SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
!
!  -- LAPACK auxiliary routine (version 3.1) --
!     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
!     November 2006
!
!     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
!     ..
!
!  Purpose
!  =======
!
!  DLARFT forms the triangular factor T of a real block reflector H
!  of order n, which is defined as a product of k elementary reflectors.
!
!  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
!
!  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
!
!  If STOREV = 'C', the vector which defines the elementary reflector
!  H(i) is stored in the i-th column of the array V, and
!
!     H  =  I - V * T * V'
!
!  If STOREV = 'R', the vector which defines the elementary reflector
!  H(i) is stored in the i-th row of the array V, and
!
!     H  =  I - V' * T * V
!
!  Arguments
!  =========
!
!  DIRECT  (input) CHARACTER*1
!          Specifies the order in which the elementary reflectors are
!          multiplied to form the block reflector:
!          = 'F': H = H(1) H(2) . . . H(k) (Forward)
!          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!
!  STOREV  (input) CHARACTER*1
!          Specifies how the vectors which define the elementary
!          reflectors are stored (see also Further Details):
!          = 'C': columnwise
!          = 'R': rowwise
!
!  N       (input) INTEGER
!          The order of the block reflector H. N >= 0.
!
!  K       (input) INTEGER
!          The order of the triangular factor T (= the number of
!          elementary reflectors). K >= 1.
!
!  V       (input/output) DOUBLE PRECISION array, dimension
!                               (LDV,K) if STOREV = 'C'
!                               (LDV,N) if STOREV = 'R'
!          The matrix V. See further details.
!
!  LDV     (input) INTEGER
!          The leading dimension of the array V.
!          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
!
!  TAU     (input) DOUBLE PRECISION array, dimension (K)
!          TAU(i) must contain the scalar factor of the elementary
!          reflector H(i).
!
!  T       (output) DOUBLE PRECISION array, dimension (LDT,K)
!          The k by k triangular factor T of the block reflector.
!          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
!          lower triangular. The rest of the array is not used.
!
!  LDT     (input) INTEGER
!          The leading dimension of the array T. LDT >= K.
!
!  Further Details
!  ===============
!
!  The shape of the matrix V and the storage of the vectors which define
!  the H(i) is best illustrated by the following example with n = 5 and
!  k = 3. The elements equal to 1 are not stored; the corresponding
!  array elements are modified but restored on exit. The rest of the
!  array is not used.
!
!  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
!
!               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
!                   ( v1  1    )                     (     1 v2 v2 v2 )
!                   ( v1 v2  1 )                     (        1 v3 v3 )
!                   ( v1 v2 v3 )
!                   ( v1 v2 v3 )
!
!  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
!
!               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
!                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
!                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
!                   (     1 v3 )
!                   (        1 )
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   VII
!     ..
!     .. External Subroutines ..
!     EXTERNAL           DGEMV, DTRMV
!     ..
!     .. External Functions ..
!     LOGICAL            LSAME
!     EXTERNAL           LSAME
!     ..
!     .. Executable Statements ..
!
!     Quick return if possible
!
      IF( N.EQ.0 ) &
         RETURN
!
      IF( LSAME( DIRECT, 'F' ) ) THEN
         DO 20 I = 1, K
            IF( TAU( I ).EQ.ZERO ) THEN
!
!              H(i)  =  I
!
               DO 10 J = 1, I
                  T( J, I ) = ZERO
   10          CONTINUE
            ELSE
!
!              general case
!
               VII = V( I, I )
               V( I, I ) = ONE
               IF( LSAME( STOREV, 'C' ) ) THEN
!
!                 T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i)
!
                  CALL DGEMV( 'Transpose', N-I+1, I-1, -TAU( I ), &
                              V( I, 1 ), LDV, V( I, I ), 1, ZERO, &
                              T( 1, I ), 1 )
               ELSE
!
!                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)'
!
                  CALL DGEMV( 'No transpose', I-1, N-I+1, -TAU( I ), &
                              V( 1, I ), LDV, V( I, I ), LDV, ZERO, &
                              T( 1, I ), 1 )
               END IF
               V( I, I ) = VII
!
!              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
!
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, &
                           LDT, T( 1, I ), 1 )
               T( I, I ) = TAU( I )
            END IF
   20    CONTINUE
      ELSE
         DO 40 I = K, 1, -1
            IF( TAU( I ).EQ.ZERO ) THEN
!
!              H(i)  =  I
!
               DO 30 J = I, K
                  T( J, I ) = ZERO
   30          CONTINUE
            ELSE
!
!              general case
!
               IF( I.LT.K ) THEN
                  IF( LSAME( STOREV, 'C' ) ) THEN
                     VII = V( N-K+I, I )
                     V( N-K+I, I ) = ONE
!
!                    T(i+1:k,i) :=
!                            - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
!
                     CALL DGEMV( 'Transpose', N-K+I, K-I, -TAU( I ), &
                                 V( 1, I+1 ), LDV, V( 1, I ), 1, ZERO, &
                                 T( I+1, I ), 1 )
                     V( N-K+I, I ) = VII
                  ELSE
                     VII = V( I, N-K+I )
                     V( I, N-K+I ) = ONE
!
!                    T(i+1:k,i) :=
!                            - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
!
                     CALL DGEMV( 'No transpose', K-I, N-K+I, -TAU( I ), &
                                 V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO, &
                                 T( I+1, I ), 1 )
                     V( I, N-K+I ) = VII
                  END IF
!
!                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
!
                  CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, &
                              T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
               END IF
               T( I, I ) = TAU( I )
            END IF
   40    CONTINUE
      END IF
      RETURN
!
!     End of DLARFT
!
      END SUBROUTINE DLARFT