, intent(out), dimension(i1:i2,j1:j2,km+1):: q1e, q2e !----------------------------------------------------------------------- real, dimension(i1:i2,km+1):: qe1, qe2, gam ! edge values real gak(km) real bet, r2o3, r4o3 real g0, gk, xt1, xt2, a_bot integer i, k if ( uniform_grid ) then !------------------------------------------------ ! Optimized coding for uniform grid: SJL Apr 2007 !------------------------------------------------ r2o3 = 2./3. r4o3 = 4./3. do i=i1,i2 qe1(i,1) = r4o3*q1(i,j,1) + r2o3*q1(i,j,2) qe2(i,1) = r4o3*q2(i,j,1) + r2o3*q2(i,j,2) enddo gak(1) = 7./3. do k=2,km gak(k) = 1. / (4. - gak(k-1)) do i=i1,i2 qe1(i,k) = (3.*(q1(i,j,k-1) + q1(i,j,k)) - qe1(i,k-1)) * gak(k) qe2(i,k) = (3.*(q2(i,j,k-1) + q2(i,j,k)) - qe2(i,k-1)) * gak(k) enddo enddo bet = 1. / (1.5 - 3.5*gak(km)) do i=i1,i2 qe1(i,km+1) = (4.*q1(i,j,km) + q1(i,j,km-1) - 3.5*qe1(i,km)) * bet qe2(i,km+1) = (4.*q2(i,j,km) + q2(i,j,km-1) - 3.5*qe2(i,km)) * bet enddo do k=km,1,-1 do i=i1,i2 qe1(i,k) = qe1(i,k) - gak(k)*qe1(i,k+1) qe2(i,k) = qe2(i,k) - gak(k)*qe2(i,k+1) enddo enddo else ! Assuming grid varying in vertical only g0 = dp0(2) / dp0(1) xt1 = 2.*g0*(g0+1. ) bet = g0*(g0+0.5) do i=i1,i2 qe1(i,1) = ( xt1*q1(i,j,1) + q1(i,j,2) ) / bet qe2(i,1) = ( xt1*q2(i,j,1) + q2(i,j,2) ) / bet gam(i,1) = ( 1. + g0*(g0+1.5) ) / bet enddo do k=2,km gk = dp0(k-1) / dp0(k) do i=i1,i2 bet = 2. + 2.*gk - gam(i,k-1) qe1(i,k) = ( 3.*(q1(i,j,k-1)+gk*q1(i,j,k)) - qe1(i,k-1) ) / bet qe2(i,k) = ( 3.*(q2(i,j,k-1)+gk*q2(i,j,k)) - qe2(i,k-1) ) / bet gam(i,k) = gk / bet enddo enddo a_bot = 1. + gk*(gk+1.5) xt1 = 2.*gk*(gk+1.) do i=i1,i2 xt2 = gk*(gk+0.5) - a_bot*gam(i,km) qe1(i,km+1) = ( xt1*q1(i,j,km) + q1(i,j,km-1) - a_bot*qe1(i,km) ) / xt2 qe2(i,km+1) = ( xt1*q2(i,j,km) + q2(i,j,km-1) - a_bot*qe2(i,km) ) / xt2 enddo do k=km,1,-1 do i=i1,i2 qe1(i,k) = qe1(i,k) - gam(i,k)*qe1(i,k+1) qe2(i,k) = qe2(i,k) - gam(i,k)*qe2(i,k+1) enddo enddo endif !------------------ ! Apply constraints !------------------ if ( limiter/=0 ) then ! limit the top & bottom winds do i=i1,i2 ! Top if ( q1(i,j,1)*qe1(i,1) < 0. ) qe1(i,1) = 0. if ( q2(i,j,1)*qe2(i,1) < 0. ) qe2(i,1) = 0. ! Surface: if ( q1(i,j,km)*qe1(i,km+1) < 0. ) qe1(i,km+1) = 0. if ( q2(i,j,km)*qe2(i,km+1) < 0. ) qe2(i,km+1) = 0. enddo endif do k=1,km+1 do i=i1,i2 q1e(i,j,k) = qe1(i,k) q2e(i,j,k) = qe2(i,k) enddo enddo end subroutine edge_profile subroutine nest_halo_nh(ptop, grav, kappa, cp, delp, delz, pt, phis, & #ifdef MULTI_GASES q , & #endif #ifdef USE_COND q_con, & #ifdef MOIST_CAPPA cappa, & #endif #endif pkc, gz, pk3, & npx, npy, npz, nested, pkc_pertn, computepk3, fullhalo, bd, regional) !INPUT: