#!/usr/bin/env python3 ''' Name: global_det_atmos_plots_lead_by_level.py Contact(s): Mallory Row (mallory.row@noaa.gov) Abstract: This script generates a lead by level plot. (x-axis: forecast hour; y-axis: pressure levels; contours: statistics values) (EVS Graphics Naming Convention: vertprof_fhrmean) ''' import sys import os import logging import datetime import glob import subprocess import pandas as pd pd.plotting.deregister_matplotlib_converters() #pd.plotting.register_matplotlib_converters() import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import global_det_atmos_util as gda_util from global_det_atmos_plots_specs import PlotSpecs class LeadByLevel: """ Create a lead by level graphic """ def __init__(self, logger, input_dir, output_dir, model_info_dict, date_info_dict, plot_info_dict, met_info_dict, logo_dir): """! Initalize LeadByLevel class Args: logger - logger object input_dir - path to input directory (string) output_dir - path to output directory (string) model_info_dict - model infomation dictionary (strings) plot_info_dict - plot information dictionary (strings) date_info_dict - date information dictionary (strings) met_info_dict - MET information dictionary (strings) logo_dir - directory with logo images (string) Returns: """ self.logger = logger self.input_dir = input_dir self.output_dir = output_dir self.model_info_dict = model_info_dict self.date_info_dict = date_info_dict self.plot_info_dict = plot_info_dict self.met_info_dict = met_info_dict self.logo_dir = logo_dir def make_lead_by_level(self): """! Create the lead by level graphic Args: Returns: """ self.logger.info(f"Creating lead by level...") self.logger.debug(f"Input directory: {self.input_dir}") self.logger.debug(f"Output directory: {self.output_dir}") self.logger.debug(f"Model information dictionary: " +f"{self.model_info_dict}") self.logger.debug(f"Date information dictionary: " +f"{self.date_info_dict}") self.logger.debug(f"Plot information dictionary: " +f"{self.plot_info_dict}") # Check stat if self.plot_info_dict['stat'] == 'FBAR_OBAR': self.logger.error("Cannot make lead_by_level for stat " +f"{self.plot_info_dict['stat']}") sys.exit(1) plot_specs_lbl = PlotSpecs(self.logger, 'lead_by_level') self.logger.info(f"Gathering data for {self.plot_info_dict['stat']} " +"- vertical profile " +f"{self.plot_info_dict['vert_profile']}") vert_profile_levels = plot_specs_lbl.get_vert_profile_levels( self.plot_info_dict['vert_profile'] ) if self.plot_info_dict['fcst_var_name'] == 'O3MR' and \ self.plot_info_dict['vert_profile'] in ['all', 'strat']: vert_profile_levels.append('P1') vert_profile_levels_int = np.empty(len(vert_profile_levels), dtype=int) self.plot_info_dict['fcst_var_level'] = ( self.plot_info_dict['vert_profile'] ) self.plot_info_dict['obs_var_level'] = ( self.plot_info_dict['vert_profile'] ) fcst_units = [] for level in vert_profile_levels: vert_profile_levels_int[vert_profile_levels.index(level)] = ( level[1:] ) self.logger.debug(f"Building data for level {level}") # Create dataframe for all forecast hours self.logger.info("Building dataframe for all forecast hours") for forecast_hour in self.date_info_dict['forecast_hours']: self.logger.debug("Building data for