delp, delz, pt !OUTPUT: gz, pkc, pk3 (optional) integer, intent(IN) :: npx, npy, npz logical, intent(IN) :: pkc_pertn, computepk3, fullhalo, nested, regional real, intent(IN) :: ptop, kappa, cp, grav type(fv_grid_bounds_type), intent(IN) :: bd real, intent(IN) :: phis(bd%isd:bd%ied,bd%jsd:bd%jed) real, intent(IN), dimension(bd%isd:bd%ied,bd%jsd:bd%jed,npz):: pt, delp, delz #ifdef MULTI_GASES real, intent(IN), dimension(bd%isd:bd%ied,bd%jsd:bd%jed,npz,*):: q #endif #ifdef USE_COND real, intent(IN), dimension(bd%isd:bd%ied,bd%jsd:bd%jed,npz):: q_con #ifdef MOIST_CAPPA real, intent(INOUT), dimension(bd%isd:bd%ied,bd%jsd:bd%jed,npz):: cappa #endif #endif real, intent(INOUT), dimension(bd%isd:bd%ied,bd%jsd:bd%jed,npz+1):: gz, pkc, pk3 integer :: i,j,k real :: gama !'gamma' real :: ptk, rgrav, rkap, peln1, rdg real, dimension(bd%isd:bd%ied, npz+1, bd%jsd:bd%jed ) :: pe, peln #ifdef USE_COND real, dimension(bd%isd:bd%ied, npz+1 ) :: peg, pelng #endif real, dimension(bd%isd:bd%ied, npz) :: gam, bb, dd, pkz real, dimension(bd%isd:bd%ied, npz-1) :: g_rat real, dimension(bd%isd:bd%ied) :: bet real :: pm #ifdef MULTI_GASES real gamax #endif integer :: ifirst, ilast, jfirst, jlast integer :: is, ie, js, je integer :: isd, ied, jsd, jed is = bd%is ie = bd%ie js = bd%js je = bd%je isd = bd%isd ied = bd%ied jsd = bd%jsd jed = bd%jed if (.not. (nested .or. regional)) return ifirst = isd jfirst = jsd ilast = ied jlast = jed !Remember we want to compute these in the HALO. Note also this routine !requires an appropriate rgrav = 1./grav gama = 1./(1.-kappa) ptk = ptop ** kappa rkap = 1./kappa peln1 = log(ptop) rdg = - rdgas * rgrav !NOTE: Compiler does NOT like this sort of nested-grid BC code. Is it trying to do some ugly optimization? if (is == 1) then do j=jfirst,jlast !GZ do i=ifirst,0 gz(i,j,npz+1) = phis(i,j) enddo do k=npz,1,-1 do i=ifirst,0 gz(i,j,k) = gz(i,j,k+1) - delz(i,j,k)*grav enddo enddo !Hydrostatic interface pressure do i=ifirst,0 pe(i,1,j) = ptop peln(i,1,j) = peln1 #ifdef USE_COND peg(i,1) = ptop pelng(i,1) = peln1 #endif enddo do k=2,npz+1 do i=ifirst,0 pe(i,k,j) = pe(i,k-1,j) + delp(i,j,k-1) peln(i,k,j) = log(pe(i,k,j)) #ifdef USE_COND peg(i,k) = peg(i,k-1) + delp(i,j,k-1)*(1.-q_con(i,j,k-1)) pelng(i,k) = log(peg(i,k)) #endif enddo enddo !Perturbation nonhydro layer-mean pressure (NOT to the kappa) do k=1,npz do i=ifirst,0 !Full p #ifdef MOIST_CAPPA pkz(i,k) = exp(1./(1.-cappa(i,j,k))*log(rdg*delp(i,j,k)/delz(i,j,k)*pt(i,j,k))) #else #ifdef MULTI_GASES gamax = gama * (vicpqd(q(i,j,k,:))/vicvqd(q(i,j,k,:))) pkz(i,k) = exp(gamax*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #else pkz(i,k) = exp(gama*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #endif #endif ! !hydro #ifdef USE_COND pm = (peg(i,k+1)-peg(i,k))/(pelng(i,k+1)-pelng(i,k)) #else pm = delp(i,j,k)/(peln(i,k+1,j)-peln(i,k,j)) #endif !Remove hydro cell-mean pressure pkz(i,k) = pkz(i,k) - pm enddo enddo !pressure solver do k=1,npz-1 do i=ifirst,0 g_rat(i,k) = delp(i,j,k)/delp(i,j,k+1) bb(i,k) = 2.*(1. + g_rat(i,k)) dd(i,k) = 3.*(pkz(i,k) + g_rat(i,k)*pkz(i,k+1)) enddo enddo do i=ifirst,0 bet(i) = bb(i,1) pkc(i,j,1) = 0. pkc(i,j,2) = dd(i,1)/bet(i) bb(i,npz) = 2. dd(i,npz) = 3.*pkz(i,npz) enddo do k=2,npz do i=ifirst,0 gam(i,k) = g_rat(i,k-1)/bet(i) bet(i) = bb(i,k) - gam(i,k) pkc(i,j,k+1) = (dd(i,k) - pkc(i,j,k))/bet(i) enddo enddo do k=npz,2,-1 do i=ifirst,0 pkc(i,j,k) = pkc(i,j,k) - gam(i,k)*pkc(i,j,k+1) #ifdef NHNEST_DEBUG if (abs(pkc(i,j,k)) > 1.e5) then print*, mpp_pe(), i,j,k, 'PKC: ', pkc(i,j,k) endif #endif enddo enddo enddo do j=jfirst,jlast if (.not. pkc_pertn) then do k=npz+1,1,-1 do i=ifirst,0 pkc(i,j,k) = pkc(i,j,k) + pe(i,k,j) enddo enddo endif !pk3 if necessary; doesn't require condenstate loading calculation if (computepk3) then do i=ifirst,0 pk3(i,j,1) = ptk enddo do k=2,npz+1 do i=ifirst,0 pk3(i,j,k) = exp(kappa*log(pe(i,k,j))) enddo enddo endif enddo endif if (ie == npx-1) then do j=jfirst,jlast !GZ do i=npx,ilast gz(i,j,npz+1) = phis(i,j) enddo do k=npz,1,-1 do i=npx,ilast gz(i,j,k) = gz(i,j,k+1) - delz(i,j,k)*grav enddo enddo !Hydrostatic interface pressure do i=npx,ilast pe(i,1,j) = ptop peln(i,1,j) = peln1 #ifdef USE_COND peg(i,1) = ptop pelng(i,1) = peln1 #endif enddo do k=2,npz+1 do i=npx,ilast pe(i,k,j) = pe(i,k-1,j) + delp(i,j,k-1) peln(i,k,j) = log(pe(i,k,j)) #ifdef USE_COND peg(i,k) = peg(i,k-1) + delp(i,j,k-1)*(1.-q_con(i,j,k-1)) pelng(i,k) = log(peg(i,k)) #endif enddo enddo !Perturbation nonhydro layer-mean pressure (NOT to the kappa) do k=1,npz do i=npx,ilast !Full p #ifdef MOIST_CAPPA pkz(i,k) = exp(1./(1.-cappa(i,j,k))*log(rdg*delp(i,j,k)/delz(i,j,k)*pt(i,j,k))) #else #ifdef MULTI_GASES gamax = gama * (vicpqd(q(i,j,k,:))/vicvqd(q(i,j,k,:))) pkz(i,k) = exp(gamax*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #else pkz(i,k) = exp(gama*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #endif #endif !hydro #ifdef USE_COND pm = (peg(i,k+1)-peg(i,k))/(pelng(i,k+1)-pelng(i,k)) #else pm = delp(i,j,k)/(peln(i,k+1,j)-peln(i,k,j)) #endif !Remove hydro cell-mean pressure pkz(i,k) = pkz(i,k) - pm enddo enddo !pressure solver do k=1,npz-1 do i=npx,ilast g_rat(i,k) = delp(i,j,k)/delp(i,j,k+1) bb(i,k) = 2.