forecast hour " +f"{forecast_hour}") # Get dates to plot self.logger.info("Creating valid and init date arrays") valid_dates, init_dates = gda_util.get_plot_dates( self.logger, self.date_info_dict['date_type'], self.date_info_dict['start_date'], self.date_info_dict['end_date'], self.date_info_dict['valid_hr_start'], self.date_info_dict['valid_hr_end'], self.date_info_dict['valid_hr_inc'], self.date_info_dict['init_hr_start'], self.date_info_dict['init_hr_end'], self.date_info_dict['init_hr_inc'], forecast_hour ) format_valid_dates = [ valid_dates[d].strftime('%Y%m%d_%H%M%S') \ for d in range(len(valid_dates)) ] format_init_dates = [ init_dates[d].strftime('%Y%m%d_%H%M%S') \ for d in range(len(init_dates)) ] if self.date_info_dict['date_type'] == 'VALID': self.logger.debug("Based on date information, " +"plot will display valid dates " +', '.join(format_valid_dates)+" " +"for forecast hour " +f"{forecast_hour} with " +"initialization dates " +', '.join(format_init_dates)) plot_dates = valid_dates elif self.date_info_dict['date_type'] == 'INIT': self.logger.debug("Based on date information, " +"plot will display " +"initialization dates " +', '.join(format_init_dates)+" " +"for forecast hour " +f"{forecast_hour} with valid dates " +', '.join(format_valid_dates)) plot_dates = init_dates # Read in data level_input_dir = os.path.join( self.input_dir, '..', '..', f"{self.plot_info_dict['fcst_var_name'].lower()}_" +f"{level.lower()}", (self.plot_info_dict['vx_mask'].lower()\ .replace('global', 'glb').replace('conus', 'buk_conus')) ) self.logger.info("Reading in model stat files from " +f"{level_input_dir}") all_model_df = gda_util.build_df( self.logger, level_input_dir, self.output_dir, self.model_info_dict, self.met_info_dict, self.plot_info_dict['fcst_var_name'], level, self.plot_info_dict['fcst_var_thresh'], self.plot_info_dict['obs_var_name'], level, self.plot_info_dict['obs_var_thresh'], self.plot_info_dict['line_type'], self.plot_info_dict['grid'], self.plot_info_dict['vx_mask'], self.plot_info_dict['interp_method'], self.plot_info_dict['interp_points'], self.date_info_dict['date_type'], plot_dates, format_valid_dates, str(forecast_hour) ) fcst_units.extend( all_model_df['FCST_UNITS'].values.astype('str')\ .tolist() ) # Calculate statistic mean self.logger.info("Calculating statstic " +f"{self.plot_info_dict['stat']} " +"from line type " +f"{self.plot_info_dict['line_type']} " +"average") stat_df, stat_array = gda_util.calculate_stat( self.logger, all_model_df, self.plot_info_dict['line_type'], self.plot_info_dict['stat'] ) model_idx_list = ( stat_df.index.get_level_values(0).unique().tolist() ) if self.plot_info_dict['event_equalization'] == 'YES': self.logger.debug("Doing event equalization") masked_stat_array = np.ma.masked_invalid(stat_array) stat_array = np.ma.mask_cols(masked_stat_array) stat_array = stat_array.filled(fill_value=np.nan) for model_idx in model_idx_list: model_idx_num = model_idx_list.index(model_idx) stat_df.loc[model_idx] = stat_array[model_idx_num,:] all_model_df.loc[model_idx] = ( all_model_df.loc[model_idx].where( stat_df.loc[model_idx].notna() ).values) if forecast_hour \ == self.date_info_dict['forecast_hours'][0] \ and level == vert_profile_levels[0]: stat_vert_prof_forecast_hours_avg_df = pd.DataFrame( np.nan, pd.MultiIndex.from_product( [model_idx_list, self.date_info_dict['forecast_hours']], names=['model', 'fhr'] ), columns=vert_profile_levels ) for model_idx in model_idx_list: model_idx_num = model_idx_list.index(model_idx) if self.plot_info_dict['line_type'] in ['CNT', 'GRAD', 'CTS', 'NBRCTS', 'NBRCNT', 'VCNT']: avg_method = 'mean' calc_avg_df = stat_df.loc[model_idx] else: avg_method = 'aggregation' calc_avg_df = all_model_df.loc[model_idx] model_idx_forecast_hour_avg = gda_util.calculate_average( self.logger, avg_method, self.plot_info_dict['line_type'], self.plot_info_dict['stat'], calc_avg_df ) if not np.isnan(model_idx_forecast_hour_avg): stat_vert_prof_forecast_hours_avg_df.loc[ (model_idx, forecast_hour), level ] = model_idx_forecast_hour_avg # Set up plot self.logger.info(f"Doing plot set up") plot_specs_lbl = PlotSpecs(self.logger, 'lead_by_level') plot_specs_lbl.set_up_plot() model_idx_list = ( stat_vert_prof_forecast_hours_avg_df.index\ .get_level_values(0).unique().tolist() ) fhr_idx_list = ( stat_vert_prof_forecast_hours_avg_df.index\ .get_level_values(1).unique().tolist() ) ymesh, xmesh = np.meshgrid(vert_profile_levels_int, fhr_idx_list) nsubplots = len(model_idx_list) if nsubplots == 1: gs_row, gs_col = 1, 1 gs_hspace, gs_wspace = 0, 0 gs_bottom, gs_top = 0.225, 0.85 cbar_bottom = 0.075 cbar_height = 0.02 elif nsubplots == 2: gs_row, gs_col = 1, 2 gs_hspace, gs_wspace = 0, 0.1 gs_bottom, gs_top = 0.225, 0.85 cbar_bottom = 0.075 cbar_height = 0.02 elif nsubplots > 2 and nsubplots <= 4: gs_row, gs_col = 2, 2 gs_hspace, gs_wspace = 0.15, 0.1 gs_bottom, gs_top = 0.125, 0.9 cbar_bottom = 0.04 cbar_height = 0.02 elif nsubplots > 4 and nsubplots <= 6: gs_row, gs_col = 3, 2 gs_hspace, gs_wspace = 0.15, 0.1 gs_bottom, gs_top = 0.125, 0.9 cbar_bottom = 0.04 cbar_height = 0.02 elif nsubplots > 6 and nsubplots <= 8: gs_row, gs_col = 4, 2 gs_hspace, gs_wspace = 0.175, 0.1 gs_bottom, gs_top = 0.125, 0.9 cbar_bottom = 0.04 cbar_height = 0.02 elif nsubplots > 8 and nsubplots <= 10: gs_row, gs_col = 5, 2 gs_hspace, gs_wspace = 0.225, 0.1 gs_bottom, gs_top = 0.125, 0.9 cbar_bottom = 0.04 cbar_height = 0.02 else: self.logger.error("TOO MANY SUBPLOTS REQUESTED, MAXIMUM IS 10") sys.exit(1) if nsubplots <= 2: plot_specs_lbl.fig_size = (16., 8.) plot_specs_lbl.fig_title_size = 16 plt.rcParams['figure.titlesize'] = plot_specs_lbl.fig_title_size if nsubplots >= 2: n_xticks = 8 else: n_xticks = 17 if len(self.date_info_dict['forecast_hours']) <= n_xticks: xticks = self.date_info_dict['forecast_hours'] else: xticks = [] for fhr in self.date_info_dict['forecast_hours']: if int(fhr) % 24 == 0: xticks.append(fhr) if len(xticks) > n_xticks: xtick_intvl = int(len(xticks)/n_xticks) xticks = xticks[::xtick_intvl] vert_profile_levels_int_ticks = vert_profile_levels_int if self.plot_info_dict['vert_profile'] == 'all': for del_lev in [925, 700, 500, 250, 100]: vert_profile_levels_int_ticks = np.delete( vert_profile_levels_int_ticks, np.where(vert_profile_levels_int_ticks == del_lev) ) elif self.plot_info_dict['vert_profile'] == 'trop': vert_profile_levels_int_ticks = np.delete( vert_profile_levels_int_ticks, np.where(vert_profile_levels_int_ticks == 925) ) fcst_units = np.unique(fcst_units) fcst_units = np.delete(fcst_units, np.where(fcst_units == 'nan')) if len(fcst_units) > 1: self.logger.error(f"Have multilple units: {', '.join(fcst_units)}") sys.exit(1) elif len(fcst_units) == 0: self.logger.debug("Cannot get variables units, leaving blank") fcst_units = [''] plot_title = plot_specs_lbl.get_plot_title( self.plot_info_dict, self.date_info_dict, fcst_units[0] ) plot_left_logo = False plot_left_logo_path = os.path.join(self.logo_dir, 'noaa.png') if os.path.exists(plot_left_logo_path): plot_left_logo = True left_logo_img_array = matplotlib.image.imread( plot_left_logo_path ) left_logo_xpixel_loc, left_logo_ypixel_loc, left_logo_alpha = ( plot_specs_lbl.get_logo_location( 'left', plot_specs_lbl.fig_size[0], plot_specs_lbl.fig_size[1], plt.rcParams['figure.dpi'] ) ) plot_right_logo = False plot_right_logo_path = os.path.join(self.logo_dir, 'nws.png') if os.path.exists(plot_right_logo_path): plot_right_logo = True right_logo_img_array = matplotlib.image.imread( plot_right_logo_path ) right_logo_xpixel_loc, right_logo_ypixel_loc, right_logo_alpha = ( plot_specs_lbl.get_logo_location( 'right', plot_specs_lbl.fig_size[0], plot_specs_lbl.fig_size[1], plt.rcParams['figure.dpi'] ) ) image_name = plot_specs_lbl.get_savefig_name( self.output_dir, self.plot_info_dict, self.date_info_dict ) subplot0_cmap, subplotsN_cmap = plot_specs_lbl.get_plot_colormaps( self.plot_info_dict['stat'] ) subplot0_data = ( stat_vert_prof_forecast_hours_avg_df.loc[ model_idx_list[0] ].values ) for model_idx in model_idx_list[1:]: subplotN_data = ( stat_vert_prof_forecast_hours_avg_df.loc[ model_idx ].values ) if model_idx == model_idx_list[1]: subplotsN_data = [subplotN_data] else: subplotsN_data = np.concatenate((subplotsN_data, [subplotN_data])) if len(model_idx_list) == 1: subplotsN_data = [np.nan] (have_subplot0_levs, subplot0_levs, have_subplotsN_levs, subplotsN_levs) = ( plot_specs_lbl.get_plot_contour_levels( self.plot_info_dict['stat'], subplot0_data, subplotsN_data ) ) make_colorbar = False # Create plot self.logger.info(f"Creating plot for {self.plot_info_dict['stat']} " +"- vertical profile " +f"{self.plot_info_dict['vert_profile']}") fig = plt.figure(figsize=(plot_specs_lbl.fig_size[0], plot_specs_lbl.fig_size[1])) gs = gridspec.GridSpec(gs_row, gs_col, bottom=gs_bottom, top=gs_top, hspace=gs_hspace, wspace=gs_wspace) fig.suptitle(plot_title) if plot_left_logo: left_logo_img = fig.figimage( left_logo_img_array, left_logo_xpixel_loc - (left_logo_xpixel_loc * 0.5), left_logo_ypixel_loc, zorder=1, alpha=right_logo_alpha ) left_logo_img.set_visible(True) if plot_right_logo: right_logo_img = fig.figimage( right_logo_img_array, right_logo_xpixel_loc, right_logo_ypixel_loc, zorder=1, alpha=right_logo_alpha ) for model_idx in model_idx_list: model_num = model_idx.split('/')[0] model_num_name = model_idx.split('/')[1] model_num_plot_name = model_idx.split('/')[2] model_num_obs_name = ( self.model_info_dict[model_num]['obs_name'] ) model_num_data = stat_vert_prof_forecast_hours_avg_df.loc[ model_idx ].values masked_model_num_data = np.ma.masked_invalid(model_num_data) ax = plt.subplot(gs[model_idx_list.index(model_idx)]) ax.grid(True) ax.set_xlim([self.date_info_dict['forecast_hours'][0], self.date_info_dict['forecast_hours'][-1]]) ax.set_xticks(xticks) if ax.get_subplotspec().is_last_row() \ or (nsubplots % 2 != 0 \ and model_idx_list.index(model_idx) \ == nsubplots-1): ax.set_xlabel('Forecast Hour') else: plt.setp(ax.get_xticklabels(), visible=False) ax.set_yscale('log') ax.minorticks_off() ax.set_yticks(vert_profile_levels_int_ticks) ax.set_yticklabels(vert_profile_levels_int_ticks) ax.set_ylim([vert_profile_levels_int[0], vert_profile_levels_int[-1]]) if ax.get_subplotspec().is_first_col() \ or (nsubplots % 2 != 0 \ and model_idx_list.index(model_idx) \ == nsubplots -1): ax.set_ylabel('Pressure Level (hPa)') else: plt.setp(ax.get_yticklabels(), visible=False) if model_idx == model_idx_list[0]: self.logger.debug(f"Plotting {model_num} " +f"- {model_num_name} " +f"- {model_num_plot_name}") ax.set_title(model_num_plot_name) subplot0_plot_name = model_num_plot_name subplot0_data = masked_model_num_data if not subplot0_data.mask.all(): if have_subplot0_levs: CF0 = ax.contourf(xmesh, ymesh, subplot0_data, levels=subplot0_levs, cmap=subplot0_cmap, extend='both') else: CF0 = ax.contourf(xmesh, ymesh, subplot0_data, cmap=subplot0_cmap, extend='both') C0 = ax.contour(xmesh, ymesh, subplot0_data, levels=CF0.levels, colors='k', linewidths=1.0) C0_labels_list = [] for lev in C0.levels: if str(lev).split('.')[1] == '0': C0_labels_list.append(str(int(lev))) else: C0_labels_list.append( str(round(lev,3)).rstrip('0') ) C0_fmt = {} for lev, label in zip(C0.levels, C0_labels_list): C0_fmt[lev] = label ax.clabel(C0, C0.levels, fmt=C0_fmt, inline=True, fontsize=12.5) if self.plot_info_dict['stat'] in ['BIAS', 'ME', 'FBIAS']: if not make_colorbar: make_colorbar = True cbar_CF = CF0 cbar_ticks = CF0.levels cbar_label = plot_specs_lbl.get_stat_plot_name( self.plot_info_dict['stat'] ) else: self.logger.debug("Fully masked array " +f"for {model_num}, no plotting") else: if self.plot_info_dict['stat'] in ['BIAS', 'ME', 'FBIAS']: self.logger.debug(f"Plotting {model_num} " +f"- {model_num_name} " +f"- {model_num_plot_name}") ax.set_title(model_num_plot_name) subplotN_data = masked_model_num_data else: self.logger.debug(f"Plotting {model_num} - " +f"{model_num_name} " +f"- {model_num_plot_name} " +"difference from " +f"{subplot0_plot_name}") ax.set_title(model_num_plot_name+'-'+subplot0_plot_name) subplotN_data = masked_model_num_data - subplot0_data if not subplotN_data.mask.all(): if have_subplotsN_levs: CFN = ax.contourf(xmesh, ymesh, subplotN_data, levels=subplotsN_levs, cmap=subplotsN_cmap, extend='both') if self.plot_info_dict['stat'] in ['BIAS', 'ME', 'FBIAS']: CN = ax.contour(xmesh, ymesh, subplotN_data, levels=CFN.levels, colors='k', linewidths=1.0) CN_labels_list = [] for lev in CN.levels: if str(lev).split('.')