*(1. + g_rat(i,k)) dd(i,k) = 3.*(pkz(i,k) + g_rat(i,k)*pkz(i,k+1)) enddo enddo do i=npx,ilast bet(i) = bb(i,1) pkc(i,j,1) = 0. pkc(i,j,2) = dd(i,1)/bet(i) bb(i,npz) = 2. dd(i,npz) = 3.*pkz(i,npz) enddo do k=2,npz do i=npx,ilast gam(i,k) = g_rat(i,k-1)/bet(i) bet(i) = bb(i,k) - gam(i,k) pkc(i,j,k+1) = (dd(i,k) - pkc(i,j,k))/bet(i) enddo enddo do k=npz,2,-1 do i=npx,ilast pkc(i,j,k) = pkc(i,j,k) - gam(i,k)*pkc(i,j,k+1) enddo enddo enddo do j=jfirst,jlast if (.not. pkc_pertn) then do k=npz+1,1,-1 do i=npx,ilast pkc(i,j,k) = pkc(i,j,k) + pe(i,k,j) enddo enddo endif !pk3 if necessary if (computepk3) then do i=npx,ilast pk3(i,j,1) = ptk enddo do k=2,npz+1 do i=npx,ilast pk3(i,j,k) = exp(kappa*log(pe(i,k,j))) enddo enddo endif enddo endif if (js == 1) then do j=jfirst,0 !GZ do i=ifirst,ilast gz(i,j,npz+1) = phis(i,j) enddo do k=npz,1,-1 do i=ifirst,ilast gz(i,j,k) = gz(i,j,k+1) - delz(i,j,k)*grav enddo enddo !Hydrostatic interface pressure do i=ifirst,ilast pe(i,1,j) = ptop peln(i,1,j) = peln1 #ifdef USE_COND peg(i,1) = ptop pelng(i,1) = peln1 #endif enddo do k=2,npz+1 do i=ifirst,ilast pe(i,k,j) = pe(i,k-1,j) + delp(i,j,k-1) peln(i,k,j) = log(pe(i,k,j)) #ifdef USE_COND peg(i,k) = peg(i,k-1) + delp(i,j,k-1)*(1.-q_con(i,j,k-1)) pelng(i,k) = log(peg(i,k)) #endif enddo enddo !Perturbation nonhydro layer-mean pressure (NOT to the kappa) do k=1,npz do i=ifirst,ilast !Full p #ifdef MOIST_CAPPA pkz(i,k) = exp(1./(1.-cappa(i,j,k))*log(rdg*delp(i,j,k)/delz(i,j,k)*pt(i,j,k))) #else #ifdef MULTI_GASES gamax = gama * (vicpqd(q(i,j,k,:))/vicvqd(q(i,j,k,:))) pkz(i,k) = exp(gamax*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #else pkz(i,k) = exp(gama*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #endif #endif !hydro #ifdef USE_COND pm = (peg(i,k+1)-peg(i,k))/(pelng(i,k+1)-pelng(i,k)) #else pm = delp(i,j,k)/(peln(i,k+1,j)-peln(i,k,j)) #endif !hydro pm = delp(i,j,k)/(peln(i,k+1,j)-peln(i,k,j)) !Remove hydro cell-mean pressure pkz(i,k) = pkz(i,k) - pm enddo enddo !pressure solver do k=1,npz-1 do i=ifirst,ilast g_rat(i,k) = delp(i,j,k)/delp(i,j,k+1) bb(i,k) = 2.*(1. + g_rat(i,k)) dd(i,k) = 3.*(pkz(i,k) + g_rat(i,k)*pkz(i,k+1)) enddo enddo do i=ifirst,ilast bet(i) = bb(i,1) pkc(i,j,1) = 0. pkc(i,j,2) = dd(i,1)/bet(i) bb(i,npz) = 2. dd(i,npz) = 3.