[1] == '0': CN_labels_list.append(str(int(lev))) else: CN_labels_list.append( str(round(lev,3)).rstrip('0') ) CN_fmt = {} for lev, label in zip(CN.levels, CN_labels_list): CN_fmt[lev] = label ax.clabel(CN, CN.levels, fmt=CN_fmt, inline=True, fontsize=12.5) if not make_colorbar: make_colorbar = True cbar_CF = CFN cbar_ticks = CFN.levels if self.plot_info_dict['stat'] in ['BIAS', 'ME', 'FBIAS']: cbar_label = ( plot_specs_lbl.get_stat_plot_name( self.plot_info_dict['stat'] ) ) else: cbar_label = 'Difference' else: self.logger.debug("Do not have contour levels " +"to plot, not plotting") else: self.logger.debug("Fully masked array " +f"for {model_num}, " +"no plotting") if os.environ['evs_run_mode'] == 'production' \ and model_num_plot_name == 'jma' \ and (int(self.date_info_dict['forecast_hours'][1])\ - int(self.date_info_dict['forecast_hours'][0])) \ == 12: ax.set_title('Forecasts not available at 12-h intervals', loc='right') if make_colorbar: cbar_left = gs.get_grid_positions(fig)[2][0] cbar_width = (gs.get_grid_positions(fig)[3][-1] - gs.get_grid_positions(fig)[2][0]) cbar_ax = fig.add_axes( [cbar_left, cbar_bottom, cbar_width, cbar_height] ) cbar = fig.colorbar(cbar_CF, cax=cbar_ax, orientation='horizontal', ticks=cbar_ticks) cbar.ax.set_xlabel(cbar_label, labelpad = 0) cbar.ax.xaxis.set_tick_params(pad=0) cbar_tick_labels_list = [] for tick in cbar.get_ticks(): if str(tick).split('.')[1] == '0': cbar_tick_labels_list.append( str(int(tick)) ) else: cbar_tick_labels_list.append( str(round(tick,3)).rstrip('0') ) cbar.ax.set_xticklabels(cbar_tick_labels_list) self.logger.info("Saving image as "+image_name) plt.savefig(image_name) plt.clf() plt.close('all') def main(): # Need settings INPUT_DIR = os.environ['HOME'] OUTPUT_DIR = os.environ['HOME'] LOGO_DIR = os.environ['HOME'] MODEL_INFO_DICT = { 'model1': {'name': 'MODEL_A', 'plot_name': 'PLOT_MODEL_A', 'obs_name': 'MODEL_A_OBS'}, } DATE_INFO_DICT = { 'date_type': 'DATE_TYPE', 'start_date': 'START_DATE', 'end_date': 'END_DATE', 'valid_hr_start': 'VALID_HR_START', 'valid_hr_end': 'VALID_HR_END', 'valid_hr_inc': 'VALID_HR_INC', 'init_hr_start': 'INIT_HR_START', 'init_hr_end': 'INIT_HR_END', 'init_hr_inc': 'INIT_HR_INC', 'forecast_hour': ['FORECAST_HOURS'] } PLOT_INFO_DICT = { 'line_type': 'LINE_TYPE', 'grid': 'GRID', 'stat': 'STAT', 'vx_mask': 'VX_MASK', 'event_equalization': 'EVENT_EQUALIZATION', 'interp_method': 'INTERP_METHOD', 'interp_points': 'INTERP_POINTS', 'fcst_var_name': 'FCST_VAR_NAME', 'fcst_var_thresh': 'FCST_VAR_THRESH', 'obs_var_name': 'OBS_VAR_NAME', 'obs_var_thresh': 'OBS_VAR_THRESH', 'vert_profile': 'all' } MET_INFO_DICT = { 'root': '/PATH/TO/MET', 'version': '11.0.2' } # Create OUTPUT_DIR gda_util.make_dir(OUTPUT_DIR) # Set up logging logging_dir = os.path.join(OUTPUT_DIR, 'logs') gda_util.make_dir(logging_dir) job_logging_file = os.path.join(logging_dir, os.path.basename(__file__)+'_runon' +datetime.datetime.now()\ .strftime('%Y%m%d%H%M%S')+'.log') logger = logging.getLogger(job_logging_file) logger.setLevel('DEBUG') formatter = logging.Formatter( '%(asctime)s.%(msecs)03d (%(filename)s:%(lineno)d) %(levelname)s: ' + '%(message)s', '%m/%d %H:%M:%S' ) file_handler = logging.FileHandler(job_logging_file, mode='a') file_handler.setFormatter(formatter) logger.addHandler(file_handler) logger_info = f"Log file: {job_logging_file}" print(logger_info) logger.info(logger_info) p = LeadByLevel(logger, INPUT_DIR, OUTPUT_DIR, MODEL_INFO_DICT, DATE_INFO_DICT, PLOT_INFO_DICT, MET_INFO_DICT, LOGO_DIR) p.make_lead_by_level() if __name__ == "__main__": main()