*pkz(i,npz) enddo do k=2,npz do i=ifirst,ilast gam(i,k) = g_rat(i,k-1)/bet(i) bet(i) = bb(i,k) - gam(i,k) pkc(i,j,k+1) = (dd(i,k) - pkc(i,j,k))/bet(i) enddo enddo do k=npz,2,-1 do i=ifirst,ilast pkc(i,j,k) = pkc(i,j,k) - gam(i,k)*pkc(i,j,k+1) #ifdef NHNEST_DEBUG if (abs(pkc(i,j,k)) > 1.e5) then print*, mpp_pe(), i,j,k, 'PKC: ', pkc(i,j,k) endif #endif enddo enddo enddo do j=jfirst,0 if (.not. pkc_pertn) then do k=npz+1,1,-1 do i=ifirst,ilast pkc(i,j,k) = pkc(i,j,k) + pe(i,k,j) enddo enddo endif !pk3 if necessary if (computepk3) then do i=ifirst,ilast pk3(i,j,1) = ptk enddo do k=2,npz+1 do i=ifirst,ilast pk3(i,j,k) = exp(kappa*log(pe(i,k,j))) enddo enddo endif enddo endif if (je == npy-1) then do j=npy,jlast !GZ do i=ifirst,ilast gz(i,j,npz+1) = phis(i,j) enddo do k=npz,1,-1 do i=ifirst,ilast gz(i,j,k) = gz(i,j,k+1) - delz(i,j,k)*grav enddo enddo !Hydrostatic interface pressure do i=ifirst,ilast pe(i,1,j) = ptop peln(i,1,j) = peln1 #ifdef USE_COND peg(i,1) = ptop pelng(i,1) = peln1 #endif enddo do k=2,npz+1 do i=ifirst,ilast pe(i,k,j) = pe(i,k-1,j) + delp(i,j,k-1) peln(i,k,j) = log(pe(i,k,j)) #ifdef USE_COND peg(i,k) = peg(i,k-1) + delp(i,j,k-1)*(1.-q_con(i,j,k-1)) pelng(i,k) = log(peg(i,k)) #endif enddo enddo !Perturbation nonhydro layer-mean pressure (NOT to the kappa) do k=1,npz do i=ifirst,ilast !Full p #ifdef MOIST_CAPPA pkz(i,k) = exp(1./(1.-cappa(i,j,k))*log(rdg*delp(i,j,k)/delz(i,j,k)*pt(i,j,k))) #else #ifdef MULTI_GASES gamax = gama * (vicpqd(q(i,j,k,:))/vicvqd(q(i,j,k,:))) pkz(i,k) = exp(gamax*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #else pkz(i,k) = exp(gama*log(-delp(i,j,k)*rgrav/delz(i,j,k)*rdgas*pt(i,j,k))) #endif #endif !hydro #ifdef USE_COND pm = (peg(i,k+1)-peg(i,k))/(pelng(i,k+1)-pelng(i,k)) #else pm = delp(i,j,k)/(peln(i,k+1,j)-peln(i,k,j)) #endif !hydro pm = delp(i,j,k)/(peln(i,k+1,j)-peln(i,k,j)) !Remove hydro cell-mean pressure pkz(i,k) = pkz(i,k) - pm enddo enddo !Reversible interpolation on layer NH pressure perturbation ! to recover lastge NH pressure perturbation do k=1,npz-1 do i=ifirst,ilast g_rat(i,k) = delp(i,j,k)/delp(i,j,k+1) bb(i,k) = 2.*(1. + g_rat(i,k)) dd(i,k) = 3.*(pkz(i,k) + g_rat(i,k)*pkz(i,k+1)) enddo enddo do i=ifirst,ilast bet(i) = bb(i,1) pkc(i,j,1) = 0. pkc(i,j,2) = dd(i,1)/bet(i) bb(i,npz) = 2. dd(i,npz) = 3.*pkz(i,npz) enddo do k=2,npz do i=ifirst,ilast gam(i,k) = g_rat(i,k-1)/bet(i) bet(i) = bb(i,k) - gam(i,k) pkc(i,j,k+1) = (dd(i,k) - pkc(i,j,k))/bet(i) enddo enddo do k=npz,2,-1 do i=ifirst,ilast pkc(i,j,k) = pkc(i,j,k) - gam(i,k)*pkc(i,j,k+1) enddo enddo enddo do j=npy,jlast if (.not. pkc_pertn) then do k=npz+1,1,-1 do i=ifirst,ilast pkc(i,j,k) = pkc(i,j,k) + pe(i,k,j) enddo enddo endif !pk3 if necessary if (computepk3) then do i=ifirst,ilast pk3(i,j,1) = ptk enddo do k=2,npz+1 do i=ifirst,ilast pk3(i,j,k) = exp(kappa*log(pe(i,k,j))) enddo enddo endif enddo endif end subroutine nest_halo_nh end module nh_utils_mod